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Abstract: In the attempt to process lower-grade ores, mineral flotation has taken centre stage as
the preferred recovery route. However, in many instances, the froth product does not have a high
grade due to the entrainment of gangue minerals. Industry has solved this challenge by introducing
froth washing mechanisms. Clean wash water is introduced into or on top of the froth to reduce the
amount of entrained gangue in the final concentrate. This article reviews froth-washing systems in
detail and highlights the advantages and disadvantages of each wash-water delivery mechanism.
Comments on industrial uptake are provided. The indications are that froth washing improves the
grade of the concentrate and influences froth stability and mobility. Other researchers have reported
an improvement in recovery—especially of coarse particles—with wash water being added, while
others have reported a reduction in recovery, especially with composite particles. Froth washing is
generally applied in mechanical flotation cells by washing at the lip. In column flotation cells and
Jameson cells, wash water is added to the entire froth surface. The literature also indicates that the
wash-water rate, wash-water quality, type of wash-water delivery/ distribution mechanism and the
area covered by wash water are critical parameters that dictate the efficacy of the washing system.
Further research is necessary on the impact of wash-water quality on the froth phase sub-processes
including froth rheology.
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1. Introduction

Froth flotation is a mineral processing technique that is popular when processing
low-grade ores. It involves introducing chemically treated, finely ground ore in the form
of a slurry into a flotation cell where air is also added in the form of bubbles. The chemi-
cals added to the slurry manipulate the surface of valuable minerals by rendering them
hydrophobic, while gangue particles remain hydrophilic or vice versa in reverse flotation
where the gangue is floated and the valuable mineral is rendered hydrophilic [1]. In the
pulp phase of the flotation cell, air in the form of bubbles of a specific size pick up the
hydrophobic particles and rise to the top, where they form a froth that increases in height
as more bubbles impinge at the bottom; it eventually overflows the concentrate weir and is
collected in launders.

The performance of the froth phase is governed by sub-processes, namely liquid
drainage, particle detachment or attachment, and bubble coalescence and break-up. These
sub-processes dictate froth recovery and grade, which are typically used as performance
measures of the froth [2]. Froth recovery is defined as the fraction of particles that enter
the froth phase, survive its cleaning action and are recovered as the concentrate [3]. Grade
refers to the content of the marketable product in the concentrate expressed as a percentage
of the total concentrate [3]. The grade of the concentrate is lowered by entrainment, which
is a non-selective process responsible for carrying fine particles from the pulp into the froth.
Particles are entrained into the froth by the liquid that is pushed into the froth in the bubble
wake or by mechanical means through turbulence and slime coatings [4,5]. Mechanisms
to explain entrainment that have been established in the literature include: the Moys [6]
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theory that states that unattached particles are carried upwards in bubble lamella; the
Yianatos et al. [7] model that indicates that particles are transported to the froth in the wake
of ascending air bubbles. Smith and Warren [8] used the bubble swarm theory to suggest
that water in the pulp phase is mechanically pushed into the froth phase by a rising swarm
of bubbles. The water carries with it fine particles, the bulk of which are gangue minerals,
because there is a high concentration in the pulp. Gangue minerals can also be recovered
through entrapment [9].

Several methods have been developed to reduce the impact of entrainment in the
froth. Broadly speaking, these can be categorised into operational, physical methods
and chemical methods. This review will focus on the physical froth-flow modifiers and
operational methods, which include the three methods detailed below.

1.1. Methods That Alter Froth Residence Time

These methods include changing the froth depth, changing the gas rate and the use of
physical froth-flow modifiers. These methods alter the mean froth residence time. Changing
froth-retention time changes the froth recovery and water recovery and allows for entrained
particles to drain back into the pulp. For example: changing the froth depth changes the
water recovery across the froth. This is because changing the froth depth changes the
froth residence time and subsequently lead to a decrease or increase in water and solids
drainage [10–18]. Changing the gas rate also alters the water recovery across the froth.
For instance, increasing the gas rate increases the entrainment recovery as a result of the
associated increase in froth rising velocity and the corresponding decrease in average
froth-retention time [11,15,17–20]. Inserting froth-flow modifiers, e.g., baffles, crowders,
launders and paddles, also changes the froth-retention time, and can therefore impact the
entrainment recovery. The work on froth baffles conducted by Moys [6] and Bhondayi [21]
showed that the froth residence time could be altered and allow for more drainage time of
the entrained gangue particles in the froth, especially near the concentrate weir.

1.2. Methods That Reduce Turbulence in the Pulp

These methods include increasing the quiescent zone, reducing the impeller speed
and using horizontal baffles. A quiescent zone is a region found above the turbulent zone
in the pulp zone [22]. This region has less turbulence, which helps to reduce the probability
of gangue mineral recovery by mechanical entrainment [22–24]. Schubert [23] showed that
mechanical and hydraulic entrainments decrease when the turbulence in the quiescent
zone is reduced. Razmjooei et al. [24] reported that reducing the impeller speed reduces
turbulence and the mean velocity in the quiescent zone, which leads to a reduction in the
number of solid particles (less than 50 µm) available for entrainment. Inserting a horizontal
froth baffle lowers entrainment, as alluded to by Kawatra and Eisele [25], who observed
a significant increase in concentrate grade and a reduction in churn in the presence of
retrofitted horizontal baffles. Cilek [26] reported that impellor speeds can be regulated to
lower the degree of entrainment in the froth.

1.3. Froth Washing

This is another method that can be used to “clean” the froth off entrained particles.
Froth washing is effective in reducing the number of entrained particles in the froth [27–33].
The process of froth washing involves spraying water onto the froth. The added water helps
the drainage of the entrained/loosely held particles back into the pulp phase by displacing
the entrained liquid that transmits gangue particles. Froth washing increases grade, flota-
tion recovery, froth stability and mobility, and thus enhances the performance of a flotation
cell [28]. Despite the success achieved with froth washing, especially in column flotation
cells, the Jameson cell (particularly in the coal processing industry), there are factors that
lead to sub-optimal performance if they are not optimised. These include wash-water
flowrate [27,28,34,35]; wash-water quality [27–33]; type and mechanism of wash-water
delivery/distribution [28–30,32,33,36–40]; area covered by wash water [27–30,41,42]. Mald-
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istribution of wash water [28,42,43] affects the degree of froth mixing, causes channeling
and short-circuiting in froth [44], and can result in suboptimal metallurgical performance of
a flotation cell. An excessive number of fine particles in the pulp may increases entrainment,
and froth washing has been used to counter this extra entrainment [5,27–33].

The purpose of this review is to discuss froth washing in detail. It details how wash
water reduces the number of entrained particles in the froth, and how this impacts flotation
performance in terms of recovery and grade. The available froth-washing mechanisms are
discussed, including the advantages and disadvantages of each mechanism. This review is
important as it will add knowledge on froth washing, which is a widely used process for
froth cleaning in flotation.

2. Froth Phase Sub-Processes

In froth flotation, the particles of interest are physically separated from the gangue
minerals by taking advantage of their ability to adhere to the surface of bubbles, due to
particle surface hydrophobicity. The hydrophobic particles attach to the air bubbles and are
carried to the surface, where they form a froth, while hydrophilic particles remain in the
pulp to be drained as tails [45]. Initially, the loaded bubbles entering the froth are mostly
spherical, with a liquid film surrounding them. However, as more bubbles impinge at the
base of the froth, the layer of froth increases in height and slurry drains back into the froth.
The liquid around the bubbles (bubble lamella) drains and becomes increasingly thinner,
which encourages bubble coalescence. The bubbles thus become larger and polyhedral
in shape, with plateau borders forming at the junction of three bubbles [46], i.e., tubular
conduits in which water and detached particles flow. Detached particles may reattach to
the available surface of rising bubbles or drop and drain back to the pulp phase. Thus,
the froth phase sub-processes, bubble coalescence, particle detachment and reattachment,
and froth drainage significantly influence the overall grade and recovery of the froth [1,47].
Froth phase sub-processes dictate the type and composition of particles in the lamella and
plateau borders at any given time [46]. When two bubbles collide and merge, oscillations
due to this collision result in the loss of particles [48–50]. Therefore, coalescence results in
the detachment of particles. The detached particles can reattach to the rising bubbles via
a selective process, based on hydrophobicity and particle size [1,6,51], which influences
overall flotation performance.

2.1. Brief Overview of Froth Behavior

The major function of the froth is to transport the valuable minerals to the concentrate
weir or froth discharge launders. Therefore, the froth should be able to resist bubble
coalescence and bursting events, a property that is defined as froth stability. Several factors
influence froth stability, including particle size and hydrophobicity [2,52], quality of process
water, gas dispersion characteristics, particle contact angle, temperature, salt concentration,
etc. [53]. Farrokhpay [53] reported that froth stability plays an important role in determining
grade and mineral recovery. The froth should be stable enough to allow drainage of gangue
particles and recovery of mineral values. A froth that is too stable is difficult to manage and
leads to difficulties in mineral recovery because it has a high mineral content, which retards
drainage of hydrophobic particles to the launder [54]. If the froth is unstable (i.e., breaks
continuously as the liquid drains from between bubbles) [54], it results in low recovery
because mineral-laden bubbles collapse before they are transported over the concentrate
weir. Unstable froths are runny and consist of loosely packed spherical bubbles with little
valuable minerals. A very stable froth i.e., metastable froth is sticky with a high froth load
due to closely packed ellipsoidal bubbles. Very stable froths are too viscous and have large
bubbles entraining a large number of gangue minerals, which consequently leads to a poor
grade of concentrate [54].

Very stable froths become dry in the upper layers [55,56] as a result of particles
dropping back and liquid drainage. Wash water sprayed compensates for the water lost in
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the upper layers of the froth preventing bubbles from bursting events, thus increasing froth
stability and improving the recovery of particles [28,55,56].

In addition to being of acceptable stability, the froth should also be mobile, in order
for it to flow to the concentrate launder. A froth property called froth mobility refers to
the flow streamlines that occur in the froth between the pulp-froth interface and the froth
discharge [57,58]. Froth mobility has been linked to the froth structure. Moolman et al. [54]
stated that large elliptical bubbles with high froth loading are a result of an excessively sta-
ble, sticky froth. The characteristics of a sticky froth are high viscosity with lower mobility
compared to that of an ideal froth. A runny froth is too watery, has low mineralisation and
is excessively mobile [54]. An ideal froth is not too runny or too viscous.

Froth rheology is an important froth property in flotation because it has the possibility
of affecting both froth mobility and froth stability [59]. One of the terms associated with
froth rheology is viscosity. Experienced plant operators have often used their fingers to test
whether the froth is viscous so that operating variables can be adjusted promptly. Shi and
Zheng [59] reported that the froth becomes drier and more viscous when it stays longer in
the flotation cell on its way to the launders. This can only be attributed to water draining
from the froth. As a result, water and entrained particles per unit volume of froth decrease.
In the process, froth mobility is lowered. Froth washing has the benefit of compensating for
the water lost in the upper layers of the froth, which improves froth mobility, stability and
recovery [28,55,56]. Therefore, froth washing influences froth rheology. Shi and Zheng [59]
reported that the froth becomes less viscous as the water hold-up in the froth increases.
No other research has been conducted on the impact of froth washing on froth rheology.
Kaya [28] reported that wash water reduces bubble coalescence, which leads to improved
recovery in flotation. After introducing wash water, the bubble lamella thickens. The
number of large particles held in the froth increases. In addition, the amount of water
draining from the froth also increases and effectively “washes’ down entrained particles;
this is effectively a secondary concentration process which leads to an improved froth
grade. The increase in the recovery of coarse particles and the secondary concentration
process results in an increase in recovery and grade [28].

2.2. Transporting Gangue Minerals into the Froth

Three main mechanisms have been identified as being responsible for transporting
gangue minerals into the froth and these are entrainment, recovery as composite particles
using their hydrophobic portion attached to bubbles and entrapment by aggregates attached
to bubbles [8]. Entrainment is known to be the biggest contributor to recovering gangue
minerals in the froth [8,9,12,60–66]. It is a process that transfers fine particles into the froth
through mechanical means [67,68]. The process is non-selective; therefore, fine particles
of both valuable minerals and gangue minerals are transported into the froth. However,
because gangue minerals are typically abundant compared to valuable minerals, a reduction
in concentrate grade is observed. Therefore, entrainment must be managed actively.

Entrainment is known to take place in two steps. Step 1 involves moving particles
from the top of the pulp, across the pulp-froth interface and into the froth. Step 2 involves
transferring these particles from the froth phase to the concentrate [63,64,66]. Generally,
three mechanisms are considered responsible for Step 1. These are: (i) unattached par-
ticles being carried upwards in bubble lamella, which is known as the boundary layer
theory [6,9,17,60,61]; (ii) the bubble swarm theory [8,65], which posits that swarms of
bubbles below the pulp-froth interface mechanically push water and suspended particles
across the pulp-froth interface; (iii) the bubble wake theory [17,62], which posits that the
bubble wake transfers particles into the froth. Water in bubble lamella, or in the wake of a
bubble or water being mechanically pushed by swarms of bubbles is central to explaining
entrainment. Thus, several relationships between water recovery and particle recovery by
entrainment have been suggested, including the dominant linear relationship, as observed
by several researchers [4,6,8,11,15,17,38,56,69–73].



Minerals 2022, 12, 1462 5 of 26

Another mechanism for transporting gangue into the froth was suggested by Gaudin [9]
as reported by Smith and Warren [8], i.e., entrapment. Entrapment takes place when
non-floatable particles (gangue minerals) are trapped between valuable particles that are
attached to adjoining/clustered bubbles and which are recovered to the froth product [9,28].
This lowers the grade of the froth. Zheng et al. [15] further reported that entrapment occurs
when the thickness of the froth lamellae and plateau borders reduces to a value similar to or
less than the particle size, hindering the free drainage of particles. Zheng et al. [15] further
stated that entrapment can be responsible for the disproportionately higher recovery of
larger particles of gangue minerals relative to fine particles. Kaya [28] further reported that
entrapment becomes more dominant with low water recovery or when the froth becomes
dry. Introducing froth washing was found to reduce entrapment.

2.3. Managing Entrainment Recovery

Several factors are known to influence entrainment, including feed properties, mainly
particle size and density [8,17,74–77]; operational parameters, such as pulp density [15,77],
impeller speed [17,78], gas rate [15,17] and froth height [6,10,11,13–17]. Controlling and
manipulating these factors is one way of managing entrainment. Fundamentally, the
reduction in particles recovered by entrainment targets the two-step process that results
in the entrainment of particles. For instance, Zheng et al. [15] observed that the degree of
entrainment increases with an increase in the air rate and decreases with an increase in
the froth height. An increase in air rate leads to an increase in the rising velocity of the
froth and shortens froth-retention time. Therefore, a lower proportion of particles per unit
mass of water drains back into the pulp from the froth phase. Increasing the froth height
prolongs the froth-retention time, which allows more water and unwanted fine particles to
drop back into the pulp. This produces a cleaner froth [15]. In this case, manipulating the
gas rate or froth height means targeting Step 2 of the entrainment process, by providing
conditions that reduce the recovery or transport of entrained particles to the concentrate
launder. Cilek [26] noted that, in mechanical cells, the impeller speed can be regulated to a
range within which the recovery of gangue minerals by entrainment would be reduced
but true flotation would be promoted. Akdemir and Sönmez [78] investigated the effect
of the impeller speed on coal and ash recovery and entrainment. The results indicated an
increase in recovery by entrainment as a result of increased impeller speed. In general,
excessive agitation leads to an increase in the recovery of fine gangue particles. Control
of agitation speed is primarily aimed at reducing Step 1 of the entrainment process, i.e.,
reducing transportation of unattached particles across the pulp-froth interface.

Froth-flow modifiers can also be used to control entrainment recovery by targeting the
second step of entrainment. This is achieved through manipulating the froth-retention time.
Altering the froth retention impacts the froth drainage and thus the entrainment recovery.
Moys [12] and Bhondayi [21] studied the impact of a froth baffle on froth performance. In
general, they found that a froth baffle leads to a reduction in entrainment, as the froth baffle
elongates the path taken by the bubbles, thus increasing the time for draining the gangue
particles. Therefore, baffles increase the froth-retention time for bubbles that enter the froth
phase close to the concentrate weir, which improves the concentrate grade. Other froth-flow
modifiers, e.g., crowders and launders, can also be used to manipulate the froth-retention
time, and result in varying degrees of entrainment control.

Industrially, entrainment has traditionally been minimised by using multiple stages of
cleaner flotation cells [79]. Column flotation became the preferred alternative to multi-stage
cleaning for the coal industry [29]. Column flotation cells utilise froth washing. Froth
washing involves introducing clean wash water within the froth or externally on top of the
froth. The added clean wash water creates a net downward flow of water in the froth, which
flushes out gangue particles and reduces the fraction of gangue minerals [27–30,32,33].
Thus, froth washing targets the second step of entrainment.
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2.4. Froth Washing

According to Klassen and Mokrousov [41], froth washing was first applied in the
flotation of coal and resulted in improvements in coal recovery. Wash water is uniformly
sprinkled on the whole froth surface in all flotation columns or at the overflow lip in
mechanical cells. Kaya [28] suggested that wash-water flow rates should be maintained
between 7% and 12% of water in the flotation cell feed. Frothing agents at the same
concentration as in the flotation cell feed may be added to the wash water to stabilise the
froth [27,30,80].

Column flotation cells are common in coal flotation or applications where a deeper
froth is required [32]. Wash water is also sometimes applied in mechanical flotation
cells, although this is not very common; however, the water requirement is lower, mainly
because these cells are operated at a lower froth height compared to column flotation cells.
Compared to mechanical cells, huge success has been realised using froth washing in both
column flotation [81] and Jameson cells [82], lowering entrainment and improving the grade
of the concentrate. Column and Jameson cells have froth-washing systems to ensure that
the entire froth surface is washed, while mechanical cells utilise washing at the cell lip [32].
Froth washing is also widely used in cleaner stages of flotation cells [29,83,84]. However,
little application has been reported in scavenger cells, which contain the largest amounts
of gangue particles compared to floatable material [32]. Scavenger cells are susceptible to
entrainment due to shallow froth depth and less stable froth, which contains slow floatable
minerals [29].

2.4.1. Mechanism of Froth Washing

The main goal when adding wash water is to flush out the gangue particles in the
entrained liquid surrounding the bubbles that make up the froth and create a net downward
flow of water [27,30]. This goal can be achieved without altering the structure of the froth [1].
A pictorial illustration of this process was developed by [32], as shown in Figure 1. Figure 1a
depicts a drop of water as it descends into the froth, while Figure 1b shows a mineral-laden
air bubble ascending in the froth. The value minerals attached to the bubble are yellow,
while the entrained liquid and the gangue particles are blue and brown, respectively. The
gangue minerals also rise upwards in the water surrounding the bubble. At some point
(Figure 1c), contact between the wash water and the air bubble is made and the wash water
then “washes” the froth (Figure 1d) by covering the bubble and instantly displacing the
entrained liquid with gangue particles. Figure 1e shows the displaced entrained liquid
carrying the gangue particles moving downward. The “washed” bubble with the value
minerals continues to rise in the froth until it is recovered in the concentrate launder [32].

2.4.2. Impact of Froth Washing on Flotation Performance

The addition of wash water has a direct impact on flotation performance, since it
influences froth phase sub-processes such as bubble coalescence, froth drainage and im-
portant froth properties, e.g., froth stability, mobility and rheology. Thus, froth washing
influences both grade and recovery, reagent consumption and cleaning stages required in
flotation [27–30,41]. The impact of froth washing on flotation performance is discussed in
detail in the sections that follow.
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Figure 1. The ideal mechanism of froth washing (a) drop of water descending into the froth, (b)
mineral-laden air bubble ascending in the froth with associated entrained water and particles (c)
contact between the wash water and the air bubble, (d) the descending droplet of water displaces the
entrained water and particles and, (e) entrained particles flow back into the pulp while the bubble
with clean water rises [32].

2.4.3. Impact on Grade

As depicted in Figure 1, sprayed wash water creates a downward counter-flow to
entrained liquid rinsing the gangue particles out and back into the pulp [38]. Flushing
away the gangue particles that are weakly attached or entrained in the froth improves the
grade of the concentrate. Young et al. [82] suggested that a higher wash-water bias of up to
1.5 may lead to a reduction in the recovery of composite particles that are weakly attached
to bubbles. This then leads to an improved concentrate grade. McKeon [29] performed
tests on coal concentrate and reported that the grade was higher with concentrate where
froth washing had been performed compared to concentrate where no wash water had
been added.

Most plant data available to support the reported increase in grade and recovery were
obtained from Russian plants, as reported by [41]. For example, an increase in concentrate
grades from 10–15% was noted during the flotation of andalusite ores. Froth washing
reportedly increased the molybdenum content from 2.7% to 7.2% during the cleaning
stages of powellite flotation in column cells [41]. Coal recoveries increased from 2.4 to
11.8% as the ash content diminished from 14.1 to 1.9% and higher nickel grades were
obtained when froth washing was introduced [28]. The final gold concentrate increased
by 14% at a slightly higher recovery when wash water was introduced at the Eastmaque
mill; this was also followed by a reduction in gangue recovery (−10 µm) from 65% to
15% in the second cleaner bank [41]. Nishkov and Grigorova [85] reported a decrease in
silica content from 10.5% to 2.8% in the final zinc concentrate when froth washing was
applied. Bhugwandeen [86] ran industrial tests at Lonmin Platinum and noted that the
PGM grade improved in cleaner, cleaner-scavenger and the re-cleaner cells when froth
washing was applied. The PGM content was increased by 19% when compared to trials
with no washing [86].

2.4.4. Impact on Recovery

Adding wash water into the froth influences overall flotation recovery through its
direct influence on froth recovery. Conceptually, froth recovery is related to overall flotation
recovery by Equation (1) [2,87,88]. For a given pulp phase recovery (Rc), an increase in
froth recovery (R f ) will result in an increase in overall recovery (R).

R =
RcR f

RcR f + (1 − R f )
(1)
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Froth recovery measures the fraction of particles attached to air bubbles entering the
froth phase that survives the froth phase sub-processes and reports to the concentrate [2,73].
Adding wash water influences froth phase sub-processes; therefore, it has an impact on
froth recovery. For instance, Kaya [28] posits that the addition of wash water in the froth
reduces particle loss in the froth by reducing bubble coalescence and bubble bursting.
Therefore, in the absence of wash water, film drainage leads to bubble lamella thinning,
especially in the upper portion of the froth; this leads to particles failing to maintain contact
with two or three bubbles, which leads to bubbles bursting and coalescence [46]. However,
with wash water being added, the film thickens, and the number of larger particles held in
the froth increases, which increases recovery [28]. Wash water reduces bubble coalescence
in the froth [28], and a reduction in bubble coalescence implies that a large froth surface area
is maintained in the froth. This leads to a reduction in the displacement of coarse particles,
which greatly improves the recovery of large particles [28]. Klassen and Mokrousov [41]
observed an increase in coal recovery at the plant, i.e., from 2.4% to 11.8%, with a decrease
in ash content, i.e., from 14.1% to 1.9%, for both coarse and fine-sized coal flotation.

Contrary to the observation of an increase in recovery, other studies found a decrease
in recovery when wash water was added. For instance, McKeon [29] conducted froth
washing tests on coal concentrates and found a reduction in the recovery of valuable
minerals with the addition of froth washing to the process. McKeon [29] explained that
the wash water caused valuable minerals to detach from the air bubbles. McKeon [29]
further reported that froth washing decreases the residence time in cells, by increasing the
flow rate through the cells. This subsequently leads to a decrease in the time for a single
valuable mineral particle to be recovered, which causes a reduction in recovery. Higher
froth wash-water flowrates increase breakage of the froth, thereby reducing the recovery
of minerals [45]. However, for zinc cleaner cells with very stable froths, wash water must
penetrate the froth under pressure [85].

Adding wash water can also be described in terms of bias calculated using equation
(3) and defined as the total excess of the wash water applied over the amount of water
recovered in the concentrate [34]. Young et al. [82] suggested that a high wash water
bias of up to 1.5 may lead to a reduction in the recovery of composite particles that are
weakly attached to bubbles. This then leads to reduced recoveries. Bhugwandeen [86]
ran scavenger plant trials to test the effect of bias (of wash-water flow, versus water flow
leaving in the concentrate). It was concluded that a negative bias caused a loss in recovery
(the pulp level dropped), while a positive bias resulted in improved recovery, but with a
gradual increase in entrainment when compared to zero bias [86]. Other aspects that affect
froth recovery, such as particle size, chemicals, gas rate and froth depth, have been well
documented [21,52,87,88].

2.4.5. Impact on Froth Mobility and Stability

Froth properties such as froth stability and mobility have a direct impact on froth
performance and hence on flotation performance. Adding wash water also influences these
froth properties. As the froth builds up and expands due to bubble coalescence, particles
drop back and water drains, which leaves the upper layers of the froth dry. Spraying with
wash water replaces the water lost in the upper layers of the froth, thus increasing froth
stability by eliminating the dry froth upper layer [28,32,89]. A more stable froth implies
a reduction in coalescence and bubble-bursting events, which helps to reduce the loss of
particles in the froth [56]. The importance of maintaining correct froth stability has been
studied comprehensively by [1,52,54,55,90,91], while reviews on this topic are provided
by [53].

Froth mobility also influences froth performance and several researchers have pub-
lished on froth mobility [53,54,57,92–96]. Plessis [97] reported increased froth mobility after
adding wash water, based on visual observations. This increase in mobility was attributed
to there being more water in the froth, which resulted in faster movement/flow of froth
to the concentrate launders/collection points. Plessis [97] further observed an increase
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in yield as a result of a reduction in bubble coalescence when froth mobility increased.
However, an increase in froth mobility leads to a reduction in the froth residence time.
Drainage of gangue is a function of residence time: when residence time is reduced, less
drainage occurs, which lowers the froth grade [83,92]. In the case of coal flotation, less
drainage will lead to ineffective gangue and ash removal, which results in froth of low
quality. However, the installation of lip washing led to an increase in froth mobility and
yield (from 8% to 30%) without compromising product quality [97].

2.5. Factors That Affect the Efficiency of Froth Washing
2.5.1. Impact of Wash-Water Quality

The quality of the wash water introduced into the froth is important, as it plays a
critical role in influencing the froth [98–100]. Potable/fresh water is becoming scarce and
most metallurgical plants use recycled water. However, only raw or fresh wash water
should be introduced into froth, as other types of water may affect flotation [98–100]. Clean
wash water is free from contaminants such as chemical residue and different types of oils
found in tailings dam return water [101].

Table 1 shows that two types of water have been reported to be available at a mine [100].
Recycled water has increased levels of total dissolved solids (TDS), which increases the
specific gravity of slurries [102], which impacts the final recovery by altering the solids
content. In copper-zinc ores, copper flotation can be dramatically reduced with the use of
recycled water. This reduced floatability is caused by the depressant action of the residual
sulphides in the recycled water [103]. Recycled water may contain residual metallic cations,
e.g., Cu2+, Fe2+ and Pb2+ derived from oxidised sulphides. These may cause involuntary
activation in the pulp, which leads to undesirable flotation results [102]. Alkali earth metal
ions (Ca2+) may be present in recycled water, and this results in activation of non-sulphide
gangue, e.g., quartz, which leads to lower grades in sulphide flotation [102].

Table 1. Composition of two available water sources at a mine site [100].

Species
Concentration (mmol/L)

Fresh Water Tailing’s Water

Ca2+ 0.207 2.17

Mg2+ 0.118 0.45

F− 0.006 0.25

SO4
2− 0.005 0.67

Water with a high salinity tends to contain chlorides, which are also responsible
for corrosion; thus, all materials from which the flotation cells, launders, etc. are made,
need to be corrosion resistant, i.e., plastic or rubber, which adds to the capital cost of the
process [104]. This means that saline water cannot be used as wash water. Seawater has
a high frothing power, which promotes entrainment [105]. Froth washing with seawater
promotes easy transport of gangue into the concentrate, which lowers the froth grade. As
is the case with some high salinity water, seawater has a high chloride content, while a
concentrate that contains about 10% water will have a chloride concentration of about
1900 g/ton [105]. Therefore, seawater is not appropriate for use as wash water.

Treated sewage effluent water has organic carbon, but it is impossible to identify all
the carbon components present. Some of the organics have a detrimental effect on flotation,
e.g., humic, fumic, tannic and stearic acids [106]. Sewage treatment uses activated sludge
to reduce ammonia and phosphate, and this impacts the redox potential. Therefore, the use
of treated sewage effluent water as froth wash water will have an impact on the efficiency
of the process. Table 1 shows the different concentrations of certain ions in mine water after
research was conducted compared to fresh water [100]. However, there is very little detailed
analysis of the effect of different types of available water on froth phase sub-processes.
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2.5.2. Impact of Wash-Water Rate

Adding wash water to the froth can be conducted periodically or continuously. A
rate that is too high may destabilise the froth and excessively strip the bubble surfaces of
the coating of chemicals. A higher rate promotes axial mixing, which may lead to particle
detachment and a negative impact on the grade of the product [27,43]. A very low wash
water addition rate will not have a stabilising effect on the froth [28,29].

The term wash-water ratio (W) is defined as the ratio of the wash-water addition rate
to the flow rate of water in the concentrate, as per Equation (2) [34]:

W =
Qww

Qwc
(2)

where Qww is the wash-water flow rate; Qwc is the rate of the flow of water in the concentrate
determined from the froth. The wash-water ratio is a relative measure that is used to
quantify the amount of wash water applied above the froth. There is evidence to suggest
that the best-operating values for W should be in the range from 0.5 to 1 [34]; however,
when the wash-water ratio was slightly less than unity, both recovery and grade were
found to be high [34].

Equation (3) is used to calculate bias, which is used to describe wash-water addition.
Bias is the total excess of the wash water applied over the amount of water being recovered
in the concentrate [34]. This is commonly expressed as a superficial velocity Jb (cm/s), as
per Equation (3):

Jb =
Qww − Qwc

Ac
(3)

where Ac is the cross-sectional area of the column. If no wash water is used, the wash-water
ratio is zero and the bias is negative. When Jb = 0, W = 1, positive bias corresponds to a
wash-water ratio greater than unity. The bias rate is also described as the net downward
flow of water through the froth [35]. The use of negative bias (Jb < 0) deteriorates the grade,
while a bigger bias rate of Jb greater than 0.4 cm/s increases mixing [62] and decreases
retention time [51,62].

Bias does not indicate the total amount of wash water added, and its use can be
misleading, as it does not consider the wide variations in the total value of the rate of water
entrainment in the concentrate. It is preferable to use the wash-water ratio, which is a
relative figure [34]. In a rougher cell, the mass of recovered solids is only a minor portion
of the feed, i.e., the concentrate flow rate is low. Therefore, a consistently low volume of
wash water is required to replace the water being carried out of the cell. Thus, good froth
washing can be achieved with a low positive bias in such instances. However, in a cleaning
operation where the mass flow of concentrate is high, a much higher superficial flow rate of
wash water would be needed to substitute the water being carried over in the concentrate.
Evans et al. [34] ran experiments on a plant to test the impact of wash-water variations.
They found that a difference in bias between 0.02 and 0.04 cm/s may seem small to an
operator, but in some circumstances such changes in Jb may lead to a threefold increase in
the wash-water ratio and produce a 200% increase in overload of wash water, particularly
in Jameson cells [34].

2.5.3. Impact of the Type of Froth Washing, Mechanism of Delivery and Area Covered by
Wash Water

The design, position and operating conditions of the wash-water distributors are
critical [44]. Many types of wash-water distributors have been introduced to transfer wash
water into the froth. In industry, froth washing can be conducted applied to the entire froth
surface or on a part of the froth surface at the cell lip close to the concentrate weir to avoid
excessive water requirements [27–30].

Wash water can be added internally (within the froth) or on top of the froth (surface
washing). Internal froth washing produces a drier concentrate and lowers the loss in
mineral recovery compared to external froth washing [42]. Washing above the froth results
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in an overflowing froth with a high-water content. When surface froth washing is used,
the total solid fraction reporting to the froth is lower than when internal washing is used,
which implies that internal froth washing delivers better recoveries [42]. There are various
advantages to surface froth washing. The first is that there is additional froth expansion
capability, i.e., the froth height can be increased and still be washed from the top. Secondly,
the wash water distributor does not suffer from plugging or blockage problems; therefore,
the cost of maintenance is low. Thirdly, poor wash water distribution can be detected and
corrected quickly [28].

Possible disadvantages of surface froth washing are: (i) the kinetic energy of the water
is increased by gravitational acceleration, which induces some mixing in the froth and
water short-circuiting to the concentrate stream [28]; (ii) surface froth washing increases
the volumetric liquid fraction of the froth, which produces a wetter froth and induces
bubble bursting, although the liquid overflow rate remains unchanged [107]. Internally
washed froths are dryer than surface washed froth under equal wash-water conditions.
As shown in Figure 2, insoluble/fine undesired particle recovery is lower with internal
froth washing compared to the same wash-water rate when surface froth washing is used.
This is interpreted by industry as an improvement in separation efficiency [42]. Internal
froth-washing systems are prone to blockages and require frequent cleaning.
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Figure 2. Comparison of insoluble solids’ recovery rates for internal froth washing and surface froth
washing reproduced from [42].

Thus, wash-water distribution plays a key role in the effectiveness of the added wash
water, as it determines the quantity of wash water that enters the froth [32].

3. Wash-Water Distribution Systems

This section outlines different types of wash-water distributors used industrially
in the following categories: (i) surface froth washing; (ii) in-froth washing (iii) under-
froth washing.

3.1. Surface Froth Washing Distributors

Wash water is added to the froth surface. This is also referred to as external froth wash-
ing [27–30,42]. The types of wash-water distribution mechanisms available for effective
surface froth washing are detailed in the sections that follow.
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3.1.1. Wash-Water Distributor Nozzles

Various nozzle configurations were designed by [30] for use in column flotation
(Figure 3a–e) but can be used for mechanically stirred flotation cells if modifications are
made to incorporate the impeller. Wash water is delivered using a manifold system
mounted above the cell to provide wash water to the nozzles, as shown in Figure 3a [30].
The nozzles facilitate the creation and spreading of a horizontal jet of wash water to wash
the froth in a uniform pattern. The distance from the manifold to the nozzle can be varied
to control the velocity of the stream of water leaving the apparatus at a constant wash-
water flow rate (See Figure 3a). The nozzles create a horizontal stream capable of both
horizontal and vertical reach as the wash water spreads in the froth. No research has been
conducted to test the advantages and disadvantages of each type of nozzle or their impact
on flotation performance.

Figure 3. Cont.
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Figure 3. Wash-water distribution nozzles, (a) Nozzles that cover the whole froth surface area [30];
(b) Angled nozzle; (c) Disc type nozzle; (d) Chamber type nozzle; (e) Flat nozzle [30].

3.1.2. Showers and Perforated Pipes

Wash water can be introduced above the froth through showers or perforated pipe
distributors/hollow rods above/within the froth (See Figures 4 and 5). The pipe distrib-
utors are made up of horizontal pipes or tubes with small holes at equal intervals on the
underside, from which jets of water flow. The pipes can be spiraled or suspended through a
manifold at the cell lip for froth washing in cylindrical tanks [32]. Showers spray the water
from a height of approximately 40% of the froth surface [28]. Perforated pipes bound to a
rigid support situated above the froth spray water to about 70% of the total froth surface.
Increasing the rate at which water is added decreases the diameter of the bubbles in the
froth because of the reduced coalescence [28].
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Figure 4. Perforated pipes on top of the froth [39].

Figure 5. Perforated pipes on top of the froth on a Jameson Cell during coal froth washing [40].

Introducing wash water as rain (using a shower or perforated pipe) above the froth
allows for online observation of water distribution. In addition, the holes are not fre-
quently contaminated with the froth. The system can be easily removed for inspection or
replacement of the tubes/pipes [44]. The use of PVC pipes is also a cheap, viable option.

3.1.3. Wash-Water Boxes and Wash-Water Trays

Wash-water boxes/drip pans are rectangular containers with drilled holes at the
bottom and open at the top (See Figure 6). Wash water is fed into the box via a piping
system and exits through the holes at the bottom as small streams [29]. The boxes are
mounted on racks and cover the entire cell lip. The froth is washed as it moves to the
discharge points of the cell. Another type of wash-water tray was developed by [40]—see
Figure 7. This design of the wash-water tray utilises specific hole diameters and patterns
tailored to specific flotation cells and requirements to ensure that the correct amount of
wash water is distributed at all locations across the entire froth layer. The advantages of
wash-water boxes/trays are that construction can be made from high-density polyethylene,
which is highly resistant to corrosion, is inert and is cheaper than stainless steel. The
trays/boxes can also be constructed and modified easily [97]. The reported disadvantages
are that boxes/trays cannot be used for internal froth washing and the system does not
cover the entire froth surface; therefore, many wash boxes must be used in a row to cover a
large froth surface area [29].
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Figure 6. Wash-water box [29].

Figure 7. Wash-water trays [40].

3.1.4. Lip Washing

Wash water is applied as a light rain at the periphery of the flotation cell or lip area of
the flotation cell where the froth overflows (See Figure 8). The wash water is introduced
via a pipe/ring drilled with holes and installed above and around the lip of a mechanical
cell. Moys [6] reported that entrainment is most severe at the lip; therefore, introducing
water above the froth layer close to the lip washes entrained gangue material out of the
froth product before it discharges over the cell lip. This improves the froth grade, since
lip washing targets a region in the froth that is thought to be responsible for most gangue
recovery. Kaya [28] reported that lip washing reduces the water requirement in froth
washing compared to washing the whole surface of the froth. A yield increase between
8% and 40% was observed at a coal processing plant when lip washing was introduced in
dual flotation cells [97]. Dual cells are classified as mechanical cells and have been used
in both primary and secondary stages of flotation. However, Neethling and Cilliers [108]
concluded that when the froth-washing distributor is closer to the weir/lip there is a
reduction in recovery.
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Figure 8. Lip washing on a Dual Cell Flotation Cell [97].

3.2. In-Froth Washing Distributors

Wash water can be added internally, i.e., within the froth [29,32,38,42]. Internal froth
washing produces a less wet concentrate and, in one case, lowered the loss in mineral
recovery compared to external froth washing [42]. Uniform distribution of internal froth
wash water results in a smooth pulp motion and equal gangue removal at all points. Uneven
distribution of wash water leads to maldistribution or no wash water in some sections of
the froth, which can result in gangue short-circuiting to the concentrate, which reduces the
product grade significantly [42]. Internal froth washing has practical difficulties during
operation, as the equipment cannot be inspected leading to blockages of the wash-water
delivery mechanism, resulting in frequent stoppages to remove and clean the system [109].
The various types of distributors that can be applied to internal froth-washing systems are
explained in the sections that follow.

Plunging and Submerged Nozzles

Tubes are used as wash-water distributors in a nozzle/injector type system that allows
water to exit at a very high velocity. Sripada et al. [36] and Mao et al. [37] described a
plunging/submerged jet as a system that uses vertical tubes facing downwards that are
used as nozzles to spray the wash water. A submerged jet sprays the wash water within
the froth, while a plunging jet sprays wash water on top of the froth surface, as shown in
Figure 9a,b. Ireland et al. [38] performed tests at the same wash-water rate and suggested
that a submerged jet or a plunging jet above the froth yields a better gangue rejection
rate than a showerhead distributor at the top of the froth. This conclusion was based on
two-phase tests conducted in a froth column and after studying liquid fraction maps and
wash-water flow patterns carefully using photographs.

Ireland et al. [38] conducted further research into wash water injected via a vertical
pipe immersed in the froth, using a pipe with a T-shape end, i.e., two horizontal jets on
each end (See Figure 9a). A plunging jet (horizontal/vertical) shows better water spreading
performance. A wash-water rate that is too low results in failure to penetrate and mix with
the froth; conversely, a wash-water rate that is too high will push the water too far in a
horizontal direction, which prevents efficient mixing occurring in the froth [30]. The double
horizontal jet configuration—shown in Figure 9a—results in effective mixing due to the
mixing effect of vortices that provide good froth washing at a limited height. Convective
motions are driven by the differences in density between various zones in the froth [38].
However, the swirling instability is seen at a high flow rate with this method, as observed
by [38] when using an experimental froth column.
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Figure 9. Plunging/submerged nozzles, (a) Submerged horizontal (T-shaped) injector used to inject a
horizontal jet of wash water into the froth column; (b) Photograph of a plunging jet/vertical injector
in froth, and indications of how wash water moves in the froth when using a vertical plunger [38].

Various nozzle designs have been tested at a laboratory scale, and Table 2 provides a
general summary of the advantages and disadvantages. However, research in an industrial
setting is required to assess the impact of each nozzle on flotation performance.

Table 2. Summary of the advantages and disadvantages of nozzles.

Advantages of Using Nozzles Disadvantages of Using Nozzles

• Jet/injector systems are designed to ensure self-cleaning,
as particles that settle in the gaps in the delivery system
are easily washed away back into the froth without
causing permanent blockages [30].

• Jet distributors deliver a much better concentrate product
grade compared to wash-water trays when subjected to
the same wash-water rate in flotation, as explained by [30].

• More efficient spreading of wash water in a horizontal
direction when horizontal T-shaped jets are used
compared to when vertical jets are used [38].

• Not all gangue is removed due to back mixing and
swirling instability [38].

• Above the injection point, the liquid fraction drops, and
bubble coalescence occurs more freely for a submerged jet
system [38].

• A single jet/nozzle is capable of washing only a small area
of the froth; hence, many injectors/nozzles are required to
wash the whole froth area [32].

• The system is expensive to construct and install compared
to wash-water boxes [97].

3.3. Under-Froth Washing

Under-froth washing was patented by [33], with wash water being introduced under
the pulp-froth interface, in what is commonly referred to as the collection zone in flotation
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columns. This type of froth washing does not modify the flow of the froth directly. The
wash-water distribution pipes move across the froth to the wash-water injection points
under the pulp-froth interface with the slurry. The wash water dilutes the slurry and
displaces the water in the feed, which may be caught up by rising bubbles that ascend into
the froth. This method minimises bubble breakage and froth drop-back that occurs when
wash water is added within/above the froth. This process does not disrupt the froth phase;
therefore, improved grades are delivered without sacrificing recovery. Other methods of
froth washing may be limited to the final cleaning stages of flotation due to froth drop-back,
but under-froth washing dilutes the feed; therefore, it can be applied to rougher stages [33].
Under-froth washing results in a reduced concentrate flow rate, reduced residence time in
slurry, and an increase in water reporting to the tails and in the tailing flow rate. Another
disadvantage is that additional pipes are needed to supply the wash water, and these pipes
require frequent maintenance; however, the system is submerged under the froth and is
therefore difficult to monitor. More research is required to better explain the differences
between under-froth washing and other froth washing methods.

3.4. Industrial Applications of Froth Washing
3.4.1. Froth Washing in Column Cells

Column flotation cells are used as final cleaners when the goal is the production of
high-grade concentrate, although their use has been expanded to roughers and cleaners [3].
Column flotation cells have two distinct zones, i.e.: the collection zone that extends from
the spargers to the froth; the froth zone, where the froth is usually washed with water
before overflowing into the concentrate launder [110]. The solids in the pulp are collected
by bubbles and transported out of the collection zone into the froth (or cleaning) zone [27].
The wash water added to the froth zone serves two purposes: (i) to suppress the water
coming from the pulp and carrying gangue minerals due to entrainment [111]; (ii) to create
a positive bias and provide the water necessary to ensure overflow of the collected solids
into the concentrate launder [27]. The wash-water delivery system in column cells can
be achieved using perforated pipes or wash-water delivery jets. As shown in Figure 10,
downward vertical jets or horizontal tubes/pipes with holes drilled at regular intervals
are used to deliver clean wash water in flotation columns [27]. An array of vertical pipes
can be used to distribute wash water across the whole surface of the flotation column if the
surface area to be washed is large (See Figure 3a [30]).

Figure 10. Column cells with a wash water system [29].

Column cells are operated with deeper froths (1–2 m) to allow for additional drainage
and reduced water consumption, while mechanical cells typically have a froth depth of
10–40 cm [28–30]. The wash water is added either on top of the surface or internally,
preferably at the same rate as the concentrate liquid flow rate, so as to create a downward
flow of the liquid through the froth [42]. The typical superficial velocity of the wash water
ranges from 0.05 cm/s to 0.3 cm/s [111]. In order to minimise wash-water short-circuiting,
the wash-water distributor is placed a few centimetres below the overflow lip level [28].
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3.4.2. Froth Washing in Mechanical Cells

Wash water can also be used in mechanical flotation cells, although this is not common.
The water requirement is lower, mainly because the cells are operated at a lower froth height
compared to a column flotation cell. Mechanical cells utilise washing at the cell lip [32] and
convectional mechanical flotation cells operate at a shallow froth height. Minimal research
has been conducted that shows that stronger frothing reagents were added to the froth
wash water to mitigate the problems of lower froth stability and froth collapsing, which
leads to a reduction in recovery [29]. When applying wash water on the entire surface of
the froth, an array of nozzles (Figure 3a), wash-water boxes (Figure 6) and wash-water
trays (Figure 7) can be used, but this is not a common practice in industry, although it has
only been performed at laboratory and plant scale by Kaya [28] and McKeon [29]. Froth
washing at the lip is conducted using perforated pipes (Figure 5) and this is considered
the best wash-water distributor option [32]. Successful application of lip washing has been
achieved in the dual cell, which is a type of mechanical cell used in coal flotation [97].

3.4.3. Froth Washing in Jameson Cells

In the Jameson cell, the slurry is fed at high pressure and evenly distributed between
the downcomers. This action creates a jet that promotes air inducement. The shearing
action caused by the jet generates fine bubbles, which are transported to the mixing zone.
Particles and bubbles collide and attach in the mixing zone and then travel down the
downcomer [112]. Hydrostatic pressure removes the bubbles from the downcomer, which
creates a vacuum. The aerated slurry exits the downcomer and rises towards the froth
zone. The froth zone is the region where entrained materials are removed through froth
drainage or froth washing [112]. Wash water is added using stainless steel perforated
pipes/jets mounted on top of the froth to deliver clean wash water. In single stage roughing
or cleaning duty, a Jameson cell can achieve maximum recovery and a higher product grade
than a bank of mechanical cells. This is attributed to its superior froth washing mechanism
(Figure 11), which can be installed above or within the froth [113]. A Jameson cell operates
with much deeper froth than a mechanical cell, with the added wash water flushing the
entrained materials back into the pulp, which improves the froth grade.

Figure 11. Jameson cell with a froth washing system [32].

A compilation of Jameson cell operating data produced by Evans et al. [34] is shown
in Figures 12 and 13. These confirm that the best wash-water operating point is at a
wash-water ratio slightly less than 1, with recovery and grade both being high. A high
rate used for adding wash water results in decreased recovery without a compensatory
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improvement in grade after the wash-water ratio reaches a value of 1. Therefore, precise
online measurements of bias are needed to maximise recovery at the required grade [34].

Figure 12. Effect of wash-water ratio on recovery in the flotation of copper retreatment [34].

Figure 13. Effect of wash-water ratio on grade in the flotation of fine copper retreatment stream [34].

A summary of the general froth washing methods and delivery mechanisms discussed
above is given in Table 3.
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Table 3. Advantages and disadvantages of froth washing.

Method Advantages Disadvantages

Froth washing in general

3 Froth washing decreases gangue entrainment, thus improving
flotation product recovery and grade [27,28].

3 Single-stage froth washing was found to be an option for roughing
and cleaning when grades were compared.

3 Froth washing reduces bubble coalescence, thus improving froth
stability.

3 Froth washing increases froth mobility

3 Poor practice, for instance a high wash-water rate may result in
froth mixing, which leads to low recovery [43].

3 Wash-water maldistribution may occur when wash-water
distributors are blocked and this is not noticed [44].

Washing on top of the froth, i.e., wash-water
boxes/trays/pipes and jets

3 Easy to monitor for blockages and easy to maintain online [30].
3 Fewer blockages are experienced and the system is self-cleaning

and hence maintenance-free [30].
3 Allows for the froth bed height to be increased [29].
3 Wash-water trays are easy to design, construct and modify using

cheap materials [44].

3 High probability of water short-circuiting to the concentrate [44].
3 Frequent inspection and cleaning wash-water distributors are

required to prevent maldistribution of wash water [42].
3 Wash-water trays that are on top of the froth can be a barrier to the

flow of the froth, which affect flotation performance [29].
3 Froth mixing probability is very high [38].
3 Jets/injectors are expensive to design and construct [30].

Internal froth washing

3 Yields a less wet concentrate [42].
3 Lowers reduction in mineral recovery of the valuable mineral

compared to surface froth washing [42].
3 Produces a better concentrate grade [42].
3 Results in better recovery compared to surface froth washing

systems [42].

3 Wash-water distributors are prone to blockages and plugging.
1. 3 Wash-water distributors require frequent maintenance and

cleaning to prevent wash-water maldistribution [42].

Lip washing

3 Saves water as you do not wash the whole surface [28].
3 Highly effective in reducing gangue at the cell lip, which

improves the froth product grade [97].

3 High probability of water short-circuiting into the concentrate
weir when applied poorly [44].

Under-froth washing

3 Minimises bubble breakage and froth drop-back, which leads to
improved recovery and grades compared to surface and internal
froth washing [33].

3 Requires more pipes for installation [33].
3 Difficult to monitor for blockages and plugging [33].
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3.5. Conclusion on Froth Washing
3.5.1. Froth Washing Description

Wash water is added above or within the froth to displace entrained liquid that
carries fine gangue particles that reduce the concentrate grade. The wash water can be
added on top of the froth, within the froth or below the froth, in what is termed external
froth washing, internal and under-froth washing, respectively. In the case of external and
internal froth washing, wash water can either be introduced over the whole froth area or
just at the lip area of the cell where the froth overflows. Under-froth washing mechanisms
have been introduced, but the literature on their application in industry is scarce, while
external and internal froth washing is common. The major disadvantages of internal froth-
washing systems are blockages/plugging and difficulty in monitoring, which can lead to
ineffective froth washing and high maintenance costs. Conversely, all top-of-froth washing
mechanisms can be monitored and replaced easily. Other methods of froth washing are
limited to the final cleaning stages of flotation due to froth drop-back, but under-froth
washing can be applied at rougher stages of flotation. The clean wash water should be
added as a light rain with enough velocity to penetrate the froth but not break the bubbles
carrying the valuable minerals.

3.5.2. Applications in Industry, including Flotation Cell Types

Some patented flotation cells, i.e., column cells (the 1960s) and Jameson cells (1990),
have been designed with an in-built froth washing system, whereas mechanical flotation
cells do not typically have an in-built froth washing system. Froth washing is frequently
applied at the lip in mechanical cells and not on the whole surface. Several wash-water
distributor mechanisms have been tried in coal and other mineral flotation cells in the
following categories: (i) surface froth washing, i.e., wash-water distributor nozzles, wash-
water showers, perforated pipes, wash-water boxes and wash-water trays; (ii) in-froth
washing, i.e., plunging and submerged nozzles (iii) under-froth washing distributors, which
utilise perforated pipes. Each type of wash-water distributor has operational advantages
and disadvantages. Poor management of wash-water distributors will result in ineffective
froth washing. Further research is needed to ascertain the impact of different wash-water
delivery mechanisms on flotation performance. To select the best wash-water practice,
more research is required to substantiate the difference between under-froth washing and
other froth washing methods.

3.5.3. Impact on Fundamentals That Govern Froth Phase Sub-Processes,
Including Contradictions

The introduction of wash-water systems in flotation cells has led to increased recovery
of concentrates with a high grade, without the need for several stages of flotation, e.g., the
roughing and cleaning stages. The sprinkled wash water creates a downward counter-
flow to the entrained liquid, which flushes the gangue particles back into the pulp. This
improves the grade of the froth product. Some researchers have reported that adding wash
water to the froth reduces particle loss by reducing bubble coalescence and bubble bursting.
This improves froth stability and recovery. Contrary to these observations of an increase in
recovery, some studies found a decrease in recovery when wash water was added, and tests
on coal concentrate found a reduction in the recovery of valuable minerals when adding
froth washing to the process. This was attributed to wash water causing valuable minerals
to detach from the air bubbles.

It has also been reported that froth washing decreases the froth residence time in cells
by increasing the flow rate through the cells. This leads to a decrease in the time available
for a single valuable mineral particle to be recovered, which reduces recovery. Spraying
wash water replaces water lost in the upper layers of the froth, thus increasing froth stability
by eliminating the dry froth upper layer. A more stable froth is one with reduced bubble
coalescence and bubble-bursting events, which helps to reduce the loss of particles in the
froth. Some studies have reported that froth washing increases froth mobility. This increase
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in mobility was attributed to there being more water in the froth, which resulted in faster
movement of the froth to the concentrate launders. However, an increase in froth mobility
leads to a reduction in the froth residence time. In the case of coal flotation, less drainage
will lead to ineffective gangue and ash removal, which results in a froth of low quality.

3.5.4. Wash-Water Quality and Application Rates, Areas

To achieve the goal of froth washing, only clean wash water should be used. Other
types of water, e.g., plant recycle water, seawater, treated sewage water, are not recom-
mended because they contain residual solids and contaminants that affect flotation. Saline
water has been found to have dissolved inorganic matter, which influence the surface of
minerals, especially the zeta potential and affect flotation. A precise wash-water ratio
should be used when adding wash water to the froth to achieve optimum froth stability
and froth cleaning. A higher rate of adding wash water destabilises the froth and promotes
axial mixing, which leads to a poor grade and poor recovery, whereas a rate that is too
low fails to stabilise the froth. The impact of water quality on the froth phase sub-process
may be of interest, given the scarcity of fresh water; therefore, further research is needed
to assess the impact of water quality in the froth phase. Whole surface froth washing has
been reported to be a waste of water, with new trends emerging in which froth washing is
only applied at the cell lip. Froth washing at the lip reduces the amount of water used and
improves the grade of the froth product compared to full surface froth washing.
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