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Abstract: Calcium isotopes of carbonate rocks can trace calcium cycles and record changes in the
marine environment. As published calcium isotope profiles of carbonate rocks at the Permian-Triassic
boundary are rare, comparative studies on deep-water profiles were lacking for the major extinction
event that occurred during this time. We present sections of different water depths in the Chibi area of
southern China that we have selected for a comparative study. We analyzed carbon isotopes, calcium
isotopes, as well as major and trace elements of carbonates from two sections (Chibi North and Chibi
West) to obtain information on the volcanic activity, ocean acidification, as well as sea level rise and
fall in the Chibi area during the mass extinction period. All carbon and calcium isotopes of carbonates
from both sections are all negative after the mass extinction boundary. Carbonates from the Chibi
North section have higher δ44/40Ca values and lower Sr/Ca ratios than the rocks from the Chibi West
section. We propose that the negative bias of the calcium isotopes in the two sections result from
diagenesis. Diagenesis transforms primary aragonite into calcite, showing the characteristics of high
δ44/40Ca value and low Sr/Ca. By comparing our data with three published profiles of shallow-water
carbonate rock, we recognize that calcium isotopes record gradients at different water depths. In the
slope environment, the enhancement of pore fluid action near the coast caused an increase of the
fluid buffer alteration, and we propose that a regression event occurred in the Chibi region during
the Late Permian.

Keywords: Permian-Triassic boundary; South China; calcium isotope; diagenesis; regression

1. Introduction

The Permian-Triassic extinction event was the most severe mass extinction event
in the history of the Earth [1]. It was characterized by widespread ocean hypoxia [2,3],
ocean acidification [4,5], intense volcanic activity [6–8] rapid temperature rise [9,10], and
sea level rise and fall [11,12]. Carbonate minerals are the most important calcium sinks
in the oceans, with high calcium content and wide distribution [13]. Therefore, calcium
isotopes of carbonate rocks are ideally suited to characterize the nature of the global
changes during the Permian-Triassic extinction event [14]. Rapid short-term fluctuations
in seawater calcium isotope values during the geological history respond to changes in
the climatic environment [15]. The calcium isotopes of carbonate rocks from the Permian-
Triassic period record a global negative calcium isotope shift, which may be caused by
ocean acidification [5]. However, the negative calcium isotope shift of carbonate rocks from
different depositional environments exhibits some variability, which may be related to
diagenesis in different environments.

The chemical and isotopic composition of carbonate sediments can be partially or
completely reset by diagenesis during the deposition of the carbonate rocks [16], with early
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marine diagenesis and syn-deposition occurring prior to lithification. The recrystallization
process results in the growth of new carbonate crystals and the conversion of aragonite to
calcite [17]. The calcite fractionation factor is a function of the sedimentation rate, and in
slowly recrystallizing marine sediments, the fractionation factor is ±0. Thus, newly grown
calcite has a higher value than unaltered calcite due to the addition of Ca from the seawater.
This effect is particularly prevalent in deep-sea sediments and in carbonate-rich sediments
of platform environments [18–20]. Aragonite tends to have much lower δ44/40Ca values
than calcite, and thus the change in the carbonate sediment mineralogy from aragonite to
calcite causes an increase of the δ44/40 Ca values [3,20].

Carbonate rocks are subjected to fluid buffer alteration caused by fluid flow [16].
Pore fluid circulation is strongest at the basin margins near the landward direction and
slowest in the basin centers near the sea [21]. Therefore, we propose that the carbonate
sedimentation at different water depths at the Permian-Triassic boundary will affect the
calcium isotope values of the carbonate rocks because of different pore-fluid circulation.
Previous studies on the Permian-Triassic boundary have focused on calcium isotope studies
on rocks from shallow-water carbonate terraces [5,14,22]. Profiles for the transition from
shallow to deep water were lacking so far. Therefore, we have selected two representative
carbonate sedimentation sections at different water depths in the same area, termed Chibi
North and Chibi West sections, to analyze their carbon, oxygen, and calcium isotopes
as well as major and trace elements, to better understand the significant environmental
changes that occurred at the Permian-Triassic boundary from different water depths.

2. Geological Setting

According to the stratigraphic zoning, the region of Chibi in southern China belongs
to the Lower Yangtze stratigraphic subdivision of the Yangtze stratigraphic region. In the
Aurignacian to Middle Permian, marine sedimentation prevailed and mainly carbonate
rocks interspersed with clastic rocks were deposited. During the Late Permian, the present-
day Chibi area was situated on the slope of the northern margin of the Central Yangtze
Plateau (Figure 1).
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The region to the north of the Chibi area is dominated by the the Late Permian Dalong
Formation, a typical deep-water siliciclastic basin [25]. The area from Chongyang, Hubei to
Tong Shan south of Chibi formed in a typical shallow water carbonate terrace environment.
Blocky bioclastic tuffs were mainly deposited and locally sponge reefs are developed [26].
The region to the west of Chibi represents a paleogeographic transition from the edge of
the shallow marine terrace to the deep-water siliciclastic basin [27]. Chibi is located on the
northern edge of the South China Plate, which was a small plate between the Pan-ocean and
the Tethys Ocean during the Early Triassic. From the Late Palaeozoic to the Early Triassic,
this branch trough continuously deposits a complete sequence of marine strata, therefore,
it clearly records the evolution history of marine environment, biology and geotectonics at
the turn of the ancient and Mesozoic [28]. Due to global geological events at the end of the
Permian, marine life and the environment have changed dramatically [29,30]. On the deep
water basin profile, some volcanic clay deposits can be seen in the Permian and Triassic
strata [7,31], however, research suggests that these volcanic activities do not come from
this region, but from the southwest and Southeast Asia of the South China plate [32]. The
shallow water platform at the southern edge of the trough was affected by the drop of the
sea [33,34] at the end of the Permian, resulting in a small loss of strata at the intersection
of the Permian and Triassic systems, but the attitude of the upper and lower strata is
consistent [12], indicating that no strong tectonic movement occurred in the area during
this period, so sea level decline may be due to global climate or plate movements.The
unique paleolocation of Chibi is conducive to study the impact of the diagenesis and the
environmental context of carbonate rocks in shallow-water terranes and in deep-water
siliciclastic basins at the Permian-Triassic boundary.

The Chibi North section (29◦75′15′′ N, 113◦95′19′′ E) is situated in the deep-water
siliciclastic basin [23]. During the Lopingian period, the study area was located in the
eastern tropics of the Paleotethys. A massive carbonate platform (Yangtze platform) was
developed in the South China Block at this time. Adjacent to a deeper basin, siliceous
carbonate and chert deposits were deposited further north during the Wuchiapingian. The
Chibi North profile of the Wuchiapingian period comprises a sequence of shallow-water
carbonate platform sediments. Due to the sea level rise, the depositional environment
changed to a deeper slope environment in the latest Changhsingian and the successively
sedimented strata include the Wuchiaping and Dalong formations, In the Early Triassic the
Daye Formation was deposited.Gastropods in the Late Permian and Early Triassic strata
are abundant and have strong biological disturbances.Outcrop pictures of Chibi North and
Chibi West sections are shown in Figure 2.

The Chibi West section is located in Chibi City, Hubei Province, about 4 km west of
the county (29◦41′57′′ N, 113◦51′33′′ E) [25]. Paleogeographically the Chibi West section
comprises the transition zone from a shallow marine terrace to a deep-water basin. During
the Late Permian to Early Triassic, the region was situated at the northern edge of the South
China Plate and was part of the Yangtze carbonate plateau. The area comprises a gently
sloping zone. The Late Permian to Early Triassic stratigraphy of the Chibi West section is
well exposed, and the Permian-Triassic intersection is well recorded as a major biological
extinction boundary. A thin grayish-black sequence of intermediate thickness of the Late
Permian Dalong Formation with layered siliciclastic or siliciclastic-striped tuffs is exposed
below the mass extinction boundary but above the line that marks the mass extinction
boundary as the Early Triassic Daye Formation; a sequence of grey-black-black mudstone
intersperses with marl at the bottom of the Daye Formation.
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Figure 2. outcrop pictures of Chibi North and Chibi West sections. (A) outcrop picture of Chibi North
section, (B) argillaceous limestone at the bottom of the Early Triassic Daye Formation, Chibi North
section, (C) siliceous limestone in the top of the Late Permian Dalong Formation, Chibi North secion,
(D) outcrop picture of Chibi West section, (E) black argillaceous limestone at the bottom of the Early
Triassic Daye Formation, Chibi West section, (F) Limestone at the top of the Late Permian Dalong
Formation, Chibi West section.

3. Samples and Methods

The carbonate samples collected from the Chibi North and Chibi West profiles were
first cut with a rock saw. Calcareous material, particularly calcite veins, was removed from
the rock. The samples were cut into blocks and were polished on a vibrating gemstone tray
before a 1 mm dental drill was used to select areas of the microcrystalline rock for drilling.
Powder was drilled out for isotopic and elemental analysis. Powders of 78 samples were
analyzed for carbon and oxygen isotopes, and of 29 samples for calcium isotopes, as well
as for major and trace element analyses.

Calcium isotope analyses were performed at the State Key Laboratory of Geological
Processes and Mineral Resources, China University of Geosciences, Wuhan. To obtain a
reliable Ca isotope signature, a leaching procedure, modified from published methods [22],
was designed to extract the pure carbonate fraction of the limestone samples. About 10 mg
of the sample powder was weighed into 10 mL centrifuge tube and 1 mL MQ H2O and
3 mL 0.5 M HNO3 were successively added. Following ca. 40 min vibration in ultrasonotor
and standing for 12 h at room temperature to ensure complete reaction, the sample was
centrifuged at 3500 rpm for 15 min. Subsequently, the supernatant liquid was moved to
7 mL Teflon vials and evaporated to dryness at 120 ◦C. Before chemical purification, dried
samples were re-dissolved in 1.6 mL of 4 mol L−1 HNO3.

We followed the published procedures for chemical purification and mass spectromet-
ric analyses [35] and only provide a brief description here. An aliquot sample solution of
40 ug Ca was loaded into the pre-cleaned column filled with 250 µL DGA resin (Ca-selective
resin). Other elements present as matrix were removed by addition of 6.8 mL 4 mol L−1

HNO3 after loading the sample, and the Ca fraction was collected in 3 mL H2O. We achieved
a highrecovery (>99%), efficient separation of Ca, and a low total procedural blank of
<10 ng. Calcium isotopes were analyzed using a Nu Plasma 1700 MC-ICP-MS [35].
Isotope measurements were performed using standard-sample bracketing to correct
instrumental drift. The Ca isotopic compositions were reported by using δ-notation:
δx/42CaSRM915a = [(xCa/42Ca)sample/(xCa/42Ca)SRM915a − 1] × 1000, where, x = 44 or 43.
Considering that 44Ca/40Ca is commonly used in literature, all Ca isotopic ratios in this
study are reported as δ44/40Ca where δ44/40Ca = δ44/42Ca × 2.048.
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The C-O isotope analysis of carbonate rocks was analyzed using the MAT253-kiel IV
coupled online method in a fully automated process. Powder samples of microgram level
were weighed in a reaction flask and connected to a vacuum system. After evacuation,
3–5 drops of high purity phosphoric acid were injected into the flask and the sample
powder reacted with phosphoric acid at 70 ◦C while collecting CO2 gas in trap1 with
liquid nitrogen at −196 ◦C. Possible tramp gas in the vacuum system was removed, and
subsequently trap1 was heated to −90 ◦C to release CO2 and transferred to trap2 where a
small amount of water was frozen in trap1. The trap2 was heated to 30 ◦C, and the released
CO2 diffused through the capillary tube to the MAT253 two-way system. The isotope ratio
was determined by using a two-way injection method to analyze the standard VPDB. The
results of repeated analysis showed that the accuracy of C isotope analysis of carbonate
rocks was ±0.1‰, and the accuracy of O isotope analysis was ±0.2‰.

The major elements were measured using the XRF-18. The first, the samples were
dried at 105 ◦C for 2 h in an oven. The dried samples were used to measure the loss on
ignition (LOI) and to produce glass melts. Standard samples GBW07105 and GBW07407
were used for analysis. The Ca concentration was used to estimate the CaCO3 content
in the carbonates. The samples were analyzed at the State Key Laboratory of Biogeology
and Environmental Geology, China University of Geosciences, Wuhan, P. R. China. Trace
elements were analyzed by LA-MC-ICP-MS at the State Key Laboratory of Geological
Processes and Mineral Resources, China University of Geosciences, Wuhan, P. R. China.
Details on the analytical procedure are provided in [36].

4. Results
4.1. Carbon and Oxygen Isotopes

The carbon and oxgen isotope data are summarized in Table 1. The samples of the
Chibi North and Chibi West profiles record the negative carbon isotope bias at the Permian-
Triassic boundary (Figure 3). The analyses show that the δ13C values of the Chibi North
profile become negative at the top of the Dalong Formation, from 2.91‰ to −0.06‰ at the
bottom of the Daye Formation, whereas they increase to 2‰ in the upper Daye Formation.
The δ13C valuesin the Chibi West proflile also becomes negative at the top of the Dalong
Formation and decreases from 2.11‰. They reach −3.23‰ at the bottom of the Daye
Formation and then increases again to about 0‰ in the upper part of the Daye Formation.
Comparing the two profiles the δ13C values of the Chibi North profile are generally higher
than that of the Chibi west profiles.

Table 1. Element and isotope composition of the studied carbonate successions.

Sample
Number Location Strat

Hight (cm)
δ13C

(PDB)
δ18O

(PDB)
δ44/40 Ca

(SRM915a)
2SD/‰ n CaCO3

(%) Mg/Ca Mn/Sr Sr/Ca
(×10−3)

Sam.1 Chibi North 1110 2.19 −6.12 0.30 0.04 2 88.19 0.59 0.20 2.23
Sam.2 Chibi North 1071 1.96 −6.43
Sam.3 Chibi North 1037 1.85 −6.57
Sam.4 Chibi North 993 1.87 −6.26
Sam.5 Chibi North 950 1.75 −6.27
Sam.6 Chibi North 855 1.56 −5.79
Sam.7 Chibi North 820 1.88 −5.78
Sam.8 Chibi North 789 1.82 −5.95
Sam.9 Chibi North 750 1.58 −5.91
Sam.10 Chibi North 675 1.51 −6.15 0.72 0.13 3 89.69 0.03 0.34 1.92
Sam.11 Chibi North 640 1.42 −6.05
Sam.12 Chibi North 605 1.12 −6.08
Sam.13 Chibi North 577 1.05 −5.68
Sam.14 Chibi North 474 1.03 −6.25
Sam.15 Chibi North 454 0.88 −6.37
Sam.16 Chibi North 414 0.87 −6.31 0.39 0.05 3 84.17 0.04 0.69 1.00
Sam.17 Chibi North 374 0.72 −6.30
Sam.18 Chibi North 345 0.69 −6.33
Sam.19 Chibi North 314 0.51 −6.40 0.48 0.02 3 84.58 0.04 0.68 1.01
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Table 1. Cont.

Sample
Number Location Strat

Hight (cm)
δ13C

(PDB)
δ18O

(PDB)
δ44/40 Ca

(SRM915a)
2SD/‰ n CaCO3

(%) Mg/Ca Mn/Sr Sr/Ca
(×10−3)

Sam.20 Chibi North 270 0.38 −6.31
Sam.21 Chibi North 241 0.36 −6.69
Sam.22 Chibi North 209 0.29 −6.18
Sam.23 Chibi North 176 0.18 −6.15
Sam.24 Chibi North 155 0.29 −6.51
Sam.25 Chibi North 130 −0.06 −6.28 0.77 0.08 3 65.46 0.09 1.81 0.98
Sam.26 Chibi North 114 0.35 −5.57
Sam.27 Chibi North 100 0.44 −6.20
Sam.28 Chibi North 69 0.27 −5.01 0.76 0.13 2 20.07 0.65 3.70 1.56
Sam.29 Chibi North 55 0.65 −4.06
Sam.30 Chibi North 44 0.78 −6.61
Sam.31 Chibi North 35 1.41 −4.25 0.48 0.48 2 56.28 0.49 3.86 0.89
Sam.32 Chibi North 27 2.37 −1.37 0.78 0.14 5 55.40 0.54 4.63 0.91
Sam.33 Chibi North −5 2.50 −5.56 0.51 0.08 3 54.08 0.64 5.83 0.68
Sam.34 Chibi North −65 2.91 0.25 0.91 0.13 3 54.98 0.59 5.85 0.66
Sam.35 Chibi North −145 1.66 −7.62 0.78 0.21 3 66.46 0.10 2.26 0.77
Sam.36 Chibi North −215 2.00 −8.47
Sam.37 Chibi North −290 2.44 −7.51 0.82 0.07 3 65.69 0.05 1.13 0.78
Sam.38 Chibi North −435 2.51 −7.85
Sam.39 Chibi North −519 2.71 −8.75 0.60 0.04 3 43.74 0.03 0.68 0.65
Sam.40 Chibi North −595 2.28 −5.69
Sam.41 Chibi North −675 2.32 −10.30 0.42 0.17 3 23.84 0.03 0.68 1.19
Sam.42 Chibi North −745 1.86 −10.09
Sam.43 Chibi North −895 1.86 −8.77
Sam.44 Chibi North −1130 2.14 −8.58
Sam.45 Chibi North −1220 2.99 −5.85 0.56 0.17 3 75.28 0.01 1.52 0.34
Sam.46 Chibi North −1270 3.03 −8.92
Sam.46 Chibi West 1228 0.09 −7.86 0.41 0.08 3 96.22 0.018 0.11 1.84
Sam.47 Chibi West 1168 0.04 −7.10
Sam.48 Chibi West 1098 −0.23 −9.53
Sam.49 Chibi West 1018 0.28 −7.82
Sam.50 Chibi West 938 −0.16 −7.69 0.29 0.05 3 95.52 0.016 0.08 2.49
Sam.51 Chibi West 858 −0.02 −7.98
Sam.52 Chibi West 778 −0.35 −8.63 0.38 0.03 2 91.10 0.021 0.43 1.00
Sam.53 Chibi West 698 −0.27 −7.81
Sam.54 Chibi West 618 −0.13 −8.08 0.27 0.07 2 92.81 0.019 0.28 1.48
Sam.55 Chibi West 538 −1.33 −8.24
Sam.56 Chibi West 483 −1.74 −9.02 0.29 0.05 2 0.050 1.51 1.11
Sam.57 Chibi West 403 −1.73 −9.81
Sam.58 Chibi West 353 −3.23 −8.93 0.39 0.09 3 11.55 0.561 3.72 1.80
Sam.59 Chibi West 303 −2.74 −9.83
Sam.60 Chibi West 253 −1.91 −7.10
Sam.61 Chibi West 203 −1.88 −6.84 0.32 0.07 3 27.28 0.534 5.72 1.12
Sam.62 Chibi West 153 −1.31 −8.04
Sam.63 Chibi West 103 −1.74 −10.24
Sam.64 Chibi West 88 −0.93 −6.91 0.43 0.07 3 47.80 0.402 2.89 0.98
Sam.65 Chibi West 58 −1.07 −9.61
Sam.66 Chibi West 28 −0.09 −8.71
Sam.67 Chibi West 8 0.57 −9.25 0.54 0.08 3 88.22 0.021 0.56 1.18
Sam.68 Chibi West −15 0.99 −10.34 0.60 0.11 3 98.06 0.017 0.29 1.37
Sam.69 Chibi West −30 2.11 −9.47
Sam.70 Chibi West −53 2.22 −9.57 0.36 0.01 3 96.95 0.020 0.17 1.17
Sam.71 Chibi West −83 2.32 −9.64
Sam.72 Chibi West −113 2.54 −8.84 0.43 0.09 3 97.18 0.020 0.15 1.34
Sam.73 Chibi West −130 2.46 −9.42
Sam.74 Chibi West −158 2.79 −10.37
Sam.75 Chibi West −188 2.82 −9.68 0.60 0.06 3 94.88 0.019 0.14 1.42
Sam.76 Chibi West −218 2.33 −7.78
Sam.77 Chibi West −248 2.28 −8.88 0.18 0.10 3 92.83 0.021 0.13 1.55
Sam.78 Chibi West −278 2.40 −8.63

The oxygen isotope valuesof Chibi North range from −10.3 to −0.25‰. The oxygen
isotope values of Dalong Formation rapidly increase from −7.5‰ at the MEB (mass ex-
tinction boundary) to −0.25‰ near the PTB (Permian-triassic boundary), subsequently
decrease to −6‰ after passing the Permian-triassic boundary and remain stable in the
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Triassic. The oxygen isotope values of Chibi West profile generally resemble the course of
the isotope values of the Chibi North profile. They increase to −6.5 between the MEB and
PTB and decrease back to −9.5‰ before MEB.
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4.2. Calcium Isotopes

The calcium isotope data are also presented in Table 1. The calcium isotope values
of the Chibi North and Chibi West profiles show a certain degree of negative bias from
the mass extinction boundary to the Permian-Triassic boundary (Figure 3 & Table 1). The
δ44/40Ca value of the Chibi North profile ranges from 0.41‰ to 0.91‰ in the Late Permian.
The δ44/40Ca value of Chibi North decreases by 0.47‰ from 0.91‰ before MEB, and
increases again to 0.76% after the PTB. Subsequently, it varies between 0.3‰ and 0.76‰ in
the Griesbachian stage. The δ44/40Ca value of Chibi West in the Late Permian ranges from
0.18‰ to 0.60‰, and after the MEB decreases from 0.60‰ to 0.32‰. In the Early Triassic
the δ44/40Ca value varies between 0.27‰ and 0.41‰.

4.3. Major and Trace Elements

Results of the major element analyzes for the rocks of the Chibi North and Chibi
West profiles are illustrated for the CaCO3 content as well as the Sr/Ca (×10−3), Mg/Ca,
and Mn/Sr ratios in Figure 3 and summarized in Table 1. The CaCO3 content decreases
dramatically in the samples after the MEB in both, the Chibi North and Chibi West profiles.
In the Chibi North profile, it decreases from 55% to 20%, and subsequently increases to 80%
in the subsequent Triassic. In the Chibi West profile, it drops from 98% to 11% and rises to
92% in the Triassic. The Mg/Ca, Mn/Sr, and Sr/Ca (×10−3) ratios of the Chibi North and
Chibi West sections all increase significantly after the extinction line (Figure 2). The Mg/Ca
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ratios sections are less than 0.1 prior to the MEB in both, Chibi North and Chibi West, but
increase to 0.6 after the extinction line., in the subsequent Triassic, the value decreases again
to <0.1. The Mn/Sr ratio in Chibi North increases substantially from 3 to 8, during the MEB
and decreases to <2 in the Triassic. The Mn/Sr ratios of Chibi West increases from 0.5 to
5.7 when passing through the MEB, and decline to 0.2 in the Triassic. The Sr/Ca (×10−3)
in Chibi North increases from 0.6 to 1.5 after passing through the MEB and decrease to
1 in the Triassic. The value of the Sr/Ca (×10−3) ratio in Chibi West increase from 1.1 to
1.8 after the MEB, and fluctuate between 1.1 and 2.4 in the Triassic. The specific data is
summarized in Table 1.

5. Discussion

5.1. Impact of Diagenesis on δ44/40Ca Values

During the diagenesis of carbonate rocks, the initial metastable carbonate minerals
attain a stable state through structural, compositional, and chemical changes [37]. Specific
elements (Na+, Sr2+, Mn2+, Mg2+, and Fe2+) can substitute Ca2+ in carbonate minerals,
such as calcite and aragonite, by several processes, including metasomatism, pore filling,
adsorption, and filling of crystal defects, The substitution causes change of the chemical
compositions of the carbonate rocks [38]. Aragonite can be converted into calcite. The
position of ions in calcite is much smaller than that in aragonite. Therefore, the small Mg2+

can substitute Ca2+ in calcite, whereas larger the Sr2+ can easily substitute Ca2+ in arago-
nite [39]. The relationship between element ratios (Mg/Ca and Sr/Ca) and the calcium
isotopes (δ44/40Ca) can be used as a tool for identifying the diagenetic transformation of
carbonate rocks [40]. In marine environments, seawater is usually the highest end number
with δ44/40Ca value [13]; Various original carbonate minerals are enriched in light calcium
isotopes when precipitated from seawater, then have lower calcium isotope values [13,19].
Among them, native aragonite has the characteristics of lower calcium isotope and higher
Sr/Ca value [41,42]; Calcite is characterized by relatively high calcium isotopes and low
Sr/Ca values [41,42]; dolomite has the characteristics of higher calcium isotopes and lower
Sr/Ca values [43,44]. Based on the correlation between carbonate δ44/40Ca values and
Sr/Ca, diagenesis can be qualitatively assessed [36] The early diagenesis of carbonate
rocks of the same geological age shows quantitative covariation between the value of
δ44/40Ca and the ratio of Sr/Ca in the correlation diagram. The ratio of Sr/Ca decreases
with rising δ44/40Ca values [21]. The Ca isotope composition in carbonate rocks changes
due to dolomitization. With rise of the Mg/Ca ratio the δ44/40Ca value increases [5]. The
Mn/Sr ratio of carbonate rocks is often used to constrain the degree of diagenetic trans-
formation of carbonate rocks [45] and water-rock interaction will reduce the δ18O value of
carbonate rocks [46].

Five calcium isotope profiles for carbonate rocks had been presented for the Permian-
Triassic boundary in previous studies [5,14,22]. Two sections are from southern China,
including a section for the Dajiang section in the Guizhou Basin, which is a shallow-water
carbonate platform section [14]. The second section was obtained for the MeiShan section in
the Zhejiang Province, which is situated in the carbonate platform slope facies region of the
Lower Yangtze region [22]. The Taskent section in Turkey is situated inside a shallow-water
carbonate platform [47]. Silva-Tamayo [5] analyzed calcium isotopes of the carbonate rocks
in the Saiq and Tesero sections. The Saiq section is located in Al Jabal Al-Akhdar (Sultanate
of Oman) and represents a carbonate platform dominated by dolomite. The rocks of the
Tesero profile (Italy) were deposited at shallow depths on a carbonate ramp. We compare
the Chibi West and Chibi North profiles with these five previously published profiles in
Figure 3. The calcium isotope value of the Chibi North section is 0.23‰ higher than that of
the Chibi West section on average. The Ca/Sr ratio of the Chibi West section is lower than
that of the Chibi West section (Figure 4), indicating that the Chibi West section was affected
by more severe early diagenesis. The ratio of Mg/Ca in the Chibi North section is higher
than that in the Chibi West section, documenting more intense dolomitization of the rocks
from the Chibi North section. The Saiq section is a dolomite-dominated carbonate rock
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section that records the highest Mg/Ca ratios and δ44/40Ca values, indicating the rocks
were affected by the most intense dolomitization of all sections. The rocks of the Chibi
North profile have higher δ18O values than that of the western profile (Figures 3 and 4).
Studies indicate that δ18O values < −5‰, and especially values < −10‰, indicate that
the marine carbonate deposits have been affected by diagenetic fluids from atmospheric
precipitation. In contrast, δ18O values > −5‰ document that carbonate deposits were not
or only moderately modified by atmospheric precipitation [48]. The data indicate that the
rocks of the Chibi West section were affected by atmospheric precipitation, whereas the
impact of atmospheric precipitation is negligible for the rocks Chibi North section.
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Figure 4. Scatter plots(A) Ca/Sr vs. δ44/40Ca; (B) Mg/Ca vs. δ44/40Ca; (C) Mn/Sr vs. δ44/40Ca;
(D) δ18O vs. δ44/40Ca.Reflecting the impact of the diagenesis. Filled colored squares indicate
data from this study. Colored forks indicate data from other profiles (Saiq, Tesero, Taskent
data are from [5], Dajiang section are data from [14], and Meishan section data are from [22])
The data conversions for calcium isotopes are based on (δ44/40Ca915a = δ44/40Casw + 1.86‰,
δ44/40CaBSE = δ44/40Ca915a −1.00‰) [49].

5.2. The C-Ca Cycle at Chibi

The coupling of the carbon cycle with the calcium cycle is mainly related to the burial
of calcium carbonate and the alteration of calcium-bearing minerals. The δ44/40Ca and δ13C
records from the same period can be used to estimate the amount of carbon required for the
negative excursion of δ44/40Ca and δ13C to verify the conjecture of ocean acidification [50].
The negative carbon and calcium isotope biases between MEB and PTB of the Chibi North
and Chibi West profiles correspond to the global negative C-Ca isotopic data during
this period. Based on our results of diagenesis-related indicators (Sr/Ca, Mg/Sr, Mn/Sr,
δ18O), we propose that the Chibi North and Chibi West sections were transformed by
diagenesis to varying degrees. In addition to diagenesis, perturbations in the marine
carbonate chemistry can also affect the δ44/40Ca and δ13C values. According to a coupled
box model of geological carbon and calcium cycles [51,52], carbonate burial rates increase
with increasing alkalinity. This leads to a rise in the seawater carbonate saturation, inducing
that the values of δ44/40Ca in the seawater and δ44/40Ca in the carbonate sediments are both
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positively skewed. Conversely, ocean acidification due to increased CO2 release related
to volcanism would dissolve calcium carbonate, leading to a negative bias in the δ44/40Ca
value in the carbonate rocks. In the coupled model with negatively biased δ44/40Ca and
δ13C, the value of δ44/40Ca can only be negatively biased by 0.13‰ at most, irrespective
of the amount and duration of CO2 input [5]. Therefore, the ocean acidification caused
by CO2 released by volcanic activity cannot explain the negative deviations of δ44/40Ca
values. When the proportion of aragonite in the two Chibi sections is high, the Sr/Ca
ratio will also rise to a higher value between MEB and PTB at this time. A major decrease
of the CaCO3 amount was observed between MEB and PTB in Chibi North and Chibi
West. The decrease is probably related to the large-scale release of CO2 caused by the
widespread volcanic activity at the Permian-Triassic boundary. Volcanism induced ocean
acidification that in turn caused intense dissolution of calcium carbonate and the negative
bias of calcium isotopes. However, additional processes are required to explain the calcium
isotope characteristics that we observed in the Chibi North and Chibi West profiles.

5.3. Calcium Isotope Signatures at Different Water Depths

Significant differences of the δ44/40Ca values are observed for the five published
profiles and our two Chibi section at the Permian-Triassic boundary (Figure 5). Com-
parison of the calcium isotope values at different water depths in the Chibi North and
Chibi West sections indicates an increase of the value of the calcium isotope of the car-
bonate rock with increasing water depth (Figure 5). The residence time of calcium in the
ocean is about (0.5~1 × 106) years [53], which is longer than the mixing time of seawater
(about 1~2 × 103 years) [54]. Therefore, modern seawater shows generally a uniform
δ 44/40Ca value of ca. 1.88‰ [55]. The calcium isotope values at different water depths
are characterized by gradients (Figure 5). The increase of the calcium isotope value
with increasing water depth on slopes is therefore apparently related to different
depositional environments.
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study. Tesero, Taskent data are from [5], Dajiang section data are from [14].

Since the value of δ44/40Ca is affected by diagenesis, the ratio of aragoniteand calcite
in the sediment will specifically influence the value of δ44/40Ca. The calcium isotope value
of Chibi North is higher than that of Chibi West on average, and Chibi North has a lower
Ca/Sr ratio. The data document that the carbonate rocks in Chibi North suffered more
severe early diagenesis. The velocities of interstitial fluids are typically the highest in the
shallow water of the slopes, whereas the deep water is comparably calm [56]. Intense
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interstitial fluids in shallow water promote diagenesis. We propose that this cross-regional
calcium isotope gradient is related to the impact of pore fluids on the diagenesis that
induced the transformation of aragonite deposited in the primary carbonate rocks into
calcite by early diagenesis. We propose the following scenario to explain the observed
calcium isotope gradients.

Prior to the fall of the sea level, the present-day Chibi North and Chibi West profiles
were situated in deep water and aragonite was the product of primary carbonate precip-
itation. With the drop of the sea level, the Chibi West profile was exposed to the surface
and aragonite in the carbonate rocks was preserved. Due to the retreat of the coastline, the
sedimentary environment of the Chibi North section changed from deep water to shallow
water, and through pervasive ingress of pore fluid aragonite was transformed into calcite,
inducing the increase of δ44/40Ca value(Figure 6B).The aragonite in the carbonate rocks in
the shallow sections of Italy and Turkey was the first to avoid the erosion of the nearshore
pore water due to the subsidence process, with better primary aragonite preservation,
also the erosion of the pore fluid in the whole process was less than that in the of Chibi
West section(Figure 6B). These sections were subjected to different diagenesis when sea
level goes down and the carbonate rocks deposited under them were preserved. The less
diagenesis at the approximate shallow water level, and the diagenetic information at that
time is better preserved (Figure 6C). The value of δ44/40Ca was recognized to decrease with
the increase of the water depth in carbonate rocks at different water depths in rocks from
the Upper Ordovician of Nevada and Utah (USA) basin, when the basin was subjected to
transgression [21]. This is consistent with our results of the Chibi slope and we propose a
comparable tectonic scenario.
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6. Conclusions

The calcium isotope values of the Chibi North and Chibi West sections were negatively
skewed after the Permian-Triassic mass extinction line, consistent with the global negative
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calcium isotope skew during this period. The Chibi North section has higher calcium
isotope values than the Chibi West section, whereas the Sr/Ca ratio of the Chibi North
section is lower. These data indicate that the carbonate rocks in the Chibi West suffered
less intense early diagenesis, causing the better preservation of primary aragonite. Based
on the comparison of diagenesis indicators (Sr/Ca, Mg/Ca, Mn/Sr, δ18O), we propose
that both, the Chibi West and Chibi North sections were affected by diagenesis. The
negative bias of calcium isotopes in the Chibi area cannot be solely explained by ocean
acidification but are stronger influenced by diagenesis. Through the integration of the
three previously published shallow water profiles of carbonate rocks for this period, we
recognized a gradient of calcium isotopes that is related to the enhancement of pore fluids
during early diagenesis, which caused the transformation of primary aragonite to calcite in
the carbonate rocks. The calcium isotopes of salt rocks at different water depths can reflect
fluid buffer alteration, especially the enhancement of interstitial fluid near the shore of the
slope caused by sea level changes in the marine slope environment. We propose that a
regression event occurred in the Chibi region at the end of the Permian. Our case study for
the Chibi region indicates that calcium isotopes in carbonate rocks have the potential to
record the rise and drop of the sea level.
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