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Abstract: The Tarim Block is an ancient plate with a basement of ancient continental crust, which has
been separated from the Rodinia supercontinent since the Neoproterozoic. During the Neoproterozoic,
which lasted nearly 500 Myr, this block experienced significant evolutionary processes, such as
proliferation, radioactive decay of elements, and gradual cooling and solidification. The investigation
of Neoproterozoic paleogeography may shed light on the evolution of these geological events. In order
to realize this potential, this study aimed to infer paleowind directions over the Tarim Block during
each epoch of the Cryogenian–Ediacaran and to constrain the paleogeographic location of the Tarim
Block. To this end, outcrop magnetic fabric data were employed to analyze the anisotropy of magnetic
susceptibility within the Tarim Block. The anisotropy of magnetic susceptibility measurements
yielded mean paleowind directions of 308◦ ± 69◦, 277◦ ± 78◦, and 256◦ ± 76◦ from the present
north for the Early, Middle, and Late Cryogenian, respectively; the corresponding values for the
Early and Late Ediacaran were 237◦ ± 77◦ and 254◦ ± 73◦ from the present north, respectively.
Considering the rotation relationship of the Tarim Block from the Neoproterozoic to the present,
the paleowind directions during the Early, Middle, and Late Cryogenian were ~55◦, ~35◦, and ~35◦

from the paleo-north, respectively. The paleowind directions during the Early and Late Ediacaran
were ~35◦ and ~60◦ from paleo-north, respectively. By referring to the correspondence between the
paleowind directions over the Tarim Block and trade winds in the Northern Hemisphere, this study
provides evidence for the location of the Tarim Block during the Cryogenian–Ediacaran. The main
contributions of this study can be summarized as follows: (1) paleowind patterns are established
through the analysis of the anisotropy of magnetic susceptibility; (2) the paleogeographic location
of the Tarim Block during the Cryogenian–Ediacaran is constrained; and (3) a reference for further
study of the paleogeography of the Tarim Block during the Cryogenian–Ediacaran is provided.

Keywords: Tarim Basin; Cryogenian; Ediacaran; paleogeography; trade winds

1. Introduction

The Neoproterozoic is a vital period of time that lasted nearly 500 Myr. During this
time span, the Rodinia supercontinent aggregated and broke up, and major global blocks
experienced significant evolutionary processes [1–3]. The Tarim Block is an independent
Paleozoic plate with a basement of ancient continental crust, which has been separated
from the Rodinia supercontinent since the Neoproterozoic [4–6]. During the Precambrian,
the Tarim Block experienced a series of complex evolutionary processes such as prolifera-
tion, radioactive decay of elements, and gradual cooling and solidification [7–9]. With the
explosive appearance of Cambrian organisms approximately 540 Ma ago (i.e., Cambrian
explosion of life), the evolution of the Earth entered a new period of active life [10–12]. This
transformation event during the Precambrian–Cambrian marks an extremely pulsating
and critical period. It was accompanied by a series of important and far-reaching profound

Minerals 2022, 12, 1435. https://doi.org/10.3390/min12111435 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min12111435
https://doi.org/10.3390/min12111435
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0003-1188-422X
https://doi.org/10.3390/min12111435
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min12111435?type=check_update&version=2


Minerals 2022, 12, 1435 2 of 23

processes, including the evolution of the Rodinia supercontinent to the Gondwana con-
tinent [13–15], oxidation events on the Earth [15–17], and the development of complex
organisms such as multicellular eukaryotes [14,18,19]. The evolution of these geological
events may be recorded in Neoproterozoic paleogeography [20–22]. Therefore, the basic
geological study of the Neoproterozoic paleogeography of the Tarim Block would provide
a basis for understanding the evolution history of early Earth events.

According to paleogeographic studies based on paleomagnetism, the Tarim Block
was located at the mid–low latitude region (0–45◦) of the Northern Hemisphere during
the Cryogenian–Ediacaran, but there is no consensus for its paleogeographic location and
rotation orientation [5,23–25] (Figure 1). Some scholars believe that the Tarim Block was
located at about 40◦ N during the Cryogenian (~750 Ma) and that the northern area was
adjacent to the northwest of the Australian Block (modern orientation) (Figure 1A). During
the Ediacaran, the Tarim Block shifted southward to about 27◦ N, with a counterclockwise
rotation [23] (Figure 1B). This suggests that the Tarim Block was gradually breaking away
from the Australian Block, but not completely [23]. At that time, the Tarim Block was possi-
bly located at the edge of the Rodinia supercontinent, which may explain the orogeny of the
Tarim Block lagging behind the peak orogenic activity of the global Greenville Orogeny by
approximately 100 Myr [23,26]. To some extent, this implies that the southern margin of the
Tarim Block was on the edge of the supercontinent, while the northern margin was breaking
away from the Australian Block at different degrees [6,8,23]. The Tarim Block subsequently
aggregated with the Rodinia supercontinent but broke away from it later [4,7,23]. During
the Ediacaran, the northern margin of the Tarim Block was located in an intracontinental
rift, and the southern margin was located at the continental margin [23,27,28]. The breakup
of the Rodinia supercontinent caused the small-scale supercontinent and Gondwana super-
continent to aggregate, consisting mainly of the present Africa, South America, Antarctica,
Australia, and many smaller continental fragments [23,29,30].
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continent during the Cryogenian to Early Ediacaran. The evolution of the region to the rift 
stage under the stretching tectonic background during the Cryogenian marked the begin-
ning of caprock deposition during the Neoproterozoic [4,6,34]. The Tarim Basin area was 
mainly dominated by depression deposition throughout the Ediacaran [38–40]. The pre-
sent study focuses on the sedimentary body of the Cryogenian–Ediacaran in the Tarim 
Basin area (Figure 2B,C). 

  

Figure 1. The Tarim Block was located at the mid–low latitude region of the Northern Hemisphere
during the Cryogenian–Ediacaran. (A) The Tarim Block was located at about 40◦ N during the
Cryogenian (~750 Ma), and the northern area was adjacent to the northwest of the Australian
Block [23]. (B) The Tarim Block shifted southward to about 27◦ N with a counterclockwise rotation
during the Ediacaran [23]. (C,D) The large-scale rotation of the Tarim Block was at near-constant
paleolatitudes during the Cryogenian–Ediacaran [24].
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Other scholars hold that the large-scale rotation was at near-constant paleolatitudes
during the Cryogenian [24,31,32]. The rotation is coeval with the breakup of Rodinia, and
the paleolatitudes of the Tarim Block agree with its placement between Australia and Lau-
rentia, either by itself as an alternative “missing link” or joined with South China [24,31,33]
(Figure 1C,D). Moreover, records of subduction-related magmatism in the Tarim Block
during the Neoproterozoic suggest that the breakup of Rodinia was dynamically linked to
subduction retreat along its northern margin [24,32,33]. Such a model resembles the early
stages of Jurassic fragmentation within southern Gondwana and implies more complicated
subduction-related dynamics of supercontinent breakup than superplume impingement
alone [24,31–33]. Limited by the low accuracy of paleomagnetic methods, the paleolatitude
and rotation cannot be accurately determined, leading to uncertainties in the restoration
of paleowind directions. Therefore, it is necessary to quantitatively restore paleowind
directions using other methods.

The present study conducted an integrated analysis of bed- to block-scale variations of
the Tarim Block based on outcrop data to quantitatively reconstruct paleowind directions
during the Cryogenian–Ediacaran. Paleowind directions during sedimentation were quan-
titatively restored through the magnetic susceptibility anisotropy analysis of samples from
Precambrian strata—relatively few studies have conducted similar analyses of Precam-
brian strata. The objectives of this study were to (1) quantitatively reconstruct paleowind
directions over the Tarim Block during the Cryogenian–Ediacaran and (2) constrain the
paleogeographic location of the Tarim Block. The results of the present study can serve as a
reference for applying the anisotropy of magnetic susceptibility data to the recognition of
paleowind directions over Precambrian blocks.

2. Geological Setting

The Tarim Block is composed of a metamorphic basement of the Neoarchean–
Neoproterozoic with overlying marine and continental sedimentary caprocks of the Cryogenian–
Cenozoic [9,27,34]. During the Early Neoproterozoic, the southern and northern Tarim
Block and other surrounding blocks collided and collaged to form a unified cratonic base-
ment, which became a part of the Rodinia supercontinent [4,6,8]. The Tarim Basin is a
huge polycyclic superimposed basin with a stable core position in the Tarim Block [35–37]
(Figure 2A,B). The basin is a part of a land mass that broke off from the Rodinia superconti-
nent during the Cryogenian to Early Ediacaran. The evolution of the region to the rift stage
under the stretching tectonic background during the Cryogenian marked the beginning of
caprock deposition during the Neoproterozoic [4,6,34]. The Tarim Basin area was mainly
dominated by depression deposition throughout the Ediacaran [38–40]. The present study
focuses on the sedimentary body of the Cryogenian–Ediacaran in the Tarim Basin area
(Figure 2B,C).

2.1. Tectonic Setting

During the Early Cryogenian, the Tarim Basin area entered the development period of
a rift basin under the back-arc extension, developing a deep rifting and huge filling space
in the center of the basin [37,41,42]. With the rapid invasion of seawater and sediment ac-
cumulation, transitional fine clastic rock deposits of shallow-coastal facies formed [8,9,41].
During the Middle to the Late Cryogenian, the subduction of the Pan-Rodinia Ocean was
gradually replaced by a mantle plume under the background of the Rodinia supercon-
tinent breakup, and the Tarim Rift Basin continued to develop with the opened South
Tianshan Ocean [6,8,41]. During the Early Ediacaran, most of the space of the rift basin
was filled by deposits. The deposition was dominated by terrigenous clastic deposits
of silt and fine-grained sandstone, and shallow-coastal facies developed [38,39,41]. By
the Late Ediacaran, the rift basin was generally filled and the carbonate tidal flats of the
Shuiquan and Hangeerqiaoke formations were widely developed [38,41,43]. Under the
influence of the Gaskiers glaciation, continuous moraine deposits formed in the northeast
of this basin [41,44]. At this time, the rift basin was in the late developmental stage, and
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the large-scale coastal environment was similar to the continental sea that was globally
widespread during the Early Cambrian [9,41]. The Tarim back-arc rift basin evolved from a
deep sea to a shallow sea and the lithology changed from clastic rocks to carbonate rocks
during the Cryogenian–Ediacaran [4,34,41] (Figure 2B,C).
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Figure 2. (A) Simplified map of China showing the location of the Tarim Basin (after Jiang et al. 
[45]). (B) Baidu map of the Tarim Basin showing the outcrop and drill core locations used in the 
present study (based on https://map.baidu.com (accessed on 17 August 2021)). Detailed information 
on eight outcrops (QK, SW, TK, XG, XY, XZ, YD, and YM) is given in Table S1. NW—northwestern; 

Figure 2. (A) Simplified map of China showing the location of the Tarim Basin (after Jiang et al. [45]).
(B) Baidu map of the Tarim Basin showing the outcrop and drill core locations used in the present
study (based on https://map.baidu.com (accessed on 17 August 2021)). Detailed information on
eight outcrops (QK, SW, TK, XG, XY, XZ, YD, and YM) is given in Table S1. NW—northwestern;
NE—northeastern; SW—southwestern; SE—southeastern. (C) Cryogenian–Ediacaran stratigraphy
in the Tarim Basin (after Li et al. [46], Shi et al. [47], and Zhu et al. [48]). Geochronology from
Li et al. [46], Shi et al. [47], Zhu et al. [48], and Cohen et al. [49].

2.2. Stratigraphy

Different areas of the Tarim Basin have different sedimentary characteristics, with sig-
nificant differences in rock association, sedimentary structure, and strata thickness [9,34,50]
(Figure 2B,C). Taking the Kuruktag area in the northeast as an example, the Cryogenian
is composed of the Beiyixi, Zhaobishan, Aletonggou, and Teruiaiken formations from the
bottom to top [37,50,51]. The Beiyixi Formation irregularly overlies the Tonian System with
a thickness of 20–1400 m. The lower part comprises interbedding of gray thin–thick fine
sandstone and siltstone, and the upper part comprises moraine with dark gray, gray-green
thin–medium mudstone and silty mudstone. The Zhaobishan and Beiyixi formations have
a parallel unconformity contact. The Zhaobishan Formation has a thickness of 350–1000 m,
and it mainly comprises sandstone, siltstone, and mudstone deposits in a shoreland-shelf
environment, with a series of small cross and hummocky beddings. The Aletongou For-

https://map.baidu.com
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mation has a thickness of 90–1390 m, and it is in parallel unconformity contact with the
Zhaobishan Formation. The lower part comprises massive moraines, and the upper part
comprises interbeddings of gray, dark thin–medium silty mudstone in a shoreland-shelf
environment and fine-grained lithic sandstone, developing a series of ripple marks. The
Teruiaiken and Aletonggou formations have an integrated contact. The thickness of the
Teruiaiken Formation is 500–1700 m, and it is characterized by moraine [9,34,50] (Figure 2C).

The Ediacaran is composed of the Zhamoketi, Yukengou, Shuiquan, and Hangeerqiaoke
formations [34,50,52]. The Zhamoketi and Teruiaiken formations have is a parallel uncon-
formity contact. The Zhamoketi Formation is 140–1200 m thick, and its lithology comprises
micrite dolomite and limestone with a laminar structure. The Yukengou and Zhamoketi for-
mations have a parallel unconformity contact. The Yukengou Formation is 130–760 m thick,
and its lithology comprises unevenly interbedded gray-green and yellow-green siltstone
and siltstone mudstone, with fine sandstone. The Shuiquan and Yukengou formations are
in a conformable contact. The thickness of the Shuiquan Formation is 15–320 m. Its lower
part comprises black thin–medium mudstone interbedded with gray-yellow thin-layered
micrite limestone, with a striated structure. The Hangeerqiaoke Formation unconformably
overlies the Shuiquan Formation. It has a thickness of 30–500 m and comprises gray and
gray-green massive moraine [8,39,50]. The Tarim Block experienced regional uplift influ-
enced by the “Keping Movement” at the end of the Ediacaran, which resulted in a regional
unconformable contact between the Ediacaran and Cambrian. The strata at the top of the
Ediacaran were unconformably overlain Cambrian siliceous rocks [53–55] (Figure 2C).

2.3. Depositional Environments

The Tarim Block was dominated by clastic rocks mixed with volcanic rocks and
carbonate deposits during the Early Neoproterozoic and carbonate rocks during the Late
Neoproterozoic [34,41,52]. This area was under deep-sea, shallow-sea, coastal, deltaic,
and ice-sea transitional depositional environments: (1) The deep-sea environment mainly
appeared in the Early Cryogenian due to the opening of the rift and the rapid intrusion of
seawater. The environment is characterized by deposits nearly 2000 m thick. The lithology
is characterized by gray-green sandstone and siltstone interlayers, interbedded with a
small amount of fine gravel clastic sediments and siliceous rock, and an incomplete Bouma
sequence, which belongs to a set of deep marine facies comprising a thick layer of flysch
deposits. (2) In the shallow-sea environment, terrigenous detrital sediments; biogenic
sediments; authigenic sediments (e.g., glauconite); and volcanic sediments, including
sand, gravel, and mud, were primarily deposited. Influenced by ocean currents, tides, and
storms, shallow-sea environments are conducive to the development of diverse sedimentary
structure types, including cross bedding and grain sequence bedding. (3) The coastal
environment occurred in the Late Ediacaran, and it is primarily characterized by carbonate
rocks mixed with fine clastic deposits. Large sets of carbonate rocks occur in both the
Shuiquan and Qigebulake formations. (4) The delta is an important transitional marine
and continental sedimentary environment in the study area. From the ancient continent to
the shallow coastal sea, it is mainly characterized by sandstone and mudstone, with plume
interlacing laminations, wave marks, and sandstone lenses. (5) Ice seas are global glacial
events, which are usually recorded in both land and ocean. The Kuluketag Region of the
Tarim Basin developed four moraines during the Neoproterozoic, which are recorded in the
Beiyixi, Aletonggou, Teruiaiken, and Hangeerqiaoke formations [34,41,52] (Figure 2B,C).

3. Sampling and Methods
3.1. Field Methods and Sample Collection

A total of eight field sites in the Tarim Basin (the Qiakemaketieshi (QK), Sawafuqi (SW),
Tiekelike (TK), Xingeer (XG), Xiangyangcun (XY), Xinzanggonglu (XZ), Yaerdangshan (YD),
and Youermeinake (YM) outcrops) were investigated. From these field sites, 2002 fresh
samples were collected for magnetic fabric analysis (QK = 239, SW = 236, TK = 256,
XG = 260, XY = 254, XZ = 255, YD = 251, and YM = 251) using a portable mini-core drill
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(model: D026-C) and an insertable magnetic compass. Field descriptions and abundant
measurements and outcrop photos were collected at each site (Figure 2B; Table S1).

3.2. Magnetic Fabric Analysis

Each core sample had a diameter of 25 mm and was trimmed to a length of 22 mm to
maintain a uniform sample volume. After preparation, each sample was measured using
a magnetic susceptibility meter (model: HKB-1 (High-accuracy Kappa Bridge-1); field
strength: 300 A/m; field frequency: 920 Hz; power: AC, 220 V/110 V, 50/60 Hz, and 15 W;
sensitivity: 2 × 10−12 m3) with an automated sample handling system. Each sample was
measured three times along orthogonal planes.

Regarding the anisotropy of magnetic susceptibility, variations in the magnetic sus-
ceptibility field of a sample are analyzed within a three-dimensional orthogonal frame-
work [56,57]. The anisotropy of magnetic susceptibility of a sample is typically reported
as Kmax, Kint, and Kmin, representing the lengths of the maximum, intermediate, and
minimum principal axes of the three-dimensional anisotropy of magnetic susceptibility
ellipsoid, respectively; D-Kmax, D-Kint, and D-Kmin, representing their declinations; and I-
Kmax, I-Kint, and I-Kmin, representing their inclinations. The superposition of ferromagnetic,
paramagnetic, and diamagnetic grain properties yields the total anisotropy of magnetic
susceptibility signals [58,59].

The quantities of Kmax, Kint, and Kmin can be combined in various ways to describe
the ellipsoid shape and features of the magnetic fabric of a sample [56,60,61]. The magnetic
parameters set for this purpose are as follows:

Lineation (L) = Kmax/Kint (1)

Foliation (F) = Kint/Kmin (2)

Degree of anisotropy (P) = Kmax/Kmin (3)

Shape factor (T) = (2η2 − η1 − η3)/(η1 − η3) (4)

where η1, η2, and η3 are ln (Kmax), ln (Kint), and ln (Kmin), respectively.
Following the technique of [56], parameters F12 and F23, which are used to evaluate

the statistical significance of lineation and foliation, were determined from (1) epsilon
ε12, which is the half-angle uncertainty of Kmax in the plane joining Kmax and Kint, and
(2) epsilon ε23, which is the half-angle uncertainty of Kint in the plane joining Kint and
Kmin. All of the above parameters were calculated using the Safyr and Anisoft software
packages [62].

4. Results

The anisotropy of magnetic susceptibility has been widely used as an indicator of pale-
owind or paleocurrent directions [59,63,64]. Hydrodynamic experiments have revealed the
influence of wind or water motion on grain orientation [65–67]: under quiet conditions, the
maximum anisotropy of magnetic susceptibility axes is randomly distributed (Figure S1A);
under a strong unidirectional flow, oblate particles tend to produce an imbricated fabric in
the direction of flow, and elongated particles tend to produce an imbricated fabric parallel
to the direction of transport (Figure S1B); under bidirectional flow, elongated grains may
be aligned perpendicular to the directions of fluid movement (Figure S1C).

Most samples collected at all locales in the present study exhibited an oblate magnetic
fabric (Figures 3 and 4) [56]. The observed proportionality of the degree of anisotropy (P) to
foliation (F) was consistent with a subordinate role for lineation (L) (Figure 5). These features
are typical of sediments deposited by wind or water currents [56,59]. Inverse relationships are
shown by ε12 and L (Figure 6) and by ε23 and F (Figure 7), which are products of increased
measurement errors for weak lineations and foliations, respectively. In contrast, the absence
of a correlation between ε12 and F suggests that the lineation and foliation subfabrics were
probably determined by the orientations of different minerals (Figures 8 and 9).
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= 97). (P) Samples from Ediacaran units at YM Outcrop (n = 91). 

Figure 4. Relationships between the anisotropy of magnetic susceptibility parameters of F and L. (A) Samples from Cryogenian units at QK Outcrop (n = 145).
(B) Samples from Cryogenian units at SW Outcrop (n = 144). (C) Samples from Cryogenian units at TK Outcrop (n = 158). (D) Samples from Cryogenian units at XG
Outcrop (n = 153). (E) Samples from Cryogenian units at XY Outcrop (n = 155). (F) Samples from Cryogenian units at XZ Outcrop (n = 152). (G) Samples from
Cryogenian units at YD Outcrop (n = 154). (H) Samples from Cryogenian units at YM Outcrop (n = 160). (I) Samples from Ediacaran units at QK Outcrop (n = 94).
(J) Samples from Ediacaran units at SW Outcrop (n = 92). (K) Samples from Ediacaran units at TK Outcrop (n = 98). (L) Samples from Ediacaran units at XG Outcrop
(n = 107). (M) Samples from Ediacaran units at XY Outcrop (n = 99). (N) Samples from Ediacaran units at XZ Outcrop (n = 103). (O) Samples from Ediacaran units at
YD Outcrop (n = 97). (P) Samples from Ediacaran units at YM Outcrop (n = 91).
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from Cryogenian units at XG Outcrop (n = 153). (E) Samples from Cryogenian units at XY Outcrop 
(n = 155). (F) Samples from Cryogenian units at XZ Outcrop (n = 152). (G) Samples from Cryogenian 
units at YD Outcrop (n = 154). (H) Samples from Cryogenian units at YM Outcrop (n = 160). (I) 
Samples from Ediacaran units at QK Outcrop (n = 94). (J) Samples from Ediacaran units at SW Out-
crop (n = 92). (K) Samples from Ediacaran units at TK Outcrop (n = 98). (L) Samples from Ediacaran 
units at XG Outcrop (n = 107). (M) Samples from Ediacaran units at XY Outcrop (n = 99). (N) Samples 
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Figure 5. Relationships between the anisotropy of magnetic susceptibility parameters of P and F. (A) Samples from Cryogenian units at QK Outcrop (n = 145).
(B) Samples from Cryogenian units at SW Outcrop (n = 144). (C) Samples from Cryogenian units at TK Outcrop (n = 158). (D) Samples from Cryogenian units at XG
Outcrop (n = 153). (E) Samples from Cryogenian units at XY Outcrop (n = 155). (F) Samples from Cryogenian units at XZ Outcrop (n = 152). (G) Samples from
Cryogenian units at YD Outcrop (n = 154). (H) Samples from Cryogenian units at YM Outcrop (n = 160). (I) Samples from Ediacaran units at QK Outcrop (n = 94).
(J) Samples from Ediacaran units at SW Outcrop (n = 92). (K) Samples from Ediacaran units at TK Outcrop (n = 98). (L) Samples from Ediacaran units at XG Outcrop
(n = 107). (M) Samples from Ediacaran units at XY Outcrop (n = 99). (N) Samples from Ediacaran units at XZ Outcrop (n = 103). (O) Samples from Ediacaran units at
YD Outcrop (n = 97). (P) Samples from Ediacaran units at YM Outcrop (n = 91).
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(A) Samples from Cryogenian units at QK Outcrop (n = 145). (B) Samples from Cryogenian units at 
SW Outcrop (n = 144). (C) Samples from Cryogenian units at TK Outcrop (n = 158). (D) Samples 
from Cryogenian units at XG Outcrop (n = 153). (E) Samples from Cryogenian units at XY Outcrop 
(n = 155). (F) Samples from Cryogenian units at XZ Outcrop (n = 152). (G) Samples from Cryogenian 
units at YD Outcrop (n = 154). (H) Samples from Cryogenian units at YM Outcrop (n = 160). (I) 
Samples from Ediacaran units at QK Outcrop (n = 94). (J) Samples from Ediacaran units at SW Out-
crop (n = 92). (K) Samples from Ediacaran units at TK Outcrop (n = 98). (L) Samples from Ediacaran 
units at XG Outcrop (n = 107). (M) Samples from Ediacaran units at XY Outcrop (n = 99). (N) Samples 
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Figure 6. Relationships between the anisotropy of magnetic susceptibility parameters of L and ε12. (A) Samples from Cryogenian units at QK Outcrop (n = 145).
(B) Samples from Cryogenian units at SW Outcrop (n = 144). (C) Samples from Cryogenian units at TK Outcrop (n = 158). (D) Samples from Cryogenian units at XG
Outcrop (n = 153). (E) Samples from Cryogenian units at XY Outcrop (n = 155). (F) Samples from Cryogenian units at XZ Outcrop (n = 152). (G) Samples from
Cryogenian units at YD Outcrop (n = 154). (H) Samples from Cryogenian units at YM Outcrop (n = 160). (I) Samples from Ediacaran units at QK Outcrop (n = 94).
(J) Samples from Ediacaran units at SW Outcrop (n = 92). (K) Samples from Ediacaran units at TK Outcrop (n = 98). (L) Samples from Ediacaran units at XG Outcrop
(n = 107). (M) Samples from Ediacaran units at XY Outcrop (n = 99). (N) Samples from Ediacaran units at XZ Outcrop (n = 103). (O) Samples from Ediacaran units at
YD Outcrop (n = 97). (P) Samples from Ediacaran units at YM Outcrop (n = 91).
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SW Outcrop (n = 144). (C) Samples from Cryogenian units at TK Outcrop (n = 158). (D) Samples 
from Cryogenian units at XG Outcrop (n = 153). (E) Samples from Cryogenian units at XY Outcrop 
(n = 155). (F) Samples from Cryogenian units at XZ Outcrop (n = 152). (G) Samples from Cryogenian 
units at YD Outcrop (n = 154). (H) Samples from Cryogenian units at YM Outcrop (n = 160). (I) 
Samples from Ediacaran units at QK Outcrop (n = 94). (J) Samples from Ediacaran units at SW Out-
crop (n = 92). (K) Samples from Ediacaran units at TK Outcrop (n = 98). (L) Samples from Ediacaran 
units at XG Outcrop (n = 107). (M) Samples from Ediacaran units at XY Outcrop (n = 99). (N) Samples 
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Figure 7. Relationships between the anisotropy of magnetic susceptibility parameters of F and ε23. (A) Samples from Cryogenian units at QK Outcrop (n = 145).
(B) Samples from Cryogenian units at SW Outcrop (n = 144). (C) Samples from Cryogenian units at TK Outcrop (n = 158). (D) Samples from Cryogenian units at XG
Outcrop (n = 153). (E) Samples from Cryogenian units at XY Outcrop (n = 155). (F) Samples from Cryogenian units at XZ Outcrop (n = 152). (G) Samples from
Cryogenian units at YD Outcrop (n = 154). (H) Samples from Cryogenian units at YM Outcrop (n = 160). (I) Samples from Ediacaran units at QK Outcrop (n = 94).
(J) Samples from Ediacaran units at SW Outcrop (n = 92). (K) Samples from Ediacaran units at TK Outcrop (n = 98). (L) Samples from Ediacaran units at XG Outcrop
(n = 107). (M) Samples from Ediacaran units at XY Outcrop (n = 99). (N) Samples from Ediacaran units at XZ Outcrop (n = 103). (O) Samples from Ediacaran units at
YD Outcrop (n = 97). (P) Samples from Ediacaran units at YM Outcrop (n = 91).
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Samples from Ediacaran units at QK Outcrop (n = 94). (J) Samples from Ediacaran units at SW Out-
crop (n = 92). (K) Samples from Ediacaran units at TK Outcrop (n = 98). (L) Samples from Ediacaran 
units at XG Outcrop (n = 107). (M) Samples from Ediacaran units at XY Outcrop (n = 99). (N) Samples 
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Figure 8. Relationships between the anisotropy of magnetic susceptibility parameters of F and ε12. (A) Samples from Cryogenian units at QK Outcrop (n = 145).
(B) Samples from Cryogenian units at SW Outcrop (n = 144). (C) Samples from Cryogenian units at TK Outcrop (n = 158). (D) Samples from Cryogenian units at XG
Outcrop (n = 153). (E) Samples from Cryogenian units at XY Outcrop (n = 155). (F) Samples from Cryogenian units at XZ Outcrop (n = 152). (G) Samples from
Cryogenian units at YD Outcrop (n = 154). (H) Samples from Cryogenian units at YM Outcrop (n = 160). (I) Samples from Ediacaran units at QK Outcrop (n = 94).
(J) Samples from Ediacaran units at SW Outcrop (n = 92). (K) Samples from Ediacaran units at TK Outcrop (n = 98). (L) Samples from Ediacaran units at XG Outcrop
(n = 107). (M) Samples from Ediacaran units at XY Outcrop (n = 99). (N) Samples from Ediacaran units at XZ Outcrop (n = 103). (O) Samples from Ediacaran units at
YD Outcrop (n = 97). (P) Samples from Ediacaran units at YM Outcrop (n = 91).
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Figure 9. Relationships between the anisotropy of magnetic susceptibility parameters of ε12 and F12. (A) Samples from Cryogenian units at QK Outcrop (n = 145).
(B) Samples from Cryogenian units at SW Outcrop (n = 144). (C) Samples from Cryogenian units at TK Outcrop (n = 158). (D) Samples from Cryogenian units at XG
Outcrop (n = 153). (E) Samples from Cryogenian units at XY Outcrop (n = 155). (F) Samples from Cryogenian units at XZ Outcrop (n = 152). (G) Samples from
Cryogenian units at YD Outcrop (n = 154). (H) Samples from Cryogenian units at YM Outcrop (n = 160). (I) Samples from Ediacaran units at QK Outcrop (n = 94).
(J) Samples from Ediacaran units at SW Outcrop (n = 92). (K) Samples from Ediacaran units at TK Outcrop (n = 98). (L) Samples from Ediacaran units at XG Outcrop
(n = 107). (M) Samples from Ediacaran units at XY Outcrop (n = 99). (N) Samples from Ediacaran units at XZ Outcrop (n = 103). (O) Samples from Ediacaran units at
YD Outcrop (n = 97). (P) Samples from Ediacaran units at YM Outcrop (n = 91).
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The geographic orientations of the principal anisotropy of magnetic susceptibility axes
were plotted on stereonets for visualization. The sample set was then screened to isolate
the most significant Kmax declination using the techniques of Lagroix and Banerjee [56]
and Zhu et al. [58]. All D-Kmax with F12 < 4 and ε12 > 22.5◦ were rejected to eliminate noisy
directions. The rejection of samples with F12 < 4 yielded a confidence ratio of 1.0 for the
intermediate and minimum susceptibility axes of the lineation axis, and the rejection of
samples with ε12 > 22.5◦ yielded a confidence ratio of 1.0 for maximum and intermediate
susceptibility axes in the foliation plane. I-Kmin is another parameter used in screening the
data of the anisotropy of magnetic susceptibility; I-Kmin values > 70◦ generally correspond
to an undisturbed (less reworked) sediment with an oblate magnetic fabric [56,59].

4.1. Anisotropy of Magnetic Susceptibility for each Cryogenian Series

The robustness of statistical calculations was maintained by limiting calculations to samples
of the Cryogenian with F12 > 4, ε12 < 22.5◦, and I-Kmin > 70◦ (Table 1; Figures 10 and S2).
The screened Lower, Middle, and Upper Cryogenian sample sets of each of the eight
study outcrops yielded different preferred orientations for the maximum anisotropy of the
magnetic susceptibility axis (Kmax) (modern coordinates; Table 2; Figure 10). In addition, a
centroid statistical approach was applied using the Safyr and Anisoft software to assess the
distribution of Kmax values for the screened sample set of each outcrop. In this manner, the
dominant orientations were determined. Without considering the inclination, the centroid
statistical diagram magnifies variations only in Kmax declinations (modern coordinates;
Tables 2 and 3; Figure 10).

Table 1. The maximum anisotropy of magnetic susceptibility axis (Kmax) with different preferred
orientations and centroid D-Kmax values for each of the eight study outcrops for each series of the
Cryogenian–Ediacaran. Detailed information is given in Figures 10 and 11.

Outcrop Lower Cryogenian Middle Cryogenian Upper Cryogenian Lower Ediacaran Upper Ediacaran

QK (24/46) 52% (31/51) 61% (20/48) 41% (30/49) 61% (28/45) 62%
SW (29/44) 65% (24/52) 46% (21/48) 43% (20/44) 45% (23/48) 47%
TK (25/49) 51% (23/55) 41% (25/54) 46% (29/46) 62% (29/52) 55%
XG (30/51) 58% (29/53) 54% (26/49) 53% (29/57) 50% (26/50) 52%
XY (20/46) 44% (31/57) 55% (21/52) 41% (29/53) 55% (18/46) 40%
XZ (32/52) 61% (30/55) 55% (27/45) 60% (27/58) 47% (20/45) 45%
YD (25/52) 49% (30/56) 53% (27/46) 59% (30/52) 58% (22/45) 48%
YM (24/49) 48% (30/56) 53% (31/55) 56% (24/43) 55% (29/48) 61%

Table 2. The maximum anisotropy of magnetic susceptibility axis (Kmax) with different preferred
orientations and centroid D-Kmax values for each of the eight study outcrops for each series of the
Cryogenian–Ediacaran. Detailed information is given in Figures 10 and 11.

No. Outcrop
Cryogenian Ediacaran

Lower Middle Upper Lower Upper

1 QK 256◦–1◦ (centroid 310◦ ) 222◦–337◦ (centroid 280◦ ) 192◦–324◦ (centroid 257◦ ) 166◦–301◦ (centroid 236◦ ) 187◦–310◦ (centroid 249◦ )

2 SW 248◦–4◦ (centroid 307◦ ) 217◦–322◦ (centroid 273◦ ) 180◦–322◦ (centroid 252◦ ) 177◦–294◦ (centroid 234◦ ) 196◦–298◦ (centroid 249◦ )

3 TK 257◦–356◦ (centroid 309◦ ) 222◦–326◦ (centroid 275◦ ) 189◦–319◦ (centroid 251◦ ) 166◦–314◦ (centroid 238◦ ) 185◦–327◦ (centroid 260◦ )

4 XG 243◦–6◦ (centroid 310◦ ) 205◦–348◦ (centroid 278◦ ) 183◦–322◦ (centroid 256◦ ) 171◦–308◦ (centroid 237◦ ) 196◦–319◦ (centroid 258◦ )

5 XY 251◦–352◦ (centroid 305◦ ) 214◦–333◦ (centroid 276◦ ) 191◦–329◦ (centroid 259◦ ) 174◦–302◦ (centroid 240◦ ) 200◦–312◦ (centroid 256◦ )

6 XZ 239◦–357◦ (centroid 303◦ ) 199◦–351◦ (centroid 273◦ ) 189◦–311◦ (centroid 253◦ ) 181◦–299◦ (centroid 242◦ ) 203◦–307◦ (centroid 255◦ )

7 YD 253◦–4◦ (centroid 311◦ ) 215◦–345◦ (centroid 283◦ ) 186◦–324◦ (centroid 258◦ ) 173◦–302◦ (centroid 237◦ ) 194◦–313◦ (centroid 250◦ )

8 YM 260◦–347◦ (centroid 307◦ ) 202◦–350◦ (centroid 279◦ ) 189◦–321◦ (centroid 261◦ ) 169◦–298◦ (centroid 235◦ ) 183◦–321◦ (centroid 252◦ )

Mean 308◦ ± 69◦ 277◦ ± 78◦ 256◦ ± 76◦ 237◦ ± 77◦ 254◦ ± 73◦
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(n = 25). (D) Lower Cryogenian at the XG Outcrop (n = 30). (E) Lower Cryogenian at the XY Outcrop 
(n = 20). (F) Lower Cryogenian at the XZ Outcrop (n = 32). (G) Lower Cryogenian at the YD Outcrop 
(n = 25). (H) Lower Cryogenian at the YH Outcrop (n = 24). (I) Middle Cryogenian at the QK Outcrop 
(n = 31). (J) Middle Cryogenian at the SW Outcrop (n = 24). (K) Middle Cryogenian at the TK Outcrop 
(n = 23). (L) Middle Cryogenian at the XG Outcrop (n = 29). (M) Middle Cryogenian at the XY Out-
crop (n = 31). (N) Middle Cryogenian at the XZ Outcrop (n = 30). (O) Middle Cryogenian at the YD 
Outcrop (n = 30). (P) Middle Cryogenian at the YM Outcrop (n = 30). (Q) Upper Cryogenian at the 
QK Outcrop (n = 20). (R) Upper Cryogenian at the SW Outcrop (n = 21). (S) Upper Cryogenian at 
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Figure 10. Equal-area projections (modern coordinates) of anisotropy of magnetic susceptibility prin-
cipal axes of selected samples (according to criteria for which F12 > 4, ε12 < 22.5◦, and I-Kmin > 70◦)
for each Cryogenian series from the eight outcrops. (A) Lower Cryogenian at the QK Outcrop (n = 24).
(B) Lower Cryogenian at the SW Outcrop (n = 29). (C) Lower Cryogenian at the TK Outcrop (n = 25).
(D) Lower Cryogenian at the XG Outcrop (n = 30). (E) Lower Cryogenian at the XY Outcrop (n = 20).
(F) Lower Cryogenian at the XZ Outcrop (n = 32). (G) Lower Cryogenian at the YD Outcrop (n = 25).
(H) Lower Cryogenian at the YH Outcrop (n = 24). (I) Middle Cryogenian at the QK Outcrop (n = 31).
(J) Middle Cryogenian at the SW Outcrop (n = 24). (K) Middle Cryogenian at the TK Outcrop (n = 23).
(L) Middle Cryogenian at the XG Outcrop (n = 29). (M) Middle Cryogenian at the XY Outcrop
(n = 31). (N) Middle Cryogenian at the XZ Outcrop (n = 30). (O) Middle Cryogenian at the YD
Outcrop (n = 30). (P) Middle Cryogenian at the YM Outcrop (n = 30). (Q) Upper Cryogenian at the
QK Outcrop (n = 20). (R) Upper Cryogenian at the SW Outcrop (n = 21). (S) Upper Cryogenian at the
TK Outcrop (n = 25). (T) Upper Cryogenian at the XG Outcrop (n = 26). (U) Upper Cryogenian at the XY
Outcrop (n = 21). (V) Upper Cryogenian at the XZ Outcrop (n = 27). (W) Upper Cryogenian at the YD
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Outcrop (n = 27). (X) Upper Cryogenian at the YM Outcrop (n = 31). Kmax—maximum principal axes
of the three-dimensional anisotropy of magnetic susceptibility ellipsoid; Kmin—minimum principal
axes of the three-dimensional anisotropy of magnetic susceptibility ellipsoid; D-Kmax—declination of
maximum principal axes of the three-dimensional anisotropy of magnetic susceptibility ellipsoid.

Table 3. Mean orientations and uncertainty values of the anisotropy of magnetic susceptibility during
each series of the Cryogenian–Ediacaran.

No. System Series Outcrops D-Kmax I-Kmax D-Kint I-Kint D-Kmin I-Kmin
Uncertainty Values

of D-Kmax

1
Ediacaran

Upper

QK, SW,
TK, XG, XY,

XZ, YD,
and YM

253.6◦ 14.3◦ 338.5◦ 19.4◦ 63.1◦ 77.4◦ ±72.6◦

2 Lower 237.4◦ 15.8◦ 320.3◦ 13.3◦ 56.7◦ 73.8◦ ±77.3◦

3

Cryogenian

Upper 255.9◦ 16.4◦ 338.2◦ 26.1◦ 70.9◦ 72.2◦ ±75.8◦

4 Middle 277.1◦ 15.6◦ 12.9◦ 13.1◦ 94.9◦ 74.3◦ ±77.9◦

5 Lower 307.8◦ 13.2◦ 34.4◦ 21.4◦ 130.1◦ 78.7◦ ±68.7◦

4.2. Anisotropy of Magnetic Susceptibility for Each Ediacaran Series

Statistical robustness was ensured by limiting calculations to Ediacaran samples with
F12 > 4, ε12 < 22.5◦, and I-Kmin > 70◦ (Table 1; Figures 11 and S3). The screened Lower
and Upper Ediacaran sample sets of each of the eight study outcrops yielded different
preferred orientations for the maximum anisotropy of the magnetic susceptibility axis
(Kmax) (modern coordinates; Table 2; Figure 10). In addition, a centroid statistical approach
was applied using the Safyr and Anisoft software to assess the distribution of Kmax values
for the screened sample set of each outcrop. In this manner, the dominant orientations were
determined. Without considering the inclination, the centroid statistical diagram magnifies
variations only in Kmax declinations (modern coordinates; Tables 2 and 3; Figure 11).
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Ediacaran series from the eight outcrops. (A) Lower Ediacaran at the QK Outcrop (n = 30).
(B) Lower Ediacaran at the SW Outcrop (n = 20). (C) Lower Ediacaran at the TK Outcrop (n = 29).
(D) Lower Ediacaran at the XG Outcrop (n = 29). (E) Lower Ediacaran at the XY Outcrop (n = 29).
(F) Lower Ediacaran at the XZ Outcrop (n = 27). (G) Lower Ediacaran at the YD Outcrop (n = 30).
(H) Lower Ediacaran at the YM Outcrop (n = 24). (I) Upper Ediacaran at the QK Outcrop (n = 28).
(J) Upper Ediacaran at the SW Outcrop (n = 23). (K) Upper Ediacaran at the TK Outcrop (n = 29).
(L) Upper Ediacaran at the XG Outcrop (n = 26). (M) Upper Ediacaran at the XY Outcrop (n = 18).
(N) Upper Ediacaran at the XZ Outcrop (n = 20). (O) Upper Ediacaran at the YD Outcrop (n = 22).
(P) Upper Ediacaran at the YM Outcrop (n = 29). Kmax—maximum principal axes of the three-
dimensional anisotropy of magnetic susceptibility ellipsoid; Kmin—minimum principal axes of the
three-dimensional anisotropy of magnetic susceptibility ellipsoid; D-Kmax—declination of maximum
principal axes of the three-dimensional anisotropy of magnetic susceptibility ellipsoid.

5. Discussion
5.1. Reconstruction of Paleowind Directions Quantitatively

The anisotropy of magnetic susceptibility can be used to determine the prevailing
paleowind directions [57,59,68,69]. Examples in previous studies include the reconstruc-
tion of the route of the paleomonsoon along a west-to-east transect in the Chinese Loess
Plateau [57], and the reconstruction of paleowind directions and sources of detrital material
archived in the Roxolany loess section, southern Ukraine [59].

The orientations of the anisotropy of magnetic susceptibility of the samples can be
explained on the basis of a model of strong unidirectional flow (Figure S1B) [66,68,69], which is
the most consistent with the distribution of data in the current study (Figures 10 and 11). Most
grains in this model were oriented parallel to unidirectional flow (Figure S1B) [66,68,69]. The
paleowind directions in the Early, Middle, and Late Cryogenian were 308◦ ± 69◦, 277◦ ± 78◦,
and 256◦ ± 76◦, respectively (modern coordinates; Figure 12A–C). The paleowind directions
in the Early and Late Ediacaran were 237◦ ± 77◦ and 254◦ ± 73◦, respectively (modern
coordinates; Figure 12D,E). The present study proposes an approach for quantitatively
reconstructing the paleowind directions of ancient blocks using the anisotropy of magnetic
susceptibility.
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5.2. Significance of Paleowind Directions for Paleogeography

The prevailing paleowind directions have important paleogeographic implications for
the Tarim Block (Figure 13). The Tarim Block was located in the low to middle latitudes
during the Cryogenian–Ediacaran [5,23–25] (Figure 1). However, its exact position remains
debatable because relevant paleomagnetic data are lacking. Some scholars hold that the
Tarim Block was located at about 40◦ N during the Cryogenian (~750 Ma) and that the
northern area was adjacent to the northwest of the Australian Block (modern orientation)
(Figure 1A). During the Ediacaran, the Tarim Block shifted southward to about 27◦ N, with
a counterclockwise rotation [23] (Figure 1B). Other scholars believe that the large-scale
rotation was at near-constant paleolatitudes during the Cryogenian [24,31,32]. The rotation
was coeval with Rodinia breakup, and the paleolatitudes of the Tarim Block are compatible
with its placement between Australia and Laurentia [24,31,33] (Figure 1C,D).
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Figure 13. Relationship between present and Cryogenian–Ediacaran geographic orientations of the
Tarim Block. Paleowind orientations of the Tarim Block are shown in modern coordinate (left) and
paleo-coordinate (right) frameworks. Data are for Early Cryogenian facies (A,B), Middle Cryogenian
facies (C,D), Late Cryogenian facies (E,F), Early Ediacaran facies (G,H), and Late Ediacaran facies (I,J).
The prevailing wind directions for each Cryogenian–Ediacaran series are based on the AMS results
from Table 2 and Figures 10 and 11. Syn- and post-Cryogenian and Ediacaran tectonic rotations are
shown by tapered gray arrows.

Referring to the current position of the Tarim Block, its paleowind directions would
have been 308◦ ± 69◦ during the Early Cryogenian, 277◦ ± 78◦ during the Middle Cryo-
genian, 256◦ ± 76◦ during the Late Cryogenian, 237◦ ± 77◦ during the Early Ediacaran,
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and 254◦ ± 73◦ during the Late Ediacaran (Tables 2 and 3; Figure 12). This conclusion is
consistent with the most recent paleogeographic findings (e.g., [24]): (1) During the Early
Cryogenian, the Tarim Block was located in the Northern Hemisphere (~10◦ N), and the
prevailing paleowind direction was ~308◦ (modern coordinates). The plate has rotated
~107◦ counterclockwise since the Early Cryogenian, indicating a paleowind direction of
~55◦ in paleo-coordinates (Figure 13A,B). (2) During the Middle Cryogenian, the Tarim
Block was located in the Northern Hemisphere (~20◦ N), and the prevailing paleowind
direction was ~277◦ (modern coordinates). The plate has rotated ~118◦ counterclockwise
since the Middle Cryogenian, indicating a paleowind direction of ~35◦ in paleo-coordinates
(Figure 13C,D). (3) During the Late Cryogenian, the Tarim Block was located in the North-
ern Hemisphere (~20◦ N), and the prevailing paleowind direction was ~256◦ (modern
coordinates). The plate has rotated ~139◦ counterclockwise since the Late Cryogenian,
indicating a paleowind direction of ~35◦ in paleo-coordinates (Figure 13E,F). (4) During
the Early Ediacaran, the Tarim Block was located in the Northern Hemisphere (~20◦ N),
and the prevailing paleowind direction was ~237◦ (modern coordinates). The plate has
rotated ~158◦ counterclockwise since the Early Ediacaran, indicating a paleowind direction
of ~35◦ in paleo-coordinates (Figure 13G,H). (5) During the Late Ediacaran, the Tarim
Block was located in the Northern Hemisphere (~7◦ N), and the prevailing paleowind
direction was ~254◦ (modern coordinates). The plate has rotated ~166◦ counterclockwise
since the Late Ediacaran, indicating a paleowind direction of ~60◦ in paleo-coordinates
(Figure 13I,J) [24,31,33].

The prevailing directions of the trade winds belt slightly vary at different locations.
The prevailing wind direction is nearly north (20◦–45◦) at locations far from the equator
in the Northern Hemisphere and nearly east (45◦–70◦) at locations near the equator in the
Northern Hemisphere [70–72]. The Tarim Block was located at ~20◦ N during the Middle
Cryogenian to Early Ediacaran [24,31,33]. The relevant paleowind direction was ~35◦,
which is between 20◦ and 45◦ (paleo-coordinates) (Figure 13D,F,H). The Tarim Block was
located at ~10◦ N and ~7◦ N during the Early Cryogenian and Late Ediacaran, respectively.
The relevant paleowind directions were ~55◦ and ~60◦, which are between 45◦ and 70◦

(paleo-coordinates) (Figure 13B,J). This study provides evidence for the paleogeography of
the Tarim Block during the Cryogenian–Ediacaran in terms of the prevailing paleowind
directions over the Tarim Block and the trade winds in the Northern Hemisphere. The de-
termination of paleowind directions can be of geological significance for ancient blocks. For
example, as shown in the present study, the paleogeography of a block can be constrained
using paleowind directions.

6. Conclusions

The Tarim Block was located in the low latitude trade wind belt during the Cryogenian–
Ediacaran and was affected by the prevailing wind directions. Analysis of the anisotropy of
magnetic susceptibility indicated that the paleowind directions over the Tarim Block during
the Early, Middle, and Late Cryogenian were 308◦ ± 69◦, 277◦ ± 78◦, and 256◦ ± 76◦, respec-
tively, whereas those during the Early and Late Ediacaran were 237◦ ± 77◦ and 254◦ ± 73◦,
respectively (modern coordinates). This study quantitatively reconstructed the prevailing
paleowind directions over the Tarim Block through an analysis of the anisotropy of magnetic
susceptibility. Referring to the corresponding relationship between the prevailing pale-
owind directions over the Tarim Block and trade winds in the Northern Hemisphere, the
findings also provide evidence for the location of the Tarim Block during the Cryogenian–
Ediacaran. The results can provide a reference for the study of the paleogeography of the
Tarim Block during the Mesoproterozoic.
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magnetic particles.; Figure S2.: Equal-area projections (modern coordinates) of anisotropy of magnetic
susceptibility principal axes of all samples for each Cryogenian series from the eight outcrops.;
Figure S3. Equal-area projections (modern coordinates) of anisotropy of magnetic susceptibility
principal axes of all samples for each Ediacaran series from the eight outcrops.; Table S1: Location
and sampling information for the eight study outcrops.
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