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Abstract: This study considers the contents of natural radionuclides (226Ra, 232Th, and 40K) in the
soils of natural–technogenic landscapes in the Verkhnekamskoe potassium–magnesium salt deposit
(Perm Krai, Russia). The purpose of the study is to assess the lateral activity distribution of natural
radionuclides (226Ra, 232Th, and 40K) in the soils of natural–technogenic landscapes of the mining
areas on the territory of the Berezniki–Solikamsk industrial hub. Seventy-five soil samples from
depths of 0–0.4 m are examined. The specific activities of the natural radionuclides 226Ra, 232Th,
and 40K in the soil samples are measured using gamma spectrometry. The average values of the
activity concentrations of 226Ra, 232Th, and 40K are 11.78 Bq/kg, 8.11 Bq/kg, and 246.9 Bq/kg,
respectively. A gamma survey is conducted using the MKS/SRP-08A search dosimeter–radiometer
over a control point framework covering 50,000 hectares. The research shows that the migration of
the studied natural radionuclides is limited to a radius of 10 km. The results of the gamma-radiation
measurements in the study area fall within a range of 0.06–0.25 µSv/h, which does not exceed the
permissible limits. According to the findings, there is an increase in the concentration of natural
radionuclides in transit supra-floodplain terrace landscapes and accumulative floodplain landscapes
in the area affected by potash mining.

Keywords: soils; 226Ra; 232Th; 40K; potash industry; landscapes

1. Introduction

Natural radionuclides have existed on Earth since its inception. They are distributed
throughout the biosphere and accumulate in the atmosphere, soil, bottom sediments,
water, and plants. The abiogenic cycle of radionuclide migration in the biosphere consists
of three major stages: (1) matter mobilisation during rock weathering; (2) transfer by
a transport medium; (3) sedimentation in local areas and final runoff reservoirs during
transportation. The transportation process is the primary source of material that enters
the biogenic cycle during soil formation processes [1]. There are numerous radionuclides
in the environment containing uranium (U) radioisotopes, thorium (Th) radioisotopes,
and natural 40K [2]. Cosmic radiation and radioactive elements in the Earth’s crust, water
bodies, and atmosphere are the primary sources of the natural radiation background
in any area [3]. 238U, 232Th, 226Ra, and 40K are the most common naturally occurring
radioactive isotopes in the environment [3,4]. The natural radiation background varies
depending on certain territorial aspects, including geological features such as the contents of
thorium (Th), uranium (U), and potassium (K) in the rocks [5]; and geochemical features of
radionuclide behaviour in different natural environments. The natural radionuclide activity
concentrations in the soil range from micro- to thousands of becquerels per kilogram [6–8].

The radiation situation in any territory in modern conditions is formed by the natural
and anthropogenic backgrounds. While radionuclides are formed naturally in soils and
rocks as a result of radioactive decay, the majority of the environmental phenomena
associated with radioactive contamination are caused by mineral extraction and processing.
Mining is a considerable source of natural radioactivity [9]. The active development of
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industrial production resulted in radical changes in environmental conditions, particularly
intense radioactive contamination of the main components of the natural environment
(soils, natural waters, rocks, and bottom sediments) [10,11]. Natural radionuclides enter
water bodies and accumulate in soils and bottom sediments as a result of migration. Their
high concentrations can endanger the habitats of microorganisms, animals, and humans.
Natural formations (rocks with a high content of natural radionuclides [12–14]), as well as
the mining and processing of coal [15], oil [3], gas [16], and food salt [17–19], can be sources
of natural radionuclides that are input into the environment. Mining waste can be a source
of radiation [20,21].

Potash production waste is the primary source of environmental component con-
tamination in the study area. The Berezniki–Solikamsk industrial hub is one of the most
developed sites in the Verkhnekamskoe potassium–magnesium salt deposit (Verkhnekam-
skoe Salt Deposit) (Perm Krai, Russia). Environmental pollution caused by ore beneficiation
waste is one of the issues posed by mining and processing. The majority of waste is dumped
on the ground [22]. As a result of potassium ore enrichment, more than 270 million tonnes
of halite waste and more than 30 million m3 of clay–salt slurry are stored on the surface in
the development area of the Verkhnekamskoe Salt Deposit [23].

The technogenic impacts of potash production, together with a complex of regional
conditions and ecological features of the study area, play an important role in the dis-
tribution and accumulation of natural radionuclides in soils of various landscape types.
The level of soil radioactivity is an indicator for assessing the territory’s radioecological
background [24,25].

The purpose of the study is to assess the lateral distribution of the activity of the
natural radionuclides 226Ra, 232Th, and 40K in the soils of natural–technogenic mining areas
within the Berezniki–Solikamsk industrial hub in the area affected by potash enterprises.
Naturally, 40K is the most relevant of the natural radionuclides studied in the area.

2. Materials and Methods

The study area is located in the northern part of the Verkhnekamskoe Salt Deposit.
Soil samples were collected at predetermined points throughout the territory, near mining
operations and residential areas. Samples were taken from the upper soil layer at 0–0.4 m
intervals. A total of 75 soil samples were collected and examined.

The soil samples were dried to air-dry at room temperature in the laboratory. Organic
matter was removed from the dried samples. The samples were prepared for the examina-
tion of the specific activity of natural radionuclides (40K, 226Ra, and 232Th). An MKS-01A
MULTIRAD device (Amplituda, Zelenograd, Russia) was used for the gamma spectrometry.
The “Progress” software package (Amplituda, Zelenograd, Russia) was used to process the
gamma spectra. The specific activity error range was approximately ±(20%–30%) of the
measured values.

An energy calibration of the spectrometer was carried out with a 137Cs and 40K
reference source. The source was a 1 L Marinelli beaker filled with KCl and sealed with
a lid. The source had a cylindrical deepening area at the base with the fixed 137Cs source
(a disc 29 mm in diameter with an active spot in the centre sealed with two 50-µm-thick
polyamide films). The source activity was 1500 Bq, with 20% error at a confidence level of
0.95. The spectrum from the gamma spectrometer’s calibration source showed the maxima
of the 137Cs (energy 662 keV) and 40K (energy 1461 keV) total absorption peaks, as well as
the count rate in a specific energy range of 620–700 keV. After calibration, the background
was measured (for 1800 s) to control the intrinsic noise of the gamma spectrometric tract
and to record the contribution of the external gamma radiation to the device’s emission
spectrum of the studied sample. The soil samples were placed in the Marinelli beaker up to
a 1 L scale marking.

The allowable exposure standards for natural radionuclides were determined in
accordance with the radiation safety standards. Their biological impact on the human
body was also considered using the calculated value of the specific effective activity Aeff.
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This reflects the total specific activity of natural radionuclides in a studied material. It was
calculated using the following formula:

Aeff = ARa + 1.31ATh + 0.085AK (1)

where ARa and ATh are the specific activities of 226Ra and 232Th (Bq/kg), which are in
equilibrium with the rest of the uranium and thorium series members, and AK is the
specific activity of 40K (Bq/kg).

Because of the uneven distribution of natural radionuclides in the soil, the homogeneity
of radiation exposure was measured based on the radium equivalent (Raeq) in Bq/kg to
compare the specific activity levels of materials containing varying amounts of 226Ra, 232Th,
and 40K [26–28]. The activity levels were calculated using the following formula:

Raeq = ARa + 1.43ATh + 0.077AK (2)

As part of the gamma survey, reconnaissance was carried out. The natural conditions
of the area were detailed, specifying the thickness and nature of the deposits, and the
gamma background for the rocks was determined. The ambient dose equivalent rate of
continuous gamma radiation was estimated during the gamma survey. A search dosimeter–
radiometer MKS/SRP-08A (Amplituda, Zelenograd, Russia) was used.

The landscape structure of the study area was investigated using a landscape geo-
chemical approach aimed at exploring the migration of natural radionuclides (40K, 226Ra,
and 232Th) in a landscape. This approach considers the role of natural factors in the transfor-
mation of matter flows affected by the regional and local parameters of the area. This part
of the study was based on landscape descriptions and soil sampling data from autonomous
and secondary landscapes in key areas along the landscape’s geochemical profile. This
profile reflects the successive changes in soils in middle taiga landscapes while considering
the locations of potash industry facilities.

The maps were created using the ArcGIS software package (version 10.6.1, ESRI,
Redlands, CA, USA) via interpolation.

3. Results and Discussion

Subsoil use has a large impact on the transformation of natural complexes. Mining has
a long-term negative impact on the environment. The enrichment of ores and the storage
of waste on the surface have a negative impact on the soil. This changes the chemical and
physical properties of the soil and increases the contents of salts and microelements [29].

The study area is part of boreal East Europe’s middle taiga landscapes. They are
located on the denudation plain of the Middle Cis–Urals within the eastern margin of the
Russian Platform and the Ufa–Solikamsk depression of the Cis–Ural foredeep. The area
consists of nearly horizontal Permian rocks that are covered by a thin layer of anthropogenic
deposits [30,31]. These geosystems have been heavily impacted by anthropogenic activity
over the last eight decades as a result of active mining.

The assessment of the environmental consequences of mining and the development
of environmental protection measures are among the priority tasks aimed at ensuring
both radiation protection for the population and the sustainable functioning of natural
ecosystems. Soil is the main buffer of the natural environment, bearing the cumulative
effect of long-term anthropogenic impacts [32–34]. The radiation characteristics of the
upper soil layer (up to 5 cm) is the most important aspect in a soil analysis, since it takes on
95%–98% of the anthropogenic impact.

The average activity concentrations for 226Ra, 232Th, and 40K are 11.78 Bq/kg,
8.11 Bq/kg, and 246.9 Bq/kg, respectively, while the standard deviations are 7.26 Bq/kg,
6.51 Bq/kg, and 114.28 Bq/kg, respectively. Details are provided in Supplementary Table S1.

Table 1 shows the results of the natural radionuclide’s content measurements in the
studied areas, as well as published data from around the world. The specific activity of
226Ra (ARa) found in the study area corresponds to the global average level and is closest to
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the levels found in Egypt and Brazil. In the study area, isolated cases of 226Ra exceeding
the world average levels are found (noted exceedance is up to 9%), as well as isolated
exceedances of the world average levels of 40K (exceedances range from 2 to 25%). At the
same time, the 232Th activity (ATh) in the study area is significantly lower than the global
average values and specific activity values for other studied areas of the world.

The average levels of 226Ra, 232Th, and 40K in the soils in the central part of the study
area are 14 Bq/kg, 17 Bq/kg, and 369 Bq/kg, respectively. The formation of an area
with higher concentrations of natural radionuclides is caused by meteorological conditions,
specifically the wind regime of the study area. Southerly winds occur frequently throughout
the year. Taking into account the prevailing wind direction, one can predict the considerable
removal of elements with atmospheric flows in the northern direction (Figure 1).
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Increased values of the specific effective activity (Aeff) and specific activity of 40K were
observed in the soils of the south-eastern part of the study area. This is associated with
the transfer of the element by airflow in the northern and north-eastern directions from
the potash mining territory located south of the study area (Figures 2 and 3). This potash
enterprise is distinguished by a higher volume of allowed potassium chloride emissions
into the atmosphere and the high hypsometric position of the considered area.

The specific effective activity (Aeff) is one of the parameters describing the radiation
situation. According to the published studies [35,36], the gradation of Aeff is defined by
the following values (in Bq/kg) based on the level of danger: especially dangerous (more
than 3300); dangerous (1101–3300); potentially dangerous (101–1100); safe (less than 100).
The average value of the total specific effective activity of natural radionuclides for the soil
in the study area is 43 Bq/kg, which corresponds to a safe level. At the same time, the
obtained distribution pattern of the Aeff of the studied natural radionuclides corresponds
to the distribution pattern of the 40K activity (Figures 2 and 3).

The results of the gamma radiation measurements in the study area fall within the
range of 0.06–0.25 µSv/h (Figure 4), which is less than the established ambient dose
equivalent rate of continuous gamma radiation for residential and industrial areas (0.3 and
0.6 µSv/h, respectively) [37].

The average radium equivalent activity concentration index (Raeq) for soils in the
study area is 42.39 Bq/kg, which is less than the standard’s maximum allowable index
(370 Bq/kg) [6]. Details are provided in Supplementary Table S1.
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Table 1. Summary of the natural radionuclide activity concentrations in soils within the study area
and in other parts of the world in Bq/kg [6,38].

Activity
Natural Radionuclide Activity
in the Study Area (Mean Value

for 75 Samples)
China [6] USA [6] Egypt [38] Brazil [38] Global Average

Values [6]

A226Ra 3–36 (17) 1–360 4–130 31–40 29.2 16–116 (33)

A232Th 1–28 (11) 2–690 4–140 52–61 47.8 7–50 (45)

A40K 20–562 (298) 9–1800 100–700 3149–3210 704 100–700 (420)
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3.1. Natural Radionuclide Differentiation in the Middle Taiga Landscapes Based on the Potash
Enterprise Location

All geochemical processes that occur in landscapes are reflected in the soils. In the
study area, alluvial and podzolic soils are developed under forest and grass communi-
ties within various types of landscapes. According to the geochemical map of the land-
scape (Figure 5) and the results of the specific efficiency analysis of natural radionuclides
(Figure 3), the products of weathering and soil formation in an autonomous landscape
come to the lower parts of the relief with the surface runoff and affect the formation of
secondary surface and underwater landscapes. It is well known that radionuclide leaching
is a common process in soils found in eluvial landscapes [39].
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Additionally, there is a link between the distribution of various radionuclides in a
landscape. This is especially noticeable in hydromorphic and semi-hydromorphic soils
within accumulative landscapes. They are distinguished by a relatively higher accumula-
tion of 226Ra compared to 232Th. Additionally, 226Ra is washed out of the upper horizons
(A0, A1, and A2) and accumulated in illuvial horizon B. The podzolization and gleying
processes lead to 226Ra and 232Th leaching from the upper horizons A1 and A2 and their
accumulation in the illuvial horizon B and gley horizons G and Bg [1].

According to the research findings, there is an increase in the concentration of natural
radionuclides in transit supra-floodplain terrace landscapes and accumulative floodplain
landscapes within the area affected by potash mining. The distribution of 226Ra along the
profiles of various soil types is nearly identical to that of 232Th. Increased contents of 226Ra
and 232Th were observed in the floodplain soils of the study area (an accumulative type
of element distribution), in the area affected by potash mining, and in residential areas.
In accumulative landscapes, the average content of 226Ra (14 Bq/kg) is 1.4 times higher
than the content of 232Th (10 Bq/kg). The average content of 226Ra is 8 Bq/kg in eluvial
landscapes, 11 Bq/kg in transit landscapes, and 14 Bq/kg in accumulative landscapes. The
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average 232Th content is 6 Bq/kg in eluvial landscapes, 7 Bq/kg in transit landscapes, and
10 Bq/kg in accumulative landscapes (Table 2).
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Table 2. Average contents of natural radionuclides in different landscapes within the study area in Bq/kg.

Activity Type of Landscape

Eluvial Transit Accumulative

ARa 8 11 14

ATh 6 7 10

AK 247 225 279

According to the findings [7], the activity concentration of 40K in the soil is an order
of magnitude greater than for 232Th and 238U. The lateral distribution of 40K mostly de-
pends on the anthropogenic factors, wind regime, landscape type, and geomorphological
characteristics. Thus, the maximum concentrations of 40K in the study area were observed
in areas affected by potash mining and other anthropogenic activities (including residen-
tial territories) (Figure 2). The highest average 40K content was found in accumulative
landscapes, where it exceeded 279 Bq/kg (Table 2).



Minerals 2022, 12, 1352 9 of 12

3.2. Lateral Distribution of Natural Radionuclides in Soils Affected by Potash Mining

To study the distribution of natural radionuclides in the area affected by potash
mining, soil sampling points were selected at various distances from the potash enterprise
in the northern and north-eastern directions on various types of landscape (Figure 5). The
data summary indicated the accumulative distribution of 226Ra, 232Th, and 40K in the
soils affected by potash mining, taking into account the regional conditions. The highest
contents of 226Ra (27 Bq/kg) and 232Th (22 Bq/kg) were recorded at point 62 (accumulative
landscape) at a distance of 2.9 km from the industrial site to the north-east (Figures 5
and 6). The contents of 226Ra, 232Th, and 40K decrease with distance from the enterprise.
The maximum content of 40K (407 Bq/kg) was observed at a distance of 800 m from the
potassium plant within the transit landscape, which is determined here by the active
atmochemical impact of the potassium plant.

Minerals 2022, 12, x FOR PEER REVIEW 9 of 11 
 

 

Table 2. Average contents of natural radionuclides in different landscapes within the study area in 
Bq/kg. 

Activity Type of Landscape 
 Eluvial Transit Accumulative 
АRa 8 11 14 
АTh 6 7 10 
AK 247 225 279 

3.2. Lateral Distribution of Natural Radionuclides in Soils Affected by Potash Mining 
To study the distribution of natural radionuclides in the area affected by potash 

mining, soil sampling points were selected at various distances from the potash enterprise 
in the northern and north-eastern directions on various types of landscape (Figure 5). The 
data summary indicated the accumulative distribution of 226Ra, 232Th, and 40K in the soils 
affected by potash mining, taking into account the regional conditions. The highest 
contents of 226Ra (27 Bq/kg) and 232Th (22 Bq/kg) were recorded at point 62 (accumulative 
landscape) at a distance of 2.9 km from the industrial site to the north-east (Figures 5 and 
6). The contents of 226Ra, 232Th, and 40K decrease with distance from the enterprise. The 
maximum content of 40K (407 Bq/kg) was observed at a distance of 800 m from the 
potassium plant within the transit landscape, which is determined here by the active 
atmochemical impact of the potassium plant. 

 
Figure 6. Distribution graph of 226Ra, 232Th, 40K, and Aeff at points 17, 62, 68, and 75. 

4. Conclusions 
The research findings show that the study area in the Berezniki–Solikamsk industrial 

hub affected by the Verkhnekamskoe Salt Deposit’s development does not have a impact 
on the radiation situation. The 226Ra, 232Th, and 40K activities in the top soil layers range 
from 3 to 36 Bq/kg, from 1 to 28 Bq/kg, and from 20 to 562 Bq/kg, respectively. These levels 
do not exceed the global average values. The results of the gamma-radiation 
measurements in the study area range from 0.06 to 0.25 µSv/h, which is less than the 
established ambient dose equivalent rates of continuous gamma-radiation in residential 
and industrial areas (0.3 and 0.6 µSv/h, respectively). The average Aeff index for the soil 
within the study area corresponds to the safe level. 

The lateral activity distribution analysis of the natural radionuclides 226Ra, 232Th, and 
40K showed elevated 226Ra and 232Th contents in the floodplain soils and mining-affected 
areas of the natural–technogenic landscapes within the Berezniki–Solikamsk industrial 

Figure 6. Distribution graph of 226Ra, 232Th, 40K, and Aeff at points 17, 62, 68, and 75.

4. Conclusions

The research findings show that the study area in the Berezniki–Solikamsk industrial
hub affected by the Verkhnekamskoe Salt Deposit’s development does not have a impact on
the radiation situation. The 226Ra, 232Th, and 40K activities in the top soil layers range from
3 to 36 Bq/kg, from 1 to 28 Bq/kg, and from 20 to 562 Bq/kg, respectively. These levels do
not exceed the global average values. The results of the gamma-radiation measurements in
the study area range from 0.06 to 0.25 µSv/h, which is less than the established ambient
dose equivalent rates of continuous gamma-radiation in residential and industrial areas
(0.3 and 0.6 µSv/h, respectively). The average Aeff index for the soil within the study area
corresponds to the safe level.

The lateral activity distribution analysis of the natural radionuclides 226Ra, 232Th, and
40K showed elevated 226Ra and 232Th contents in the floodplain soils and mining-affected
areas of the natural–technogenic landscapes within the Berezniki–Solikamsk industrial
hub. The effects of the potassium enterprises, the wind regime of the territory, the genetic
type of the landscape, and geomorphological characteristics all have a great impact on the
lateral distribution of 40K. From the research, we found the accumulative distribution of
226Ra, 232Th, and 40K in soils affected by potassium salt mining enterprises, considering the
regional conditions. The future research will be focused on examining the distribution of
natural radionuclides in soil horizons within areas with the highest concentrations.

The obtained results provide useful information on the natural radionuclide content
in the area affected by mining facilities. The research findings are useful for a comparative
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assessment of the contribution of potash mining to the radiation situation of an area,
considering the landscape’s structure.

The research findings can be used in radiation monitoring and developing practical
recommendations to improve the ecological situation of a territory. Thus, a joint analysis of
the natural radionuclide content and the landscape structure of a territory may serve as the
basis for planning the survey grid when conducting monitoring studies of anthropogenic
impacts.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/min12111352/s1, Table S1. Activity concentrations of
226Ra, 232Th 40K and Aeff in soil samples.
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