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Abstract: This study combines data-driven-based logistic functions with prediction–area (P–A) plot
for delineating target areas of orogenic Au deposits in the eastern margin of the Qinling metallogenic
belt, central China. First, appropriate geological and geochemical factors were identified, optimized,
and transformed into a series of fuzzy numbers with a range of 0–1 through a data-driven-based
logistic function in order to determine the evidence layer for prospecting orogenic Au. In addition,
the P–A plot was derived on the above evidence layers and their corresponding fuzzy overlay layers
to pick out a proper prediction scheme, in the process of which acidic magmatic activity proved to
be the most important factor of ore-controlling. Moreover, to further prove the advantages of this
method, a traditional linear knowledge-driven approach was carried out for comparative purposes.
Finally, based on concentration–area (C–A) fractal theory, the fractal thresholds were determined and
a mineral prospecting map was generated. The obtained prediction map consisted of high, medium,
low, and weak metallogenic potential areas, accounting for 2.5%, 16.1%, 38.4%, and 43% of the study
area, containing 2, 3, 1, and 0 of the 6 known mine occurrences contained, respectively. The P–A plot
indicated that the result predicted 83% of Au deposits with 17% of the area, confirming the joint
application of the data-driven-based logistic function and P–A plot to be a simple, effective, and
low-cost method for mineral prospectivity mapping, that can be a guidance for further work in the
study area.

Keywords: mineral prospectivity mapping; logistic function; prediction-area; concentration-area;
orogenic Au

1. Introduction

Mineral prospectivity mapping (MPM) is a comprehensive area of study, during which
geological engineers identify metallogenic target areas with known information and data in
the study area to guide further exploration. It is essentially a classification technique [1], by
which the study area can be divided into areas with high, moderate, and low favorability
of mineralization [2,3]. The process of MPM generally includes the understanding of
the metallogenic model, the identification of ore-controlling factors, data treatment or
transformation, and finally the integration of these results to describe the ore-forming
target area [4]. Simply, its objective is to portray the smallest area usually containing the
most mineral deposits. In the above process, however, two key difficulties remain. One is to
convert evidence layers with different orders of magnitude values into the same space and
integrate them [5]; the other is to determine a group of reasonable thresholds to demarcate
the study area [2].
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Recent decades have witnessed researches on the aforementioned issues by many
scholars. For example, Behera et al. [6] applied C–A fractal and fuzzy analytic hierarchy
processes to predict geochemical anomalies and mineral prospects in Sonakhan Greenstone
Belt in central India. Yousefi et al. [1,7] compared the effectiveness of Boolean logic, a
geometric mean model, and expected value model in metallogenic prediction. Carranza [8]
employed data-driven evidence confidence functions to predict the mineralization of gold
deposits in Baguio District, Philippines. Knox-Robinson [2] used vector fuzzy logic to
integrate spatial data and study the metallogenic prospect of gold deposits in Kalgoorlie
Terrane orogenic belt, Western Australia. Carranza [9] proposed a Wildcat model based on
logic function.

All the methods described above generally fall into three categories [5,10,11]. The
most common one is the knowledge-driven method that mainly assesses mineralization
evidence based on the knowledge of geological experts and assigns different weights to
each mineralization factor. It is generally suitable for study areas with low exploration
levels [9], in which considerable mineralization data are absent. Among them, fuzzy sets
and fuzzy logistics, proposed by Zadeh [12], have been widely applied and proven to be
of great value in MPM by many geologists [2,11,13–20]. However, this method has the
weakness of suffering from experts’ bias, thus resulting in different experts often having
different opinions [1]. Another approach is the traditional data-driven method that can
better establish the relationship between known mines and various evidence layers for
metallogenic prediction [21–26]. Nevertheless, its deficiency is that it requires a training
batch of known mines to establish this connection, rendering it infeasible in areas with
low exploration levels. As a result, it would be a deviation from the fact that unknown
deposits have a lesser chance of being involved in such training. In addition, there are
approaches (or systems) of integration [27] or hybridization of the two aforementioned
methods [28–33]. However, most of these still cannot overcome the above dilemma or
remain in development.

However, there are very few ways to overcome the bias of metallogenic prediction due
to personal knowledge limitations or preferences. In order to solve the above defects, many
geologists began to try empirical function for MPM [8,9,16,28,34]. In these methods, a data-
driven approach based on logistic functions proposed by Yousefi et al. [7,35,36] and Yousefi
and Carranza [1], in which weights can be assigned to the evidence layers without experts’
bias and the known mines, is able to alleviate the aforementioned drawbacks. At the same
time, with the development of computers, big data and artificial intelligence technology
have been applied to MPM more and more frequently due to their advancement and
economy. For example, Liu et al. [37] applied convolutional neural networks in prospecting
predictions of the Zhaojikou Pb–Zn ore deposit in Anhui Province, China; Zuo and Xu [38]
proved the advantages of graphical deep learning models compared with convolutional
neural networks in metallogenic prediction; Zhou et al. [39] summarized the research
progress of big data technology in Earth science and considered it to be an important
technology for future breakthroughs in this field.

In this study, the MPM of orogenic Au was implemented by combining logistic
function with P–A plot based on the analysis of regional geological background and ore-
controlling factors, especially a considerable amount of stream sediment geochemical data.
The prospectivity map shows the delineated middle–high favorable areas, accounting for
17% of the study area and encompassing five out of the six known mines, would be an
ideal prediction output

2. Geological Setting

The study area lies in the southwest of Henan province, central China, covering an
area of 1001 km2. It is located tectonically at the junction between the southern margin
of the North China Plate and the northern margin of the Yangtze Plate (the central and
eastern part of the Qinling structural belt), with the Jingziguan–Shigang complex syncline
generating the Xixia fault depression basin [40,41]. Crossing four metallogenic zones (north
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Qinling orogenic belt, south Qinling fold belt, Xixia–Tongbai polymetallic metallogenic
belt, and the Danjiangkou gold–silver–vanadium–antimony metallogenic zone), the study
area is characterized by complex geological conditions, frequent magmatic activities, and
significant structural deformation (regional) metamorphic effects. Consequently, the metal-
logenic geological conditions are superior, with vanadium and gold as the main metals and
marbles and limestones as the main non-metallic minerals, resulting in an area with rich
reserves and prospecting potential [41].

The Au deposits in the region are mainly the orogenic belt type, whose metallogenic
geological conditions mainly include ore-bearing rocks, ore-controlling structures, and
magma activities [41–45]. However, because the ore-bearing rocks could not be more
complex and diverse, and a variety of rocks can generate ore-bearing rocks when other min-
eralization conditions are in place, only ore-controlling structures and magmatic activities
are considered in this study, as per common engineering practice. Magma, as the main heat
source, plays an important role in the formation of gold deposits. It can not only provide a
corresponding motive force for element migration and aggregation, but also supply the
matter source [46] (Craw et al., 2006). As Mao et al. [47] and Chen et al. [48] mentioned,
most gold deposits are related to Mesozoic granites in the Xiaoqinling–Xiong’ershan region.
At the same time, the tectonic belt plays a crucial role in controlling mineralization, and
the known gold spots are mainly distributed along the fault zone from the northwest to
southeast. The location and simple geological maps of the study area are shown in Figure 1.
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3. Data Set
3.1. Data Sources

In this study, we used the 1:50,000 regional geological map and 1:50,000 stream sedi-
ment survey data prepared by the Second Geology Prospecting Institute of Henan Bureau
of Geology and Mineral Exploration and Development. In total, 4036 samples (Figure 2)
were collected, processed and analyzed, with a sampling density of 4–6 points per square
kilometer in about 1000 square kilometers in the study area. Each of the original samples
weighed more than 150 g with a particle size of less than 60 mesh (<216 µm).
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Figure 2. Location map of stream sediment samples (after [49]).

The concentrations of Au, Ag, As, Sb, Cu, Pb, Zn, Mo, W, and Cd were analyzed by
using graphite furnace atomic absorption spectrometry (Au), atom emission spectrometry
(Ag), atomic fluorescence spectrometry (As and Sb), and inductively coupled plasma optical
emission spectrometry (Cu, Pb, Zn, Mo, W, and Cd). The detection limits were 0.3 ppb for
Au, 0.02 ppm for Ag, 0.2 ppm for As, 0.04 ppm for Sb,1 ppm for Cu, 1 ppm for Pb, 5 ppm
for Zn, 0.3 ppm for Mo, 0.3 ppm for W, and 0.04 ppm for Cd.

Tight quality control was maintained at every stage of the process, in accordance
with [50,51].

3.2. Data Preprocessing

On the basis of [52], we determined a proper cell with 200 m × 200 m for all of the
evidence maps. Subsequently, the geological data and geochemical data were processed
to obtain evidence values in each cell. In this way, the study area contained a total of
25,024 cells.

On the basis of the 1:50,000 geology survey, the main geological information related
to the mineralization, such as magmata and faults, was extracted as the evidence layers.
Meanwhile, based on the measurement of the 1:50,000 stream sediment survey, stage factor
analysis (SFA), as proposed by Yousefi et al. [7], was performed to assess the multiple
elements closely related to gold mineralization in the study area. Subsequently, the corre-
sponding multi-element factors were grid-processed to determine their value in each cell.

3.2.1. Geological Evidence, Main Heat Sources, and Faults

In this study, the granite vein and the Yanshanian granite porphyry were extracted as
the evidence layers and the distance from the intrusion contact was used as the indicator
criterion. However, the further from the intrusion, the less the possibility of mineralization;
thus, the inverse square of the distance from intrusive was taken as the evidence value
in each cell (Figure 3a). It is generally accepted that faults are important channels for the
movement of geological fluids [53]. Without faults, there could be little migration and
enrichment of elements; as a result, it would be impossible to generate gold deposits as
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well. Consequently, we took the proximity to fault as the evidence value, whose method of
acquisition was similar to that of the heat source (Figure 3b).
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3.2.2. Geochemical Evidence

Stage factor analysis, based on the principal component analysis developed by Yousefi et al. [7]
as an optimized method, was performed on 4036 samples of 10 elements to obtain multi-
element geochemical anomaly factors, using the statistical product and service solutions
(SPSS) platform.

From the results of the staged factor analysis (Table 1), two indicator factors (Figure 3c,d)
were obtained to reflect the presence of orogenic gold deposits: F1 (Cu–Zn–Mo–Cd) and
F2 (Au–As–Pb). Elements with high factor loading values (greater than 0.6 with bold) in
the third and fourth stages of the two factors could be used as indicator factors based on
geochemical criteria to define exploration targets. In terms of F1 (Cu–Zn–Mo–Cd), these
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are obviously sulfurophile elements that often form chalcopyrite, sphalerite, molybdenite,
and greenockite in nature, respectively. As we all know, S is usually considered to be the
mineralizer of Au or an important component of Au-loaded minerals due to the extremely
weak activity of Au; sometimes, the source of Au can be transformed into the source of
S. In terms of F2 (Au–As–Pb), these are typical low-temperature elements with similar
geochemical characteristics; thus, As and Pb are often found in the leading edges of gold
belts. Generally, Au, As, and Pb have a strong migration ability in ore-forming fluids,
and are most likely to migrate or accumulate along those secondary fracture or ductile
shear zones.

Table 1. Rotated factor matrix of staged factor analysis and data of samples from the study area.
Loadings in bold represent the selected elements based on a threshold of 0.6 (the absolute threshold
value) for each stage.

First Main Phase Second Main Phase

First Stage Second Stage Third Stage Fourth Stage

Element F1 F2 Element F1 F2 Element F1 Element F2

Au −0.1 0.726 Au −0.07 0.719 Cu 0.698 Au 0.681
Ag 0.48 0.592 As 0.153 0.803 Zn 0.797 As 0.819
As 0.118 0.785 Cu 0.719 −0.029 Mo 0.758 Pb 0.783
Sb 0.184 0.304 Pb 0.291 0.713 Cd 0.838
Cu 0.723 −0.002 Zn 0.72 0.384
Pb 0.257 0.685 Mo 0.771 0.072
Zn 0.692 0.354 Cd 0.812 0.16
Mo 0.761 0.1
W 0.266 0.235
Cd 0.803 0.195

4. Methodology
4.1. Logistic Function

Different evidence layers have values of diverse orders of magnitude; therefore, they
are incomparable and cannot be superimposed to generate a prospecting map. In this
context, logistic function was proposed by Bishop (2006) [54], with which discrete data of
different orders of magnitude can be converted to continuous values of 0–1, thus avoiding
arbitrary division of evidence value by traditional knowledge-based methods. In addition,
Yousefi and Carranza [5] proposed an optimized method based on logic function, in which
the parameters can be calculated in a data-driven way, so that the converted value can
perfectly fall between 0–1.

Therefore, we used an S-shape logistic function to transform the evidence values
to obtain fuzzy numbers with a range of 0–1, which could be definite proxies of the
evidence values.

FEV =
1

1 + e−s(EV−i)
(1)

The S–shaped logistic function, as shown in Equation (1) [5], where EV and FEV are
the evidence value and fuzzy score, respectively, while s and I are unknown parameters,
has been used by a number of geologists as an efficient tool for MPM, most of whom have
obtained anticipative results. However, as Yousefi and Nykänen [5] mentioned, the selection
of the s and I parameters in logistic function is often subjective, because different experts
often have different preferences. Moreover, some subjectively selected parameters cannot
achieve continuous fuzzy numbers. Thus, such experience-based parameters sometimes
yield different evidence values with similar or concentrated fuzzy numbers, resulting in
the fuzzy score being a poor representative of the source data.

Therefore, Yousefi and Nykänen [5] suggested defining the maximum and minimum
values of FEV as close to 1(0.99) and close to 0(0.01), which represent the most and least
important evidence value. With known values of EVmax and EVmin (the maximum and
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minimum values of EV) as well as FEvmax and FEvmin (the maximum and minimum values
of FEV, respectively), Equations (2) and (3) can easily be solved to find s and i. In this way,
a data-driven fuzzy score is obtained, which avoids the distortion of conversion caused by
experts’ subjective bias. {

FEvmax = 1
1+e−s(EVmax−i)

FEvmin = 1
1+e−s(EVmin−i)

(2)

{
s = 9.2

EVmax−EVmin

i = EVmax+EVmin
2

(3)

4.2. Prediction-Area Plot

The P–A plot, a method proposed by Yousefi and Carranza [55], can not only assign
weight to each evidence layer, but also evaluate its prediction ability, so as to select a
more appropriate evidence layer for MPM. Specifically, it consists of two curves, one
corresponding to the left axis, which represents the proportion of the number of mines
predicted by the evidence layer to the total, and the other corresponding to the right
axis, which represents the proportion of the area account for the total area. There is an
intersection point between the two curves, and the higher the intersection point is, the
stronger the predictive ability of the evidence layer is. In other words, the higher the
intersections of the evidence layer on the P–A plot, the stronger the intrinsic association
with the mineral deposit.

5. Results
5.1. Data Transformation

For orogenic gold deposits, faults usually play a role as an activity space or even a
storage space for ore-containing hydrotherms [45,56,57]. It is generally believed that the
further from the fault, the lower the degree of profitability of the mineralization; thus, the
inverse square of the proximity to the fault can be applied as the evidence value. When
the evidence value is 0 (i.e., the cell contains the fault itself), its inverse square does not
exist; therefore, we manually assign it the maximum value. Based on the GIS platform,
the proximity to fault of each cell is computed, the maximum and minimum of whose
inverse square are calculated to be 25 and 0.018, respectively. Using Equations (2) and (3),
the corresponding s and i values were acquired as 0.3683 and 12.5090. Proximity to the
intrusion was used as the data set for the heat source. The further from the intrusive contact,
the lower the degree of profitability of mineralization; therefore, we applied the inverse
square as the evidence value as well. Due to the nonuniformity of sampling points, the
ordinary kriging interpolation [58,59] was conducted on the two multi-element factors
(Cu–Zn–Mo–Cd factor and Au–As–Pb factor) to obtain the evidence value of each cell,
verifying that they conformed to the normal distribution.

After obtaining the evidence values of the above layers, Equation (1) was utilized to
obtain the fuzzy score in each cell (the maximum value was 0.99, and the minimum value
was 0.01), which represented the favorable degree of mineralization. The parameters used
in the conversion process are shown in Table 2 and the obtained fuzzy score layers are
depicted in Figure 4.

Table 2. Parameter values calculated for each evidence layer.

Evidential Layer s i

Structure 0.3683 12.5090
Heat source 0.3680 12.5015

Cu-Zn-Mo-Cd- 0.0221 238.2672
Au-As-Pb 0.0253 193.4347
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In order to confirm whether the fuzzy score could be a good representation of the
mineralization favorability, the obtained fuzzy score layers (Figure 4a–d) were compared
with the evidence value layers (Figure 3a–d) for a comparable purpose. The comparison
revealed that both of them were highly similar and the former exhibited a slight conver-
gence compared with the latter, although only in areas where the evidence values had an
unobvious anomaly; therefore, it proved better to identify the real anomalies.

This is consistent with the research of Bishop [58] and Yousefi et al. [7] that non-linear
transformations (such as the logistic function) yield an optimal decision boundary be-
tween different classes of a variable for classification, thus boosting stronger discrimination
between anomaly and background values. Therefore, we believe that the data-driven
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logistic function used in this study is appropriate due to its ability of transforming evi-
dence values of different magnitudes to fuzzy scores with a 0–1 range and retaining the
relative importance.

5.2. Evaluation of Fuzzy Evidence Layers

Before conducting the fuzzy overlay, we performed a P–A plot, which could evaluate
the mineralization advantage of each layer objectively, to quantify its prediction ability.
This method employs the ratio of predicted gold deposits to total deposits, versus the ratio
of the accumulated area to total area as indicators based on the known gold deposits [10].

The P–A plot of the evidence layer is shown in Figure 5. The intersection of the
two curves represents the prediction ability of the evidence layer. The higher the intersec-
tion, the stronger the prediction ability, and the closer it is to mineralization.
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5.3. Integration

As can be seen from Table 3, the prediction capability of each fuzzy evidence layer was
quite different. The best one was the heat source, with a value of 81, which significantly
exceeded other layers. In order to better determine the relationship between each fuzzy
evidence layer and mineralization, we conducted fuzzy overlay with a γ value of 0.95 [60]
to integrate these layers.

Table 3. Prediction ability of each evidence layer.

Evidential Layer % of Known Au Occurrences % of Study Area

Figure 4a (structure) 61 39
Figure 4b (heat source) 81 19

Figure 4c (Cu–Zn–Mo–Cr) 65 35
Figure 4d (Au–As–Pb) 67 33

The fuzzy evidence layers with prediction ability greater than or equal to 81, 67, 65,
and 61 were integrated separately to obtain three overlay maps (Figure 6) that were then
estimated by P–A plot, and their evaluation results are shown in Table 4.
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Table 4. Prediction ability of each integrated layer.

Fuzzy Prospectivity Map % of Known Au Occurrences % of Study Area

Figure 6a 75 25
Figure 6b 83 17
Figure 6c 68 32

Although there are many similarities between Figure 6a,b, the latter has a slightly
stronger predictive value (Figure 6d,e, and Table 4). However, we also noticed that the
corresponding forecasting capacity from Figure 6d to 6f possessed a trend of increasing
first and then declining. Among them, Figure 6e reached a maximum with a prediction rate
of 84%; at this point, the evidence layers for integration were Figure 4b–d, with prediction
rates of 81%, 65%, and 67%, respectively. This phenomenon is strange, because several
layers with lower prediction ability have a better result when integrated. In spite of this,
it is in line with a previous study [55]. What is interesting is that the prediction rate of
Figure 6c dropped significantly when faults were added for integration. This may be
caused by the multi-phase superposition of tectonic movements in this area, leading to
the development of a large number of faults, whereas there is no magmatic hydrothermal
activity in some faults.

In summary, it has been proven that the heat sources, Cu–Zn–Mo–Cd factor, and Au–
As–Pb factor are the most important aspects in the mineralization process. Consequently,
Figure 6b could be used as the ideal perspectivity map in the study area.

5.4. Fuzzy Prospectivity Score Obtained Linearly (A Comparison)

Carranza (2008) [22] suggested that two or more methods should be conducted in
MPM to determine a proper metallogenic target area. Thus, in order to further demonstrate
the superiority of logistic functions, we employed the knowledge-driven method to divide
the evidence layers on the four evidence layers of Figure 3 into 10 classes at specific intervals,
and assigned a mineralization favorability weight to each class linearly based on expert
judgment for comparison purposes (Figure 7).

Subsequently, fuzzy gamma (γ = 0.95) operation was performed, and the fuzzy
prospectivity score and matching P–A plot were obtained (Figure 8a,b). According to
Figure 8b, the intersection value was 77, obviously lower than that of Figure 6b (83). The
above results indicate that that weighting the evidence layer using the logistic function not
only avoids subjective judgment, but also yields a higher prediction rate compared with
the traditional discrete linear method. This is consistent with the findings of Yousefi and
Carranza [1].

5.5. To Determine the Thresholds

As Mandelbrot [61–63] and Carlson [64] mentioned, in many cases, ore deposits are
characterized by aggregation and fractal distribution. Therefore, in order to determine the
high, moderate, low and weak areas of the mineralization more accurately, we employed
the C–A method to de-fuzzify Figure 6b and obtain a prospectivity map. This method was
proposed by Cheng [65], and has been used and approved by a number of geologists [66–72].
It applies the logarithm of the concentration and the logarithm of the corresponding area
greater or equal to concentration as the X-axis and Y-axis, respectively, which can reflect
the fractal characteristics inherent in the prediction map. According to this method, in the
log-log graph, the consistent slope represents a fractal dimension, and the concentration
value corresponding to the fractal point could be used as the threshold for differentiating
the favorable, unfavorable, and intermediate areas of mineralization [5].
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In this study, the logarithm of the fuzzy score and the logarithm of the cumulative
area were taken as the X-axis and Y-axis, respectively (Figure 9a). Three inflection points
were obtained (−1.41, −1.11, and −0.19) and the corresponding fuzzy prediction values
(0.039, 0.078, and 0.643) were acquired, which then were used to divide the study area into
four parts (Figure 9b). The resulting high-potential area accounting for 2.5% of the study
area, containing two known Au occurrences, the moderate-potential area accounting for
16.1% of the study area with three, the low potential area accounting for 38.4% of the study
area with one Au occurrence, and the very low-potential area accounting for 43% of the
study area with no Au occurrences, would be an ideal metallogenic prediction map.
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Although there was a known Au occurrence located in the low potential area, we
noticed that it was very close to the moderate potential area. This may be attributed to
the substitution of point position for area projection. This Au occurrence was, actually, an
alteration zone about 0.76 km in length with a trend near east–west, with only its center pro-
jected on the horizontal. Therefore, it can be seen from the prospectivity map that the gold
occurrence is situated less than two cells away from the favorable metallogenic area (400).
In reality, the gold occurrence was partially contained by the moderate-potential areas.

6. Discussion

Previous studies have shown that Mesozoic magmatic activity in the study area may
be an important source of heat and provenance for mineralization, despite its limited
distribution and small outcrop area. The relatively weak activities are mainly shallow–
ultra-shallow acid rocks, which are distributed along faults. Compared with common acid
rocks, Au, Ag, As, Sb, Bi, Cu, and Mo are enriched in the rock mass, and their enrichment
coefficients are all greater than 3.0, which may be an important source of Au in the deposit.
In addition, Au was not only contained in magmatic hydrothermal fluid itself, but also
probably extracted from the sedimentary strata of the wall rock, and then transported in
the fracture and ductile shear zone.

The main faults in the study area are distributed in the northwest-trending direction,
among which the Jianhuaizhai–Huangfengya fault, characterized by rock and ore control-
ling as well as unconformable forming, is the largest that has developed in the Cambrian,
Sinian, and Proterozoic strata. The northeast-trending secondary faults and ductile shear
zones are well developed in the study area, intersecting the northwest-trending structural
line diagonally, which caused the strata and early faults to be disjointed. On the one hand,
these faults can provide channels for hydrothermal migration; on the other hand, the
intersection of the northwest and the secondary northeast faults is likely to form important
ore-bearing spaces. As a result, the minerals in the area are generally produced in the
northwest direction, and the mineral spots are mainly located at the intersection of the
main structure and the secondary structure.

Different evidence layers cannot be directly compared and integrated when used
for mineral prospectivity mapping because of their different dimensions. Data-driven-
based logistic function, which can transform the evidence values of different magnitudes
into fuzzy values within the range of 0–1 so as to represent the relative importance of
mineralization, could be a suitable means. To obtain s and i by solving equations, an
essentially data-driven approach is able to factually reflect the relative importance of
evidence values and avoid the trial-and-error process that is usually involved in defining
these two parameters [5]. There is an assumption in this process that the largest and
smallest evidence values are assigned fuzzy scores close to 1 (0.99) and close to 0 (0.01),
respectively. This assumption, consistent with knowledge and practical experience, has
been accepted by a large number of geologists and applied in a variety of models.

In this study, four fuzzy layers of geology and geochemistry were evaluated by
P–A plot. The results demonstrate that the heat source possessed the highest prediction
rate, which is consistent with the strong control of orogenic gold deposits in geological
hydrothermals. The prediction rate of faults also reached 61%, in a clear positive correlation
with mineralization. At the same time, both multi-element geochemistry evidence layers
exhibited prediction rates greater than 65%, which was in line with the SFA analysis. It
should be noted that, because there are some secondary hidden faults in the region, they
cannot be identified and extracted for MPM, resulting in relatively low prediction ability
of faults.

When overlying, a fuzzy gamma operation was used with the recommended value
of 0.95 [58]. The results revealed that the heat source, Au–As–Pb factor, and Cu–Zn–
Mo–Cd factor had relatively high prediction rates, and were then integrated to derive a
perspectivity map with a maximum prediction rate of 83%. This was higher than each of the
evidence layers individually, or an integration of all of them. However, the prediction ability
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demonstrated in Figure 6a to 6c has a tendency of first increasing and then declining. We
wonder whether there would be a specific prediction rate that elevates the final prediction
ability with the evidence layer integrated over it and vice versa.

7. Conclusions

(1) Based on analysis of regional geological and geochemical characteristics, the epige-
netic and ultra-epigenetic acid rock (such as the early Cretaceous granitic porphyry),
the northwest-trending faults, and the accompanying secondary faults, as well as
pathfinder elements (Au, As, Cu, Zn, Pb, Mo, and Cd) were identified and extracted
as the main evidence layers in the search for orogenic gold.

(2) The data-driven-based logistic function demonstrated an excellent ability of convert-
ing evidence values of different scales into fuzzy scores with a range of 0–1, and
the relative importance of the obtained fuzzy scores was approximately in line with
the original evidence values. Meanwhile, in reducing the influence of subjective
preferences, the data-driven-based logistic function yielded a better prediction effect
than that of traditional knowledge-driven methods.

(3) Based on the analysis and application of geochemical big data, the data-driven logistic
function and P–A evaluation were jointly applied to predict mineralization. The
results showed that the heat source P–A plot had the highest predictive ability (81%),
indicating the strong correlation between mineralization and the intermediate acid
intrusive rock (vein), which is in line with the general characteristics of orogenic
gold deposits.

(4) The mineralization prediction map generated in the study area, in which 83% of Au
occurrences were situated in 17% of the area, confirmed the joint application of data-
driven-based logistic function and P–A plot to be a simple, effective, and low-cost
method for mineral prospectivity mapping that could provide guidance for further
research in the study area.
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