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Abstract: The generation of dynamic fractures during the process of water injection in ultra-low
permeability reservoirs aggravates the heterogeneity of the reservoir, resulting in a rapid rise of
water cut and directional flooding of the producers, which affects waterflood sweep efficiency and
recovery. A dynamic fracture, as the geological feature of ultra-low permeability reservoirs, has
a complex genetic mechanism and is difficult to characterize. Taking the Chang 6 reservoir of the
Triassic Yanchang Formation in the Ordos Basin of central China as an example, this paper presents
the characterization method and workflow of dynamic fractures. On the one hand, through the
analysis of triaxial-compression rock-mechanic experiments and the mineral composition of the
core, we evaluated rock brittleness in order to identify the lithology that can easily generate new
fractures. On the other hand, beginning with the ancient tectonic stress field and combining the
fracture characteristics of core and geological outcrop, the multi-fractal method and the probabilistic
neural network were applied to identify the natural fractures and to quantitatively predict the
intensity of natural fractures. Based on the rock brittleness evaluation and the natural fracture
feature, the intensity of dynamic fractures was characterized by integrating the analysis of the bottom
hole pressure, fracture pressure, and production response characteristics. A dynamic fracture is a
“double-edged sword” during the waterflooding development of ultra-low permeability reservoirs.
The premature activation and generation of dynamic fractures could lead to a worse development
status. Nevertheless, the rational control and utilization of dynamic fractures play a positive role
in improving oil recovery. Dynamic fractures are of great significance to the optimization and
adjustment of well patterns for ultra-low permeability reservoirs. This can provide a reference for
similar reservoirs.

Keywords: ultra-low permeability reservoir; dynamic fracture; brittleness evaluation; natural fracture

1. Introduction

Dynamic fractures, as a new geological feature in the waterflood development of
ultra-low permeability reservoirs [1], have a significant influence on recovery and have
attracted attention from technicians. Dynamic fractures are new fractures generated when
the bottom hole pressure (BHP) exceeds the crack and extension pressure due to the holding
pressure near the wellbore area of the injectors in the process of water injection of ultra-low
permeability reservoirs. Alternatively, the dynamic fractures can also indicate the effective
fracture-channel generation by the reactivation of natural fractures, which are closed and
filled in the original state [1]. Dynamic fractures may undergo dynamic changes during the
waterflood process: open–extend to maximum–shrink [2,3].

It is now well established that thermo-elastic effects substantially change the magni-
tude and orientation of in situ stress, which induces fracture generation [4]. An approximate
but convenient and explicit method for estimating induced stresses has been given [5].
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Based on the mechanisms of dynamic fracture generation [5–7], crack propagation was
studied through experiments [8]. In the process of water injection, the scale of dynamic
fractures is related to geological and reservoir parameters, such as fluid mobility, mobility
ratio, 3D saturation distribution, positions of producers and injectors, and flow baffles [3].
The quality, rate, and temperature of injection water and reservoir permeability are also
relatively important for the growth of fractures [9]. By establishing the mathematical model
describing the dynamic changes of fracture geometry and properties [2], the fluid-flow and
fracture growth (fully coupled) within the framework of an existing ‘standard’ reservoir
simulator were combined in a model [3] for simulating the dynamic growth of cracks [3,5]
and to study the influence on sweep efficiency [10]. A reasonable control for the growth
of dynamic fractures [11,12], such as the optimization of well patterns, fracture directions
and contaminated degree of injection water, can maximize the recovery [13–15]. With the
deepening of oilfield development, the permeability of fractures in different directions will
change dynamically [16,17]. Dynamic fractures interact with existing fractures [18], and the
simulation results demonstrate the sensitivity of fracture geometry to stress difference and
natural fracture orientation [19,20]. It is difficult to characterize dynamic fractures because
of their complex genetic mechanisms and dynamic variation.

2. Dynamic Fracture Characterization Method and Workflow

A dynamic fracture is an important factor controlling the remaining oil distribution
of ultra-low permeability reservoirs [1,3]. The characterization of dynamic fractures in-
volves many disciplines, such as rock mechanics, tectonic stress, geology, and reservoir
engineering, etc. The two causes of dynamic fractures are new fractures opening in the
weak surfaces of rock strata, and the reactivation and extension of natural fractures from
ineffective to effective during water injection [1]. The current tectonic stress field controls
the extension direction of dynamic fractures.

Regarding the characterization of dynamic fractures, on the one hand, rocks that can
relatively easily form new fractures can be identified by the evaluation of rock brittleness,
based on the analysis of the rock mineral composition and triaxial-compression mechan-
ics experiments. On the other hand, based on the paleo-tectonic stress field analysis, a
combination of the core and geological outcrop observation, the multi-fractal method,
and the probabilistic neural network can be applied to identify natural fractures and to
quantitatively describe the intensity of the natural fractures. The current tectonic stress
magnitude and orientation could be obtained by induced fractures and artificial hydraulic
fracturing. Based on the static fracture description, combined with the BHP, the fracture
pressure, and the production response characteristics—rising in a stepped manner from the
water cut of the producers, the peak shape of the water-absorption profile of the injectors,
the fracture-seepage characteristics of the well-testing interpretation, and the obvious di-
rectionality of the tracer monitoring—the dynamic fracture distribution intensity can be
characterized (Figure 1).
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Figure 1. Characterization workflow diagram of dynamic fracture.

3. Comprehensive Characterization of Dynamic Fractures

The Chang 6 Member of the Triassic Yanchang Formation in the Ordos Basin is a
typical ultra-low permeability reservoir with a porosity of less than 15% and a permeability
of less than 10 mD. The reservoir is a set of fluvial–deltaic clastic deposits. The lithological
profile is mainly composed of interlayers of grayish-brown fine sandstone, gray siltstone,
grayish-black mudstone, and grayish-white fine sandstone. At present, in the medium–
high water-cut stages, the major development problem is the directional waterflooding of
the producers, which is mainly caused by dynamic fractures.

3.1. Brittleness Evaluation

One type of dynamic fracture arises when the BHP exceeds the fracture pressure, and
new fractures open from the weak surface of the rock and continue to extend. Alternatively,
some short-scale fractures with variable orientations appear near the borehole due to the
detonation and composite perforation of injectors in order to improve the injection capacity,
which continue to extend with the increase in water-injection volume and pressure.

The formation of this type of dynamic fracture is related to the brittleness of rock
strata. The greater the rock brittleness, the more likely it is to fracture and form dynamic
fractures. In this study, the brittleness index was calculated via rock-mineral-composition
analysis and the rock mechanical parameters to identify the lithologic sections prone to the
formation of dynamic fractures.

3.1.1. Analysis of Rock Mechanic Parameter Experiment

Rock mechanic parameters are used to characterize the brittleness based on the stress–
strain relationship of rock, which is represented by Young’s modulus for longitudinal
deformation and Poisson’s ratio for lateral deformation. High brittleness is represented by
a high Young’s modulus and a low Poisson’s ratio [21]. Three types of lithology (brown fine
sandstone, grayish-white calcareous sandstone, and greyish-black siltstone) were selected
for triaxial-compression mechanics experiments, and the rock mechanical parameters, such
as Young’s modulus and the Poisson’s ratio, were measured. According to the variation
in the Young’s modulus and Poisson’s ratio of the sandstone and mudstone in the Yan-
chang Formation, the brittleness index was calculated by the formula presented in Ref. [21].
Among the three selected lithologies, brown fine sandstone had the best oil-bearing prop-
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erty, followed by the greyish-black siltstone, and the greyish-white calcareous sandstone
cannot be used as a reservoir. From the analysis of the experimental results (Table 1), it can
be seen that the greyish-white calcareous sandstone had the highest brittleness, followed
by the brown fine sandstone, and the greyish-black siltstone had the lowest brittleness.

Table 1. Mechanical parameters of rocks with different lithology.

Well Lithology Depth/m Density/
g/cm3

Confining
Pressure, Pore
Pressure/MPa

Compressive
Strength
σ1/Mpa

Elastic
Modulus

E/GPa

Poisson’s
Ratio µ

Brittleness
Index %

A Brown fine sandstone 1028.26 2.27 5, 2 89.4 13 0.18 38.88

B Grayish-white
calcareous sandstone 1025.67 2.51 5, 2 118.42 21.45 0.18 43.99

C Greyish-black
siltstone 1035.1 2.58 5, 2 78.39 10.57 0.22 31.03

3.1.2. Analysis of Rock Mineral Composition

From the analysis of rock mineralogical characteristics, the reservoir lithology of the
Chang 6 Member of the Yanchang Formation in the Triassic was mainly fine-grained lithic
feldspar sandstone, with an average quartz content of 21.1%, feldspar content of 50.4%,
and rock debris content of 11.5%. The clay minerals were mainly chlorite. The composition
maturity was low, and the texture maturity was medium.

According to the content of brittle minerals in the rock mineral composition, the rock
brittleness can be approximately assessed. Rock with a high content of brittle minerals may
have high brittleness. The brittleness can be calculated by the percentage of brittle minerals,
such as quartz, feldspar, and carbonate in the total minerals [21]. Through a comparative
analysis of the B153 area, the brittleness index in the northern area was found to be high,
with an average of 74%, and that of the southern area was relatively low, with an average of
61%. The northern area had a lower clay content, lower plastic mineral content, such as rock
debris and mica, and a higher brittle mineral content, such as quartz and feldspar, which
consequently caused this area to show higher brittleness index values than the southern
area. This is one of the reasons that dynamic fractures are relatively more developed in the
northern area compared to the southern area. Figure 2 shows the results of calculating the
brittleness index of two typical wells, respectively, in the northern and southern parts of
the B153 area.
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The intensity of dynamic fractures is related to the lithology. A higher brittle mineral
content resulted in a greater Young’s modulus, lower Poisson’s ratio, and stronger brittle-
ness, indicating that it is easier to crack. With the increase in water-injection pressure and
volume, the newly formed fracture continued to extend and eventually connected with the
hydraulic fractures in the producers, forming fracture-seepage channels, which affects the
oilfield development effect.

3.1.3. Case Analysis

Taking the injector W22-03 as an example (Figure 3), the calcareous interlayers in the
water-absorption profile showed a spike-shaped profile (Figure 3a,b). The tracer moni-
toring had obvious directionality (Figure 3c), and the tracer advancing velocity increased
obviously in the direction of the current maximum-horizontal principal stress. Well-testing
interpretation results show the characteristics of fracture seepage (Figure 3d). The analy-
sis indicates that dynamic fractures occurred in the calcareous interlayers with relatively
high brittleness, resulting in the sudden waterflooding of the two producers along the
current maximum-horizontal principal-stress direction. The thickness of the strong water-
absorption section was roughly the height of the dynamic fracture, which was around 1.5 m.
The permeability of the well-testing interpretation reached more than 20 mD (Figure 3d).
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3.2. Quantitative Description of Natural Fractures

In the process of water injection, natural fractures are reactivated and extended from
ineffective to effective, which is another important cause of dynamic fractures [1]. However,
the quantitative description of natural fractures has always been difficult. Based on the
study of the paleotectonic stress field, and the fracture characteristics of cores and geological
outcrops, the logging parameters of different lithologies in the coring wells are extracted by
the multifractal method as learning samples, and the natural fractures of non-coring wells
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are identified by the probabilistic neural network. As a result, the distribution of natural
fractures is described quantitatively.

3.2.1. Characteristics of Natural Fractures in Cores

The strata of the Triassic Yanchang Formation in the Ordos Basin were mainly affected
by the paleo-tectonic stress fields of the Yanshan and Xishan periods, and the Yanshan period
had a greater impact [22]. The maximum principal stress direction of the Yanshanian tectonic
stress field was NWW–SEE, and the major orientation of the maximum principal stress was
116◦–296◦, forming a group of conjugate shear fractures in the NW and EW directions. The
direction of the tectonic stress fields’ maximum principal stress in the Himalayan period was
NE–SW, and the major orientation of the maximum principal stress was 45◦–225◦, forming
a group of conjugate shear fractures in the NS and NE directions [23–25].

According to the observation and description of coring wells in the B153 area of the
Huaqing oilfield, the penetration rate of natural fractures was 91.7%. The fracture height
range was 0.04–0.85 m, and most of the fracture height was less than 0.4 m, accounting
for 92.6%. The fractures were mainly high-angle fractures (45◦–75◦) and vertical fractures
(≥75◦). The fracture surfaces were mostly unfilled and showed weakly calcareous cementa-
tion. They were mainly formed as a small-scale fracture system, defined as “small cutting
depth, high angle, and unfilled”. The fractures are mainly compression and tension torsion
fractures [21] (Figure 4), which developed in relatively large brittle siltstone, silty mudstone,
and calcareous fine sandstone. From statistics on the imaging logging, the strike of natural
fractures was approximately 60◦–85◦ NE (Figure 5).
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3.2.2. Characteristics of Natural Fractures in Geological Outcrops

A geological outcrop survey was conducted on the Yanchang Formation of the Ordos
Basin. It was found that natural fractures are widely developed in the sand–mudstone in the
upper part of the Zhangjiatan shale (Figure 6). Most of the fractures are high-angle fractures
with space of less than 0.5 m, a dip of 70◦–90◦, and a strike of 90◦ NE and 22◦ NE. The
fracture surfaces are relatively flat and smooth. The fractured rocks are mainly composed
of siltstone and silty mudstone. The fractures terminate at the lithologic interfaces and are
perpendicular to the lithologic interface.
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3.2.3. Natural Fracture Intensity

The natural fractures in B153 are relatively small in scale, and the conventional logging
response is not sensitive enough to identify them. On the basis of detailed core obser-
vations, the fracture development positions between the core and logging curves were
finely calibrated. The logging parameters in different lithologies were extracted by the
multifractal method [26–30], and the samples from the coring wells were learned by the
probabilistic neural network [31–33] to identify the natural fractures of non-coring wells
(Figure 7). The natural fracture intensity of the whole area was simulated by sequential
Gauss simulation (Figure 8).
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The fracture development degree can be divided into three levels: developed, weakly
developed, and undeveloped. In Figure 8, the red–yellow areas are the developed fracture
areas, the green areas are the weakly developed fracture areas, and the blue areas are the
undeveloped fracture areas. The intensity of natural fractures in the northern part of B153
is greater than that in the southern part. The formation of dynamic fractures is related to
the intensity of natural fractures. The areas with a high intensity of natural fractures can
easily form dynamic fractures during waterflooding, and the natural fractures with the
smallest angle to the current maximum-horizontal principal stress direction open first.

3.2.4. Case Analysis

Using the above method, it was identified that a natural fracture developed in the
interval 63

1-2 of Well G122-159 in the B153 area (left in Figure 9), which formed dynamic
fractures during water injection, and the water-absorption profile showed a peak shape
(right in Figure 9), resulting in the sudden waterflooding in producer G123-161 located
in the direction of the maximum-horizontal principal stress (Figure 10). The height of the
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dynamic fracture corresponded to the strong water-absorption section of the profile, which
was approximately 3 m.
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3.3. Dynamic Fracture Distribution Intensity

The evaluation of rock brittleness and the quantitative description of natural fractures
are the basis for characterizing the distribution of dynamic fractures. During the process
of waterflooding, the dynamic fractures from two causes would be cross-coupled, which
makes the fracture network more complex. The cross behaviors of the two include penetrat-
ing the natural fractures, stopping the expansion, and turning to expand along the natural
fracture surface [34–36]. The current tectonic stress field controls the whole extension of
dynamic fractures. From the analysis of imaging logging, the position indicated by the
blue arrow in Figure 11 has a feather-like feature on the imaging logging and is distributed
symmetrically at 180◦, indicating a typical drilling-induced fracture. From the statistics of
several wells, the direction of induced fractures in the B153 area of the Huaqing oilfield
ranges mainly within 80◦–90◦. This is also the direction of the maximum-horizontal princi-
pal stress of the current stress field controlling the extension of dynamic fractures during
water injection.
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When the BHP exceeds the fracture pressure, the weak surfaces of the rock strata
easily form fractures. When the pressure at the fracturing tip is greater than the current
minimum-horizontal principal stress, the fracture extends until it is connected with the
hydraulic fracture in the producer. The evolution of dynamic fractures undergoes four
stages [3–6]:
1© Establishment stage of transient pressure—fractures grow rapidly to a certain scale;
2© Dry oil production stage—the fracture length is fixed;
3© Water breakthrough stage of the producers—the waterflooding front enters the sur-

rounding area of the producers with a relatively high-pressure gradient, and the
dynamic fracture develops to the maximum length;

4© Fracture shrinkage stage—the water cut of the producers keeps rising and the fracture
shrinks.

The dynamic fractures are centered around the injectors and extend along the direction
of the maximum-horizontal principal stress. The formation position is the relatively weak
surface of the rock strata or the developed intervals of natural fractures. The height and
aperture of the fractures are determined by a combination of the water-injection profile
and the well-testing interpretation. The dynamic fracture intensity is obtained through
integrating the fracture pressure (Figure 12), BHP distribution (Figure 13), production
data from producers and injectors, water-absorption profile, well-testing interpretation,
tracer, and other characteristics of the production dynamic response by analyzing the
injection–production well groups, one by one.
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In order to maintain the formation pressure, ultra-low permeability reservoirs are
subjected to advanced water injection. The advanced injectors in the B153 area are mainly
distributed in the northern area. Currently, the reservoir pressure is maintained at a level
of 90.3%, but the pressure distribution on the plane is uneven.

The formation pressure in the middle of the northern part is higher than in the southern
part. The north, which is low in shale content, low in plastic minerals, such as rock debris
and mica, and high in brittle minerals, such as quartz and feldspar, has a higher brittleness
index than the south. Moreover, the development intensity of natural fractures in the
northern part is higher than that in the southern part. Thus, the development intensity of
dynamic fractures in the northern part is higher than that in the southern part (Figure 14).

From the development status, it can be seen that the directional waterflooding of the
producers in the northern part of the B153 area is serious, and dynamic fractures in the
southern part are not prevalent, as the productivity of the producers is low, and they are
inefficient.
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4. Conclusions 
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4. Conclusions

Dynamic fractures are new fractures generated when the bottom hole pressure exceeds
the crack pressure, or the effective fracture channels are generated by the reactivation of the
closed natural fractures due to the holding pressure near the wellbore area of the injectors
in the long process of water injection. The characterization of dynamic fractures should
integrate static and dynamic data. Firstly, the rocks that easily form new fractures could be
identified by the evaluation of rock brittleness based on the analysis of the rock mineral
composition and triaxial-compression mechanics experiments. Secondly, beginning with
the ancient tectonic stress field and combining the fracture characteristics of the core and ge-
ological outcrop observation, the multi-fractal method and the probabilistic neural network
are applied to identify the natural fractures and quantitatively describe the distribution
intensity of natural fractures. Based on the rock brittleness evaluation and natural fracture
description, the distribution intensity of dynamic fractures is characterized by integrating
the analysis of the BHP, fracture pressure, and production response characteristics. The
intensity of dynamic fracture characterization in the B153 area of the Huaqing oilfield corre-
sponds closely to the reservoir’s performance, which can effectively guide the development
adjustment during the middle–high water-cut stage.

The characterization of dynamic fractures involves many disciplines, such as rock
mechanics, tectonic stress, geology, and reservoir engineering. This study only discussed
the characterization workflow of dynamic fractures. Due to the complexity of the formation
mechanism, the tectonic stress field and dynamic fracture evolution still require further
study.
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