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Abstract: In this paper, the adsorption of cyanide and its combination with zinc sulfate on the
surface of sphalerite (110) was studied by density functional theory (DFT), and its configurational
relationship was analyzed by coordination chemistry. The calculation results show that the adsorption
configuration stability of CN− is stronger than that of Zn(CN)2; the chemical bond of Zn(OH)2 is less
covalent. The three adsorption modes all make the surface of sphalerite lose more electrons, thereby
weakening the reactivity of S and Zn atoms on the sphalerite surface. During the CN− adsorption
process, both the 3d and 4p orbital peak energy levels of Zn decrease, indicating the strong inhibitory
effect of CN−. Coordination chemistry also shows that CN− matches the Zn ion orbital in sphalerite
and the π electron pair on the Zn ion can easily interact with the empty π orbital on CN− to form
π-backbonding.

Keywords: cyanide; sphalerite; DFT; coordination chemistry

1. Introduction

Cyanide is an important depressant in the flotation of non-ferrous metal sulfide ores
and can effectively inhibit sulfide minerals [1], such as sphalerite, pyrite, and chalcopy-
rite [2]. Among these minerals, the inhibition effect of cyanide on sphalerite is the most
obvious; thus, cyanide has been widely used as a sphalerite depressant [3,4]. Wark et al.
found that the formation of Zn(CN)2, a hydrophilic substance, between CN− and Zn on
the surface of sphalerite in pulp can inhibit mineral flotation [5,6]. Seke et al. found that
oxidized sphalerite under the xanthate system is in an environment with positive pulp
potential, which can be reduced by free CN [7]. Wang and Forssrenr hypothesized that
cyanide could react with hydrophobic elemental sulfur and polysulfide to decrease the
hydrophobicity of sphalerite [8]. Therefore, cyanide plays an indispensable role in mineral
flotation as a sulfide ore depressant. However, researchers have recently developed a
new process for inhibiting sphalerite while reducing or replacing cyanide via flotation
technology because cyanide is highly toxic and there are strict protection requirements for
mining environments [9].

At present, the flotation practice for difficult-to-inhibit sulfide ores shows that the use
of cyanide in combination with other depressants can not only strengthen the inhibition, but
also reduce the amount of cyanide used. For example, cyanide and zinc sulfate can be mixed
and used. In an alkaline environment, Zn(OH)2 and Zn(CN)2 are generated in pulp to form
hydrophilic substances, which form an inhibitory effect for sphalerite [10,11]. This process
can reduce the amount of cyanide, but there are still environmental problems and risks that
endanger human life and safety. Therefore, the development of cyanide-like depressants
for sulfide minerals is still an important topic. However, the microscopic mechanism of
the interaction of sphalerite with cyanide as depressants remains a “black box”, although
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there are different views of their reaction mechanism. Due to its advantages, quantum
theory has been increasingly used in recent years to obtain microscopic information related
to minerals. Density functional theory (DFT) simulations are effective for simulating
the surface microstructure and adsorption mechanisms of minerals, thus enabling the
prediction and interpretation of interactions between mineral surfaces and various reagents
at the electronic level [12–14]. DFT calculations provide information on the adsorption
energies of reagents and atoms present on the mineral surface, enabling the determination
of the energy difference [15–17]. At the same time, coordination chemistry is used to
describe metal ions and ligands in minerals, which helps to analyze the interaction between
flotation reagents and metal ions on the mineral surface [18–21].

In this study, we employed DFT calculations and coordination chemistry to investigate
the adsorption mechanism of CN− on the surface of sphalerite and compared it with
Zn(CN)2 and Zn(OH)2. The difference between cyanide and zinc sulfate as depressants is
shown, revealing the reason for the strong inhibition of cyanide. This work provides an in-
depth understanding of the inhibitory mechanism of CN− on sphalerite from a microscopic
perspective, providing new clues for the development of depressants for sulfide ores.

2. Computational Methods

In this paper, the CASTEP module in Material Studio 2019 software was used for
all energy optimization and structural calculations. The method applied by the CASTEP
module is first principles under the framework of DFT. According to previous calculations,
the used calculation is based on the sphalerite structure (ZnS) and its space group is
F−43m [16,22]. This calculation adopts the generalized gradient functional to approximate
the generalized gradient approximation (GGA) functional, the mitigation correlation energy
is described by the (PW91) form gradient correction function proposed by Perdew and
Wang, and the interaction between ionic nuclei and valence electrons is described by the
ultrasoft pseudopotential. The valence electron configurations of the elements involved
in this calculation are H 1s1, O 2s2 2p4, Zn 3d104s2, S 3s23p4, C 2s22p2 and N 2s22p3. The
energy cutoff value of the valence electron plane wave function was set to 410 eV and all
calculations were completed in reciprocal space. The Monkhorst–Pack scheme was adopted
for the integral calculation of the total energy and charge density of the system in the
Brillouin region, and the k-point set network was set to 2 × 3 × 1. A convergence tolerance
of 2.0 × 10−6 eV/atom was employed for self-consistent electronic minimization and an
energy tolerance of 2.0 × 10−5 eV/atom, a maximum force tolerance of 0.05 eV/Å, and a
maximum displacement tolerance of 0.002 Å were employed for geometry optimization.
Considering that sphalerite is a non-magnetic mineral, all atoms are allowed to relax in
the calculation process and non-spin results are used to analyze the data, regardless of the
influence of spin on calculation results.

Harmer et al. used X-ray photoelectron spectroscopy (XPS), low-energy electron
diffraction (LEED), and theoretical methods to measure the surface energy of each surface
of sphalerite, finding that the surface of sphalerite (110) is the main cleavage surface and its
surface energy is relatively low [22]. Therefore, the cleavage plane of sphalerite (110) was
selected for calculation in this study.

Considering that cyanide is mainly adsorbed onto the surface of sphalerite (110), a
2 × 2 × 2 surface set the vacuum layer to 15 Å with a total of four atomic layers and the
geometry of this model was optimized. The optimized sphalerite (110) surface model is
shown in Figure 1.
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When zinc sulfate is used in combination with cyanide, cyanide can form a complex 

with zinc ions. The reaction equation is expressed as Equation (1): 

Zn2+ + 2CN− = Zn(CN)2 (1) 

Zinc sulfate can undergo ionization and hydrolysis reactions in aqueous solution by 

Equations (2) and (3): 

ZnSO4 = Zn2+ + SO42− (2) 

and 

Zn2+ + 2H2O ⇌  Zn(OH)2 + 2H+ (3) 

Figure 1. Sphalerite (110) surface after geometric optimization (2 × 2 × 2 supercell model).

Qiu et al. conducted a comparative study on the possible adsorption sites of CN−

in sphalerite (110) and found that the top site was the site with the strongest adsorption
capacity [23]. In order to better discuss the results of geometric optimization and carry out
the next calculation, the adsorption points used by subsequent ions are all top positions,
which are shown in Figure 2.
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Figure 2. CN− top-site adsorption on the surface of sphalerite (110).

When zinc sulfate is used in combination with cyanide, cyanide can form a complex
with zinc ions. The reaction equation is expressed as Equation (1):

Zn2+ + 2CN− = Zn(CN)2 (1)

Zinc sulfate can undergo ionization and hydrolysis reactions in aqueous solution by
Equations (2) and (3):

ZnSO4 = Zn2+ + SO4
2− (2)

And
Zn2+ + 2H2O 
 Zn(OH)2 + 2H+ (3)

Therefore, the main coordination products of zinc sulfate and cyanide are Zn(CN)2
and Zn(OH)2, as shown in Figure 3.
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Figure 3. (a) Zn(CN)2 and (b) Zn(OH)2 models after geometric optimization.

The CN− adsorption energy on the surface of sphalerite (110) is shown by Equation (4):

∆Eads = Etot
slab+CN− − ECN− − Etot

slab (4)

where Etot
slab+CN− and Etot

slab are the total energy before and after, respectively, the adsorp-
tion of CN− by the sphalerite model; ECN− is the total energy of CN−; and ∆Eads is the
adsorption energy of CN on the surface of sphalerite (110).

The adsorption energy equation of Zn(CN)2 and Zn(OH)2 on the surface of sphalerite
(110) is given by Equation (5):

∆Eads = Etot
slab+Zn(CN)2/Zn(OH)2

− EZn(CN)2/Zn(OH)2
− Etot

slab (5)

where Etot
slab+Zn(CN)2/Zn(OH)2

and Etot
slab are the total energy before and after the sphalerite

model adsorbs Zn(CN)2 or Zn(OH)2, respectively; EZn(CN)2/Zn(OH)2
is the total energy of

Zn(CN)2 or Zn(OH)2; and ∆Eads is the adsorption energy of Zn(CN)2 or Zn(OH)2 on the
surface of sphalerite (110).

A collection of sphalerite generally first requires the addition of activated ions and then
xanthate, but CN−, when added, will react with the activated sphalerite ions in advance
to prevent sphalerite activation. Therefore, this study only considers the direct action of
xanthate on the surface of sphalerite (110) [24]. The optimized butyl xanthate (BX) model is
shown in Figure 4, where S1 and S2 represent S atoms with single and double bonds in BX,
respectively.
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The adsorption energy equation of BX adsorbed onto the surface of sphalerite (110) is
shown by Equation (6):

∆Eads = Etot
slab+BX − EBX − Etot

slab (6)
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where Etot
slab+BX and Etot

slab are the total energy before and after the sphalerite model adsorbs
BX, respectively, EBX is the total energy of BX, and ∆Eads is the adsorption energy of BX in
sphalerite (110).

Adsorption energy indicates the enthalpy change of the reaction between substances.
The greater the absolute value of adsorption energy in negative, the easier it is for the
adsorption to occur. All quantum mechanical simulation calculations were carried out
in vacuum; thus, calculation results are different from the actual production and testing
environment. Calculation results are not completely consistent with the actual effect of
mineral reagents. Therefore, the calculation results only provide a certain reference for the
adsorption of CN−, Zn(CN)2 and Zn(OH)2 on the surface of sphalerite (110).

3. Results and Discussion
3.1. Adsorption Energy

After DFT geometric optimization, the optimized adsorption configuration of BX,
CN−, Zn(CN)2, and Zn(OH)2 on the surface of sphalerite (110) is shown in Figure 5.
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sphalerite (110).

Based on the adsorption model structure of BX, CN−, Zn(CN)2, and Zn(OH)2 acting
on the surface of sphalerite (110), the adsorption energy (∆Eads) is calculated, as shown in
Table 1.

Table 1. Adsorption energy of BX, CN−, Zn(CN)2, and Zn(OH)2 on the surface of sphalerite (110).

Adsorption Type Adsorption Energy (kJ/mol)

BX + ZnS (110) −66.12
CN− + ZnS (110) −233.88

Zn(CN)2 + ZnS (110) −99.76
Zn(OH)2 + ZnS (110) −33.42

It can be seen from Table 1 that the adsorption energies for the three depressant
adsorption modes are all negative, indicating that CN−, Zn(CN)2, and Zn(OH)2 can all
be adsorbed onto the surface of sphalerite (110). The adsorption energy of xanthate on
the surface of sphalerite (110) is less than that for CN− and Zn(CN)2 on the surface of
sphalerite (110), indicating that CN− and Zn(CN)2 have stronger adsorption on the surface
of sphalerite (110) than xanthate. As can be seen from Figure 5, the distances between the
S1 single bond atom and S2 double bond atom of BX and the Zn atom of sphalerite are
2.33 Å and 2.58 Å, respectively, which are less than or equal to the sum of the radii of S and
Zn atoms (2.58 Å). The distance between the C atom of CN− and the Zn atom of sphalerite
is 1.74 Å, which is less than the sum of the radii of C and Zn atoms (2.72 Å). The distance
between the Zn atom of Zn(CN)2 and the S atom of sphalerite is 2.37 Å, which is less than
the sum of the radii of Zn and S atoms (2.58 Å). These values show that BX, CN−, and
Zn(CN)2 can be adsorbed onto sphalerite and bond in this process. The adsorption energy
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of CN− on the surface of sphalerite (110) is greater than that of Zn(CN)2, indicating that the
chemical adsorption model of CN− is more prone to occur than that of the Zn(CN)2 model.
The distance between the Zn atom of Zn(OH)2 and the S atom of sphalerite is 2.72 Å, which
is greater than the sum of the radii of Zn and S atoms (2.58 Å), and no stable chemical bond
is formed.

3.2. Mulliken Population Analysis

In order to further analyze the adsorption differences of CN−, Zn(CN)2, and Zn(OH)2
on the surface of sphalerite (110), the Mulliken population method was used to study the
surface of sphalerite (110) [25]. By analyzing the Mulliken charge and bond population, we
may quantitatively understand and compare bonding between atoms.

Table 2 shows the sphalerite Mulliken charge distribution of CN−, Zn(CN)2, and
Zn(OH)2 before and after adsorption on the surface of sphalerite (110). When Zn(CN)2
and Zn(OH)2 are adsorbed onto the surface of sphalerite (110), the Mulliken population
charge numbers of Zn and S atoms change in a similar way. That is, the 4s orbital of Zn
loses a small number of electrons, and the 4p and 3d orbitals have no obvious change. The
3s orbital of S loses a small number of electrons and the 3p orbital gains a small number of
electrons. After CN− is adsorbed onto the surface of sphalerite (110), the 4s and 3d orbitals
of Zn lose more electrons. Although the 4p orbital gains more electrons, the total number
of electrons of Zn is still decreasing compared to the unadsorbed CN−. There is no obvious
change in the 3s orbital of S and a small number of electrons are lost in the 3p orbital. In
general, the surface of sphalerite (110) loses electrons in the three adsorption modes, which
reduces the reactivity of Zn and S atoms to a certain extent. The number of electrons lost
during the adsorption of CN− is the largest, while the number of electrons lost in the other
two adsorption modes is similar.

Table 2. Mulliken charge distribution before and after adsorption of CN−, Zn(CN)2, Zn(OH)2 on the
surface of sphalerite (110).

Model Atom s p d Total Charge

ZnS Zn 0.89 0.69 9.98 11.56 0.44
S 1.86 4.65 0.00 6.51 −0.51

ZnS + CN− Zn 0.75 0.89 9.91 11.54 0.46
S 1.87 4.58 0.00 6.44 −0.44

ZnS + Zn(CN)2 Zn 0.84 0.68 9.98 11.50 0.50
S 1.83 4.71 0.00 6.54 −0.54

ZnS + Zn(OH)2 Zn 0.84 0.71 9.97 11.52 0.48
S 1.85 4.67 0.00 6.51 −0.51

The Mulliken bond population provided in Table 3 was obtained by calculating CN−,
Zn(CN)2, and Zn(OH)2 in sphalerite (110).

Table 3. Mulliken bond population of CN−, Zn(CN)2, and Zn(OH)2.

Adsorption Mode Chemical Bond Population Bond Length (Å)

CN− + ZnS Zn-C 0.66 1.74
Zn(CN)2 + ZnS Zn-S 0.42 2.37
Zn(OH)2 + ZnS Zn-S 0.10 2.72

From Table 3, the Mulliken bond population value in the adsorption of CN− is larger
than that in the adsorption of Zn(CN)2, indicating that the chemical bonds in the adsorption
of CN− have more charge overlap, and the covalent and stability of the bonds are stronger
than that of Zn(CN)2 adsorption. The Mulliken bond population value when Zn(OH)2 is
adsorbed was the smallest, which indicates that the chemical bonds overlapped less and
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the covalent bonds were weak. This is consistent with the conclusions drawn from the
adsorption energy discussion.

Based on the comprehensive adsorption energy and Mulliken population analysis, it
can be considered that the adsorption tightness of CN− is stronger than that of Zn(CN)2.
The adsorption effect of Zn(OH)2 is the weakest in terms of adsorption energy and popula-
tion analysis, so the subsequent discussion does not include Zn(OH)2.

3.3. Density of States (DOS) Analysis

Density of states (DOS) is the most important parameter to describe the state of electron
motion in solid-state physics. It has been widely used in solid-state physics, surface science,
and interface adsorption. In particular, the partial density of states (PDOS) can be used to
determine the contribution of each orbital.

In order to clarify the adsorption mechanism of CN− and Zn (CN) 2 on sphalerite
(110), the adsorption of CN− and Zn(CN)2 on sphalerite (110) was compared and analyzed
using DOS. Figure 6 shows the local DOS before and after the adsorption of CN− and
Zn(CN)2 on the surface of sphalerite (110).
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Figure 6. (a) ZnS, (b) ZnS with Zn(CN)2, and (c) ZnS with NaCN Zn and S atom partial density of
state (PDOS).

As shown in Figure 6, the atomic orbitals of sphalerite are mainly composed of S 3s 3p
orbitals and Zn 4s 4p 3d orbitals. The main peak of the 3p orbital of sphalerite S decreased
from 2.3 to 1.9 eV and shifted from −1~ −2 eV to −2~ −3 eV, with a shallow energy level,
after Zn(CN)2 adsorption. This phenomenon shows that Zn(CN)2 has an inhibitory effect
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on sphalerite but the effect is not obvious above the Fermi level. The main peak of the 3d
orbital of Zn is split and the peak is reduced to less than 12 eV after the adsorption of CN−

on the surface of sphalerite (110). This indicates that CN− has a strong inhibitory effect on
sphalerite and is higher than that of Zn(CN)2.

3.4. Coordination of CN− with Zn Ions on the Sphalerite Surface

CN− has the ability to interact with Zn ions on the surface of sphalerite in coordination.
To determine the reason CN− has a strong effect as a depressant on the sphalerite surface,
the molecular structure and orbital characteristic of CN− from a coordination chemistry
perspective are analyzed based on a newly proposed coordination chemistry theory on
flotation [26]. Chen suggested that the coordination effect between reagent and metal ions
on mineral surfaces is mainly π-backbonding in the flotation of sulfide minerals [18].

For CN−, its lowest unoccupied molecular orbital (LUMO) and highest occupied
molecular orbital (HOMO) distribution were dominated by π and σ orbitals, respectively,
as shown in Figure 7.
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From Figure 7, the LUMO of CN− is an empty π orbital, so CN− may accept π electron
pairs from the sphalerite surface and form π-backbonding. There are π electron pairs in
the e and t2 orbitons of Zn ions in sphalerite. Therefore, the symmetry of CN− matches
that of the Zn ion orbitals on the surface of sphalerite, allowing π-backbonding to occur in
chemisorption. As mentioned above, CN− is used as a strong depressant in the separation
of sphalerite from other minerals due to its special structure and orbital properties.

4. Conclusions

Based on DFT and coordination chemistry, the inhibition mechanism of cyanide and
the combination of cyanide and zinc sulfate in flotation separation was studied. The
simulation results show that the adsorption energy of CN− directly adsorbed onto the
surface of sphalerite (110) is −233.88 kJ/mol and those of Zn(CN)2 and Zn(OH)2 are
−99.76 kJ/mol and −33.42 kJ/mol, respectively. Therefore, both Zn(CN)2 and Zn(OH)2 can
be adsorbed onto the surface of sphalerite (110). The results of Mulliken population analysis
showed that CN− and Zn(CN)2 form a stable chemical bond with chemical adsorption
modes, among which CN− was the most covalent. All three modes make the Zn and S
on the mineral surface lose electrons, thereby weakening the reactivity of the surface of
sphalerite during the flotation process. DOS analysis showed that the main peak energy of
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the S orbital of sphalerite decreased to a lower energy level after the adsorption of Zn(CN)2.
The main peak of the Zn orbital of sphalerite was split and the peak energy decreased; its
inhibitory effect is stronger than that of Zn(CN)2 after the adsorption of CN−. Coordination
chemistry analysis showed that the symmetry of CN− matches that of the Zn ion orbital
in sphalerite, which has multiple pairs of π electrons in the e and t2 orbitals, and makes it
easy to interact with the empty π orbital on CN− to form a π-backbonding, which provided
key information for the development of an efficient depressant of sphalerite based on this
mechanism.
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