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Abstract: This study builds a model to predict distribution coefficients (Kd) using the random forest
(RF) method and a machine learning model based on the Japan Atomic Energy Agency Sorption
Database (JAEA-SDB). A database of ten input variables, including the distribution coefficient,
pH, initial radionuclide concentrations, solid–liquid ratio, ionic strength, oxidation number, cation
exchange capacity, surface area, electronegativity, and ionic radius, was constructed and used for
the RF model calculation. The calculation parameters employed in this work included two different
hyperparameters, the number of decision trees and the maximum number of variables to divide
each node, together with the random seeds inside the RF model. The coefficients of determination
were derived with various combinations of hyperparameters and random seeds, and were employed
to assess the RF model calculation result. Based on the results of the RF model, the distribution
coefficients of 22 target nuclides (Am, Ac, Co, Cm, Cd, Cs, Cu, Na, Np, Ni, Nb, U, Sr, Sn, Pb, Pa,
Pu, Po, I, Tc, Th, and Zr) were predicted successfully. Among the various input variables, pH was
found to make the highest contribution to determining the distribution coefficient. The novelty of
this study lies in the first application of the machine learning method for predicting the Kd value
of bentonites, using JAEA-SDB. This study has established a model for reliably predicting the
distribution coefficient for various radionuclides that is intended for use in evaluating the Kd value
in arbitrary aqueous conditions.

Keywords: adsorption; bentonite; distribution coefficient; machine learning; random forest

1. Introduction

Due to the continuous use of nuclear power, the generation and storage of spent
nuclear fuel are expected to increase progressively. Since these radiotoxic high-level wastes
(HLW) contain inherent radiological hazards to the environment and to humans, it is
urgently necessary to establish a safe and reliable disposal plan for the HLW.

Recently, the KärnBränsleSäkerhet-3 (KBS-3) deep geological disposal concept [1],
developed by the Svensk Karnbranslehantering AB (SKB) in Sweden, was adopted and ap-
plied to the design and safety assessment of the ONKALO final repository for spent nuclear
fuel in Finland, which is currently under construction. In the KBS-3 concept, bentonite-
based buffer material is placed outside the copper-cast iron canister and functions as an
engineered barrier to retard the migration of radionuclides released from the canister into
the geosphere. In this respect, the primary retention process of radionuclide migration
by the bentonite can be described by the adsorption mechanism, which can be quantified
simply with a distribution coefficient (Kd). The distribution coefficient is a conditional
constant, which means that it is highly dependent on the given geochemical variables,
such as the pH, solid–liquid ratio (L/S ratio), temperature, species distribution, etc. There-
fore, for a reliable assessment of the long-term safety of HLW disposal, it is essential to
examine and derive the exact adsorption distribution coefficients by which the site-specific
geochemical conditions are appropriately reflected. In this framework, the Japan Atomic
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Energy Agency (JAEA) has developed a sorption database (JAEA-SDB) summarizing and
displaying the extensive distribution coefficients of the major radionuclides that constitute
the radioactive waste on important mineralogical matters, which were selected through
a meticulous reliability evaluation of the reported values in many previous studies. The
JAEA-SDB contains about 70,000 pieces of adsorption data, including information on the
adsorbent material, target radionuclide, concentration, oxidation number, pH, distribution
coefficient, etc. [2].

However, due to the relatively high uncertainty and conditional dependency of the dis-
tribution coefficient, it is challenging to predict the adsorption behaviors of radionuclides
unless they have been investigated experimentally. While several thermodynamic model-
based approaches (e.g., the surface complexation model [3]) have been developed to over-
come such difficulties, it is still the case that limited fundamental chemical thermodynamic
data are available to quantitatively assess the distribution coefficient of various radionu-
clides, leaving a significant uncertainty in terms of the prediction of adsorption behaviors.

Machine learning is a field of computing algorithms that has rapidly developed in
recent years and is designed to imitate human intelligence by learning reams of data for
establishing prediction, classification, and regression models [4]. Based on the development
of computer CPUs, improvements in memory speed, and an increase in computing power,
machine learning has been evaluated as an effective methodology for predicting specific
values. In this regard, various techniques have been developed and used accordingly [5–8].
Machine learning can be divided into two approaches: supervised learning and unsuper-
vised learning. Typically, supervised learning is used in learning data and for creating
a model that can predict the desired target value. Machine learning approaches, such
as the artificial neural network (ANN), random forest (RF), and support vector machine
(SVM), are regarded as the established methodologies for general supervised learning [9,10].
Among them, the RF is an ensemble machine learning technique based on decision trees,
which uses a voting method for classification and prediction with diverse decision trees. In
the RF approach, various decision trees are created using random variables for prediction;
the results are obtained through voting and averaging by collecting the results from the
trees [11]. Furthermore, the K-fold cross-validation method can be additionally employed
to avoid possible overfitting of the training data [12]. However, because of the data leakage
and bias problems possibly induced by the K-fold cross-validation calculation, the nested
K-fold cross-validation can be alternatively employed to provide better robustness and
model stability by using training, validation, and test sets split from the original data
set [13,14].

This study aims to reliably predict the distribution coefficients of primary radionu-
clides onto several bentonite materials, based on the RF machine learning model, with the
JAEA-SDB as a data source. Furthermore, it is intended to quantify the relative influence
and importance of various input variables on the distribution coefficient, by overcoming
the limitations of human intuition and current chemical thermodynamic model-based
approaches through machine learning models [15], allowing more reliable follow-up sup-
plementary experiments.

2. Materials and Methods
2.1. Data Collection and Pre-Processing

The distribution coefficient data used for machine learning were taken from the
JAEA-SDB [2]. Three major bentonites, comprising MX-80 [16], Kunigel V1 [16], and
SWy-2 [17], which have been widely considered as buffer materials in the deep geological
repository, were selected as the representative adsorbent materials in this study. The
establishment of the machine learning database was achieved by using the 777 experimental
results related to the 22 kinds of radionuclides that are provided by the JAEA-SDB (i.e., Am,
Ac, Co, Cm, Cd, Cs, Cu, Na, Np, Ni, Nb, U, Sr, Sn, Pb, Pa, Pu, Po, I, Tc, Th, and Zr). The
data used to build the RF model from JAEA-SDB included six geochemical variables: the
solid-liquid ratio (mL/g, expressed as LS in the future), ionic strength (mol/L, referred to
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as Ionic_S), the oxidation number of radionuclides (referred to as Redox), acidity (referred
to as pH), initial radionuclide concentration (mol/L, referred to as C0), and the distribution
coefficient (m3/kg, referred to as Kd). In addition, cation exchange capacity (meq/100 g,
referred to as CEC) and surface area (m2/g, referred to as SA), which are the characteristic
properties of bentonite, along with electronegativity (referred to as EN) and ionic radius (Å,
referred to as IR), which are unique features of radionuclides, were adopted in the modeling
as well. The target value of machine learning was set to Kd (m3/kg). For the simplification
of the RF model and collective comparison among the assorted radionuclides, the ionic radii
of radionuclides with a coordination number of 6 were established from the literature [18].
In addition, electronegativity values were also referenced from the previous study [19]. The
CEC and SA data were entered separately, according to bentonite type (i.e., MX-80 [16],
Kunigel V1 [16], and SWy-2 [17]). Furthermore, when the background solution was set
to “seawater” in JAEA-SDB, the ionic strength was estimated and entered by assuming a
standard seawater condition according to Millero et al. [20]. Likewise, the ionic strength for
each scenario was calculated and entered collectively, following the reports of Torstenfelt
et al. [21,22] for the background solution, labeled as “synthetic groundwater”, Mateus
et al. [23] for “tap water”, and Kitamura et al. [24] for “synthetic porewater”. The detailed
input data constructed in the present work are provided in the Supplementary Materials.

For the machine learning database, constructed as above, the Pearson correlation coef-
ficient (PCC) method was used to confirm the linear dependence between each variable [25].
The PCC is a method that can quantify the correlation between two arbitrary variables,
which can be expressed as below:

rxy =

(
∑n

i=1(xi−x̂)∑n
i=1(yi−ŷ)

n−1

)
√

∑n
i=1 (xi−x̂)2

n−1

√
∑n

i=1 (yi−ŷ)2

n−1

(1)

where x̂ and ŷ are the average values of x and y, respectively. If the rxy value is close to ±1,
the variables x and y have an almost direct linear relationship. In this case, eliminating one
of the variables may be more advantageous for simplifying the model and reducing calcu-
lation time. This study evaluated the appropriateness of variable selection by calculating
the correlation between variables using the PCC method, before performing the machine
learning calculation.

2.2. Machine Learning Model

Random forest (RF) is a supervised ensemble machine learning approach, based on
multiple decision trees and bagging (i.e., bootstrap aggregation) [11]. In general, the
procedure of RF calculation can be expressed as follows:

1. The retained input data are randomly divided into a training set and a test set;
2. The RF model is created, followed by setting the hyperparameters used to control the

learning process [26];
3. Multiple decision trees are created while training the model with the training set

through each node;
4. The final result was estimated by averaging the results from all trees generated.

By adjusting the random state variable, i.e., a random seed in the RF calculation,
randomness can be given in the classification of training/testing sets and the calculation
using hyperparameters. The calculation parameters used for the RF calculation in this
study include two different hyperparameters: the number of decision trees (Ntree) and the
maximum number of variables to be used to divide each node (Nfeature), together with the
random state, random seed in the RF model [27]. In particular, the random seed numbers
used to distinguish the training and test sets are referred to as “Random state_T”, and the
random seed for internal calculation of the RF model was referred to as “Random state_M”.
In the present work, the calculation parameters are set separately to calculate and assess
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the RF model result. Further detailed information about the algorithm of the RF model is
provided elsewhere [11].

Since the RF calculation makes decision trees by directly comparing the training set
that is used for training with the test set, the overfitting of data can presumably be expected.
Therefore, cross-validation using the K-fold cross-validation method can be utilized to
check the calculation result. In this study, to secure more robustness and model stability, the
nested K-fold cross-validation method was employed to additionally validate the RF result.
The nested K-fold cross-validation consists of two loops, i.e., the inner fold and the outer
fold. For the outer K-fold calculation, the given data set is divided into the K total number
of equal parts. Then, one of the K parts is designated for use in evaluating the performance
of the model, while the others are used as a training set. Successively, the K-1 equal parts are
divided into J total equal parts. Similarly, one of the J parts is chosen for use as a validation
set, while the other J-1 parts are used as a sub-training set. For the inner J-fold calculation,
cross-validation is carried out with the sub-training set and the validation set to identify
and select the calculation parameter combination (in this case, Ntree, Nfeature, and Random
state_M) providing the best performance. Note that the Random state_T, the random seed
for dividing the training, testing, and validation set is fixed to be a constant value during
the entire inner and outer loop calculation. In the present work, the performance of the
inner loop model is evaluated with the averaged R2 value obtained in the J-fold calculation.
Sequentially, the calculation parameter combination selected through the inner fold calcula-
tion is employed to train the training set in the outer loop. Furthermore, the performance
evaluation of the outer loop is conducted with the test set, and the entire process is repeated
a total of K times. The model performance is assessed by averaging the number of K
results obtained through the K-fold calculation at a given Random state_T value. In this
study, the 5-5 nested cross-validation with the five inner loops and the five outer loops
was employed. Additionally, the whole calculation process can be repeated with various
Random state_T values to check the stability of the machine learning model. Through
the above process, the best values of Ntree and Nfeature for the different Random state_M
and Random state_T values can be identified. Finally, the representative values of Ntree
and Nfeature are determined and fixed by (i) selecting the most frequent Nfeature values and
(ii) averaging the best Ntree values, respectively. The final model test can be performed by
averaging the R2 results obtained with the representative Ntree and Nfeature values, together
with various Random state_M and Random state_T values.

Additionally, the RF model quantitatively evaluates the relative importance of the
input variables on the distribution coefficient based on the mean decrease in impurity
(MDI) [15] approach. This method defines the average impurity reduction as an essential
factor when dividing nodes, through which the relative importance of each variable used
in the RF calculation can be compared.

Finally, the results of the RF model were assessed using the coefficient of determination (R2)
and the root mean square error (RMSE), calculated according to Equations (2) and (3) [28,29]:

R2 = 1 −
∑N

i=1

(
Yi, exp − Yi, pred

)2

∑N
i=1
(
Yi, exp − Ŷave, exp

)2 (2)

RMSE =

√
1
N

(
Yi, exp − Yi, pred

)2
(3)

where Yi,exp is the actual experimental value and Yi,pred represents the value predicted by
the RF model. As the R2 value converges to 1 or RMSE to 0, the predicted data more
closely agrees with the experimental data. The computational codes for the RF model
calculation and the nested K-fold cross-validation employed in this study were taken
from the scikit-learn software package (version 0.24.2) [30–32] and are provided in the
Supporting Information.
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3. Results
3.1. Data Processing and PCC Analysis

Among the input data used in this study, the relative distributions of Kd and C0 were
analyzed by plotting the boxplot diagram. As shown in Figure 1a, the Kd values represent a
wide but relatively uneven distribution, ranging from 8.0 × 10−5 m3/kg to 2.1 × 103 m3/kg.
As for the overall distribution of Kd values, small Kd values accounted for the most of data,
while the Kd values larger than 500 m3/kg occupy a much smaller fraction.
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Figure 1. Box plots of the input variables, such as (a) Kd, (b) log Kd, (c) C0, and (d) log C0 employed
in the RF model calculation. The blue bar indicates the median.

Figure 1b indicates that if the logarithmic scale was applied to the Kd value, the
overall range of the values was reduced to an approximate range from −4.1 to +3.3, with a
relatively uniform distribution. At the same time, the initial radionuclide concentration,
C0, showed a relatively consistent trend compared to the distribution coefficient, Kd (see
Figure 1c,d).

Besides this, the solid-liquid ratio, LS, also presented an even distribution in the
logarithmic scale compared to the linear scale, as with the Kd (data not shown). Therefore,
this study used log Kd, log C0, and log LS as the input training data for RF modeling, to
prevent the overall calculation results from being biased by a small number of data values
with large numerical values.

Figure 2 shows the data obtained by calculating the relationship between each input
variable pair using the Pearson correlation coefficient (PCC) method. According to the
results, there was no case showing a correlation that was close to ±1 for all the possible
combinations. Therefore, all the nine input variables described in the Materials and Meth-
ods section, along with the log Kd, which represents the predicted target value of the RF
model, were employed for the machine learning calculations.

In the Pearson correlation matrix result, the variables representing a remarkable
correlation with log Kd were determined to be pH, log C0, EN, and log LS. Thus, it was
predicted that these four variables would show relatively high importance in predicting
the Kd values through the machine learning algorithm.

3.2. RF and 5-5 Nested Cross-Validation

In this study, the calculation parameters controlled in the RF model were two different
hyperparameters (Ntree and Nfeature) and two different random seeds (Random state_T and
Random state_M). The ranges of the calculation parameters were as follows:

• Ntree = 5–1000 (set in multiples of five intervals);
• Nfeature = 2–9;
• Random state_T = 0–10;
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• Random state_M = 0–10.
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IR: ionic radius; EN: electronegativity; CEC: cation exchange capacity; SA: surface area; Ionic_S: ionic
strength; log LS: log of solid-liquid ratio; log C0: log of initial radionuclide concentration; log Kd: log
of Kd.

The other parameters were fixed at their default values [31]. Figure 3a presents
the range of the R2 value obtained by changing the Random state_T value. In the RF
model, Random state_T is used as a random seed for the training and test sets classifi-
cation, so a random change was observed in the R2 result value with various Random
state_T. According to the RF model calculation, the most optimal R2 value was obtained
at Random state_T = 8, and the lowest R2 value was obtained at Random state_T = 4. In
the present work, for a fixed Random state_T value, when the maximum R2 value was
high, the minimum R2 value was also high, with a relatively small difference between the
maximum and minimum R2 values. Conversely, when the maximum R2 value was low,
the minimum R2 value was also relatively low, with a significant difference between the
maximum and minimum R2 values. Based on the results obtained with the RF model, the
maximum R2 values derived from various calculation parameter ranges were determined
to be R2 = 0.9175, where RMSE = 0.3261.

On the other hand, when the RF model was calculated with the 5-5 nested cross-
validation method, the deviations between the maximum and minimum values of R2

derived by outer loops were relatively decreased (see Figure 3b). In addition, the R2 values
averaged from the outer fold calculation determined with various Random state_T were
almost similar to each other. This may have been due to the reduction in the deviation
of each result, caused by performing multiple cross-validations with five inner and five
outer loops to avoid overfitting. According to the 5-5 nested cross-validation results, the
most frequent Nfeature value, among the best Nfeature values obtained through the inner
and outer fold calculation, was Nfeature = 2. In addition, the representative Ntree value was
determined to be Ntree = 185 by averaging the best Ntree values and rounding to the nearest
multiple of 5 for further calculation. Consequently, the final model test performed with the
representative Ntree and Nfeature values, along with various Random state_M and Random
state_T values, presented the averaged R2 value of R2 = 0.8604.



Minerals 2022, 12, 1207 7 of 12

Minerals 2022, 12, x FOR PEER REVIEW 7 of 13 
 

 

 

Figure 3. The R2 values calculated with a fixed Random state_T using (a) the RF model and (b) the 

5-5 nested cross-validation method, coupled with the RF model. Red and blue colored bars on the 

left-hand side represent the best and the worst results, respectively. Crosses on the right-hand side 

indicate the R2 values obtained through five outer fold calculations at the given Random state_T, 

while circles represent the averaged R2 value. 

On the other hand, when the RF model was calculated with the 5-5 nested cross-

validation method, the deviations between the maximum and minimum values of R2 

derived by outer loops were relatively decreased (see Figure 3b). In addition, the R2 values 

averaged from the outer fold calculation determined with various Random state_T were 

almost similar to each other. This may have been due to the reduction in the deviation of 

each result, caused by performing multiple cross-validations with five inner and five outer 

loops to avoid overfitting. According to the 5-5 nested cross-validation results, the most 

frequent Nfeature value, among the best Nfeature values obtained through the inner and outer 

fold calculation, was Nfeature = 2. In addition, the representative Ntree value was determined 

to be Ntree = 185 by averaging the best Ntree values and rounding to the nearest multiple of 

5 for further calculation. Consequently, the final model test performed with the 

representative Ntree and Nfeature values, along with various Random state_M and Random 

state_T values, presented the averaged R2 value of R2 = 0.8604. 

In order to assess the influence of the change of hyperparameters on the R2 value, an 

additional evaluation was performed using the results representing the highest R2 value 

among those shown in Figure 3a. Figure 4 presents the R2 value according to the change 

in Ntree and Nfeature for the case of the general RF model. At this time, the Random state_T 

was fixed to Random state_T = 8 and the Nfeature was controlled in the range from 2 to 9. 

As a result, the highest R2 value was obtained when Ntree = 105 for the general RF model 

with R2 = 0.9175. As the Ntree value increased, the R2 value changed slightly but converged 

to a constant value. This may have been due to the decrease in the diversity of the mean, 

as the number of samples of decision trees used for analysis increased with an increase in 

Ntree. In all cases, the R2 value at Ntree = 1000 was relatively smaller than the maximum R2 

value. 

0 1 2 3 4 5 6 7 8 9 10
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
2

Random state_T

a)

0 1 2 3 4 5 6 7 8 9 10
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Random state_T

b)

Figure 3. The R2 values calculated with a fixed Random state_T using (a) the RF model and (b) the
5-5 nested cross-validation method, coupled with the RF model. Red and blue colored bars on the
left-hand side represent the best and the worst results, respectively. Crosses on the right-hand side
indicate the R2 values obtained through five outer fold calculations at the given Random state_T,
while circles represent the averaged R2 value.

In order to assess the influence of the change of hyperparameters on the R2 value, an
additional evaluation was performed using the results representing the highest R2 value
among those shown in Figure 3a. Figure 4 presents the R2 value according to the change in
Ntree and Nfeature for the case of the general RF model. At this time, the Random state_T
was fixed to Random state_T = 8 and the Nfeature was controlled in the range from 2 to 9. As
a result, the highest R2 value was obtained when Ntree = 105 for the general RF model with
R2 = 0.9175. As the Ntree value increased, the R2 value changed slightly but converged to a
constant value. This may have been due to the decrease in the diversity of the mean, as the
number of samples of decision trees used for analysis increased with an increase in Ntree.
In all cases, the R2 value at Ntree = 1000 was relatively smaller than the maximum R2 value.
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Figure 4. The values of R2, calculated as a function of Ntree at Random state_T = 8, with the general
RF model.
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The Nfeature dependency of the R2 value shown in Figure 4 will be discussed along with
Figure 5, representing the change in R2 value according to the Random state_M and Nfeature
variables under two conditions of Ntree = 105 and Ntree = 1000 for the general RF model. As
for two different values of Ntree = 105 and Ntree = 1000, the effects of the Random state_M
and Nfeature variables on the distribution of R2 values were considerably different. For
Ntree = 105, the R2 value was the highest at R2 = 0.9175, but the distribution of relatively high
R2 values was somewhat limited only to the Nfeature = 3 and Random state_M = 5 points.
For Ntree = 1000, the maximum R2 value was R2 = 0.9093, which was slightly low, but it still
showed a broad distribution of relatively high R2 values at low Nfeature values, regardless of
the Random state_M variable. The machine learning results of the general RF model, based
on the database constructed in this study, showed the maximum R2 value at Ntree = 105,
Nfeature = 3, Random state_T = 8, and Random state_M = 5. On the other hand, when
it was set at Ntree = 1000 to prevent overfitting, the maximum R2 value was observed at
Nfeature = 2, Random state_T = 8, and Random state_M = 6.
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Figure 5. The R2 mapping diagram, calculated with the general RF model for Random state_M and
Nfeature at (a) Ntree = 35 and (b) Ntree = 1000. Random state_T was fixed to be Random state_T = 9 for
both cases. The arrows point out the maximum R2 values for each case.

Figure 5 suggests that the RF model based on the database constructed in this study
seems helpful in calculating the best R2 value by considering fewer input variables, i.e., a
small Nfeature, in dividing nodes. Typically, a relatively high R2 value might be expected in
the machine learning calculation with a large Nfeature value, as more input variables can
be considered at once when calculating the model. However, when many input variables
were considered at once in the present work, the nodes could not be subdivided and, thus,
the diversity of decision trees was reduced, leading to a relatively low R2 value [33–35].

Moreover, to examine the change in the maximum R2 value, according to the number
of data points used for the RF model training, 100, 200, 400, and 700 data points were
randomly selected from the original database, with 777 data points being used to train the
RF model. For the simple comparison, the ranges of the calculation parameters, in this case,
were adjusted to be:

• Ntree = 10–500 (set in multiples of ten intervals);
• Nfeature = 2–9;
• Random state_T = 0–5;
• Random state_M = 0–5.

As shown in Table 1, with an increase in the number of data points used for machine
learning, a remarkable increase in the maximum R2 value and decrease in the RMSE value
were observed, indicating that increasing the number of training data points would signifi-
cantly improve the machine learning model result after calculation with hyperparameter
and random seed adjustment.
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Table 1. The maximum R2 values obtained with various amounts of input data.

Amount of Input Data Maximum R2 Value RMSE

100 0.7777 0.5807
200 0.7805 0.5520
400 0.8212 0.5522
700 0.8972 0.3543

4. Discussion

Figure 6a compares the experimental log Kd values with the predicted values derived
from the RF model presenting the highest R2 value, as established in the present work. For
the comparison, the general RF model result that was calculated with Ntree = 105, Nfeature = 3,
Random state_T = 8, and Random state_M = 5, displaying the maximum R2 value of 0.9175,
was used. Note that the training data for the RF calculation are not shown in Figure 6a.
Consequently, a highly linear, 1:1 relationship between the predicted and experimental
values of log Kd was observed, which indicates the usability of this machine learning
method to predict the log Kd values for various radionuclides under arbitrary geochemical
conditions with bentonite materials. In addition, it is expected that the accuracy of the log
Kd prediction can be further improved by increasing the number of training data generally
(see Table 1). Furthermore, the comparison between the experimental log Kd values and
those predicted with the 5-5 nested cross-validation is shown in Figure 6b. According
to the result, all five different fold loops from 1 to 5 show notable consistency with the
overall R2 value of 0.8683. Note that the data presented in Figure 6b only indicate the result
determined by the five outer fold loops at Random state_T = 10 and are thus marginally
different from the final model test result of R2 = 0.8604.
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Figure 6. Comparisons of experimental log Kd value and predicted log Kd value, evaluated with
(a) the general RF model presenting the highest R2 value in this work, (b) the 5-5 nested cross-
validation method with Random state_T = 10, and (c) the partial least-squares regression method.

Although the R2 value obtained with the nested cross-validation method is slightly
lower than that determined using the general RF model, the performance of the model
established with the nested cross-validation method is still considered to be remarkable,
based on the robustness and stability of the calculation model, together with the presumable
mitigation of the overfitting problem.

In addition, Figure 6c presents the correlation between the experimental log Kd values
and those estimated with the partial least-squares regression (PLSR) method [36,37]. The
results calculated with the PLSR method show a relatively poor linear relationship between



Minerals 2022, 12, 1207 10 of 12

the whole experimental log Kd data and the corresponding predicted ones, with a remark-
ably low coefficient of determination value of R2 = 0.4848. The comparison among the
results obtained with different approaches clearly indicates that the machine learning-based
calculation outperforms the classical statistical method, i.e., PLSR. Note that the PLSR result
shown in Figure 6c was obtained with the number of partial least-squares components
set at 9.

Figure 7 shows the results of evaluating the relative importance of the input variables
using the MDI method, with the RF model representing the highest R2 value in this
study. All nine input variables showed a certain level of contribution to predicting the
log Kd value, according to the importance evaluation result. Most of all, the pH, followed
by log C0, EN, and LS, showed relatively higher criticality than the others.
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In particular, the pH is known to be a major variable having a sensitive effect on the
surface charge of a mineral and on the hydrolysis reaction of radionuclides in the aqueous
solution; hence, its importance can be explained and was quantitatively cross-checked via
the RF model. Conversely, both CEC and SA, which are correlated to the mineralogical
properties of bentonite, were found to have relatively low importance. It is assumed that
the types of bentonite adopted in this study are not diverse, so their criticalities were
evaluated to be insignificant, accordingly. The correlation between the input variables is
expected to show a significant change when the input training data for assorted types of
bentonites, with varied CEC and SA, are additionally considered in future investigations.

5. Conclusions

This study presented a model to predict the distribution coefficient, using the RF
method and the experimental adsorption data taken from the JAEA-SDB. The database for
the distribution coefficient prediction was constructed and the performance of the RF model
results was evaluated, based on the R2 and RMSE values. For the RF model calculation,
various calculation parameters (i.e., Ntree, Nfeature, Random state_T, and Random state_M)
were controlled, and the relevant effects on the R2 value were evaluated.

Previously, pH has been judged to be an important factor for the distribution coefficient,
according to the various experimental results. The RF model and MDI method employed
in the present work could quantitatively evaluate the importance of pH as a factor having
a significantly higher contribution than the other input variables. In the present work, the
R2 values were determined to be R2 = 0.9175 and R2 = 0.8604 for the general RF model and
the nested cross-validation method, respectively, suggesting that the use of the machine
learning method in predicting the log Kd value would be notably meaningful.



Minerals 2022, 12, 1207 11 of 12

This study is significant in that it has developed a model that can predict for the first
time the distribution coefficient by applying a machine learning algorithm to three major
bentonites that are used as backfill materials for deep-geologic repositories. The prediction
model for the distribution coefficient, based on the RF model, is judged to be helpful in
the preliminary estimation of the Kd values for unknown conditions. Furthermore, in
addition to the 22 radionuclides trained in this work, it is expected to be used to predict
the Kd value for the other radionuclides, based on the oxidation number, ionic radius, and
electronegativity. The authors of this work note that the RF model obtained with a large
Ntree value, i.e., Ntree = 1000, or the result obtained with the nested K-fold cross-validation
method might be practically used to avoid the overfitting issue since the amount of absolute
decrease in the R2 value is not remarkably large.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/min12101207/s1, Table S1: Input variable database for the
random forest model calculation [2,16–24].

Author Contributions: Conceptualization, J.-Y.L. and D.-H.K.; methodology, J.-Y.L. and D.-H.K.;
software, D.-H.K.; validation, J.-Y.L.; formal analysis, J.-Y.L.; investigation, D.-H.K.; resources, J.-Y.L.;
data curation, J.-Y.L. and D.-H.K.; writing—original draft preparation, D.-H.K.; writing—review
and editing, J.-Y.L.; visualization, J.-Y.L.; supervision, J.-Y.L.; project administration, J.-Y.L.; funding
acquisition, J.-Y.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea grant funded by
the Korean government [No. NRF-2021M2E1A1085204], the Korean Institute of Energy Technology
Evaluation and Planning (KETEP) and the Ministry of Trade, Industry and Energy (MOTIE) of the
Republic of Korea [No. 20214000000410].

Data Availability Statement: The data used in this study are available within this article and sup-
porting information.

Acknowledgments: The authors would like to thank Seonggyu Choi (KAERI) for his scientific advice
and support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. SKB. Design and Production of the KBS-3 Repository; SKB Technical Report TR-10-12; SKB: Stockholm, Sweden, 2010.
2. Sugiura, Y.; Suyama, T.; Tachi, Y. Development of JAEA Sorption Database (JAEA-SDB): Update of Sorption/QA Data in FY2019; Japan

Atomic Energy Agency: Ibaraki, Japan, 2020. [CrossRef]
3. Fernandes, M.M.; Vér, N.; Baeyens, B. Predicting the uptake of Cs, Co, Ni, Eu, Th and U on argillaceous rocks using sorption

models for illite. Appl. Geochem. 2015, 59, 189–199. [CrossRef]
4. Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press:

Cambridge, UK, 2014.
5. Zhang, W.; Li, Y.; Wu, C.; Li, H.; Goh, A.T.C.; Lin, H. Prediction of lining response for twin tunnels construction in anisotropic

clays using machine learning techniques. Undergr. Space 2022, 7, 122–133. [CrossRef]
6. Nafouanti, M.B.; Li, J.; Mustapha, N.A.; Uwamungu, P.; AL-Alimi, D. Prediction on the Fluoride Contamination in Groundwater

at the Datong Basin, Northern China: Comparison of Random Forest, Logistic Regression and Artificial Neural Network. Appl.
Geochem. 2021, 132, 105054. [CrossRef]

7. Cipullo, S.; Nawar, S.; Mouazen, A.M.; Campo-Moreno, P.; Coulon, F. Predicting bioavailability change of complex chemical
mixtures in contaminated soils using visible and near-infrared spectroscopy and random forest regression. Sci. Rep. 2019, 9, 4492.
[CrossRef] [PubMed]

8. Jooshaki, M.; Nad, A.; Michaux, S. A Systematic Review on the Application of Machine Learning in Exploiting Mineralogical
Data in Mining and Mineral Industry. Minerals 2021, 11, 816. [CrossRef]

9. Zhou, Z.H. Machine Learning; Tsinghua University Press: Beijing, China, 2016. [CrossRef]
10. Ray, S. A Quick Review of Machine Learning Algorithms. In Proceedings of the 2019 International Conference on Machine

Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; pp. 35–39. [CrossRef]
11. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
12. Stone, M. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B Methodol. 1974, 36, 111–133.

[CrossRef]

https://www.mdpi.com/article/10.3390/min12101207/s1
http://doi.org/10.11484/jaea-data-code-2019-022
http://doi.org/10.1016/j.apgeochem.2015.05.006
http://doi.org/10.1016/j.undsp.2020.02.007
http://doi.org/10.1016/j.apgeochem.2021.105054
http://doi.org/10.1038/s41598-019-41161-w
http://www.ncbi.nlm.nih.gov/pubmed/30872800
http://doi.org/10.3390/min11080816
http://doi.org/10.1007/978-981-15-1967-3
http://doi.org/10.1109/COMITCon.2019.8862451
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1111/j.2517-6161.1974.tb00994.x


Minerals 2022, 12, 1207 12 of 12

13. Krstajic, D.; Buturovic, L.J.; Leahy, D.E.; Thomas, S. Cross-validation pitfalls when selecting and assessing regression and
classification models. J. Cheminform. 2014, 6, 10. [CrossRef]

14. Varma, S.; Simon, R. Bias in error estimation when using cross-validation for model selection. BMC Bioinform. 2006, 7, 91.
[CrossRef] [PubMed]

15. Louppe, G.; Wehenkel, L.; Sutera, A.; Geurts, P. Understanding variable importances in forests of randomized trees. In Proceedings
of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013; pp. 431–439.

16. Chen, T.; Sedighi, M.; Jivkov, A.; Seetharam, S. A model for hydraulic conductivity of compacted bentonite–inclusion of
microstructure effects under confined wetting. Géotechnique 2020, 71, 1071–1084. [CrossRef]

17. Physical and Chemical Data of Source Clays. Available online: https://www.clays.org/sourceclays_data/ (accessed on
1 May 2022).

18. Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta
Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1976, 32, 751–767. [CrossRef]

19. Little, E.J., Jr.; Jones, M.M. A complete table of electronegativities. J. Chem. Educ. 1960, 37, 231–233. [CrossRef]
20. Millero, F.J.; Feistel, R.; Wright, D.G.; McDougall, T.J. The composition of Standard Seawater and the definition of the Reference-

Composition Salinity Scale. Deep Sea Res. Part I Oceanogr. Res. Pap. 2008, 55, 50–72. [CrossRef]
21. Torstenfelt, B.; Andersson, K.; Allard, B. Sorption of Sr and Cs on Rocks and Minerals; National Council for Radioactive Waste:

Stockholm, Sweden, 1981.
22. Torstenfelt, B.; Kipatsi, H.; Andersson, K.; Allard, B.; Olofsson, U. Transport of actinides through a bentonite backfill. In Scientific

Basis for Nuclear Waste Management-V; Lutze, W., Ed.; Elsevier: New York, NY, USA, 1982; pp. 659–668. [CrossRef]
23. Mateus, M.V.; Araújo, L.S.; Leopoldino, A.B.; Ferreira, M.d.S.; Ferreira, D.C.; da Luz, M.S.; Gonçalves, J.C.S.I. Molecular

interactions and modeling of anionic surfactant effect on oxygen transfer in a cylindrical reactor. Environ. Eng. Sci. 2019, 36,
180–185. [CrossRef]

24. Kitamura, A.; Tomura, T.; Sato, H.; Nakayama, M. Sorption Behavior of Cesium onto Bentonite and Sedimentary Rocks in Saline
Groundwaters; Japan Atomic Energy Agency: Ibaraki, Japan, 2008.

25. Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech Processing; Springer:
Berlin/Heidelberg, Germany, 2009; Volume 2, pp. 1–4. ISBN 978-3-642-00295-3.

26. Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020,
415, 295–316. [CrossRef]

27. Bernard, S.; Heutte, L.; Adam, S. Influence of hyperparameters on random forest accuracy. In Multiple Classifier Systems;
Benediktsson, J.A., Kittler, J., Roli, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5519, pp. 171–180. [CrossRef]

28. Renaud, O.; Victoria-Feser, M.P. A robust coefficient of determination for regression. J. Stat. Plan. Inference 2010, 140, 1852–1862.
[CrossRef]

29. Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the
literature. Geosci. Model Dev. 2014, 7, 1247–1250. [CrossRef]

30. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

31. Sklearn.ensemble.RandomForestRegressor. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.RandomForestRegressor.html (accessed on 1 May 2022).

32. Nested Cross-Validation. Available online: https://inria.github.io/scikit-learn-mooc/python_scripts/cross_validation_nested.
html (accessed on 1 May 2022).

33. Gao, X.; Wang, L.; Yao, L. Porosity Prediction of Ceramic Matrix Composites Based on Random Forest. In Proceedings of
the 3rd International Symposium on Application of Materials Science and Energy Materials (SAMSE 2019), Shanghai, China,
30–31 December 2019. [CrossRef]

34. Hou, N.; Zhang, X.; Zhang, W.; Wei, Y.; Jia, K.; Yao, Y.; Jiang, B.; Cheng, J. Estimation of surface downward shortwave radiation
over China from Himawari-8 AHI data based on random Forest. Remote Sens. 2020, 12, 181. [CrossRef]

35. Shreyas, R.; Akshata, D.M.; Mahanand, B.S.; Shagun, B.; Abhishek, C.M. Predicting popularity of online articles using Random
Forest regression. In Proceedings of the Second International Conference on Cognitive Computing and Information Processing,
Mysuru, India, 12–13 August 2016. [CrossRef]

36. Rosipal, R.; Krämer, N. Overview and recent advances in partial least squares. In Subspace, Latent Structure and Feature Selection
Techniques; Saunders, C., Grobelnik, M., Gunn, S., Shawe-Taylor, J., Eds.; Springer: New York, NY, USA, 2006; pp. 34–51. [CrossRef]

37. de Jong, S. SIMPLS: An alternative approach to partial least squares regression. Chemom. Intell. Lab. Syst. 1993, 18, 251–263.
[CrossRef]

http://doi.org/10.1186/1758-2946-6-10
http://doi.org/10.1186/1471-2105-7-91
http://www.ncbi.nlm.nih.gov/pubmed/16504092
http://doi.org/10.1680/jgeot.19.P.088
https://www.clays.org/sourceclays_data/
http://doi.org/10.1107/S0567739476001551
http://doi.org/10.1021/ed037p231
http://doi.org/10.1016/j.dsr.2007.10.001
http://doi.org/10.1557/proc-11-659
http://doi.org/10.1089/ees.2018.0217
http://doi.org/10.1016/j.neucom.2020.07.061
http://doi.org/10.1007/978-3-642-02326-2_18
http://doi.org/10.1016/j.jspi.2010.01.008
http://doi.org/10.5194/gmd-7-1247-2014
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://inria.github.io/scikit-learn-mooc/python_scripts/cross_validation_nested.html
https://inria.github.io/scikit-learn-mooc/python_scripts/cross_validation_nested.html
http://doi.org/10.1088/1757-899x/768/5/052115
http://doi.org/10.3390/rs12010181
http://doi.org/10.1109/ccip.2016.7802890
http://doi.org/10.1007/11752790_2
http://doi.org/10.1016/0169-7439(93)85002-X

	Introduction 
	Materials and Methods 
	Data Collection and Pre-Processing 
	Machine Learning Model 

	Results 
	Data Processing and PCC Analysis 
	RF and 5-5 Nested Cross-Validation 

	Discussion 
	Conclusions 
	References

