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Abstract: Saudi Arabia covers most of the Arabian Peninsula and is characterized by tectonic regimes
ranging from Precambrian to Recent. Using gravity data to produce the lateral boundaries of
subsurface density bodies, and edge detection of potential field data, a new subsurface structural
map was created to decipher the structural framework controls on the distribution of gold deposits
in Saudi Arabia. Moreover, we detected the relationships between major structures and mineral
accumulations, thereby simultaneously solving the problem of edge detectors over complex tectonic
patterns for both deeper and shallower origins. Analytic signal (ASg), theta map (TM), TDX, and
softsign function (SF) filters were applied to gravity data of Saudi Arabia. The results unveil low
connectivity along the Najd fault system (NFS) with depth, except perhaps for the central zones along
each segment. The central zones are the location of significant gold mineralization, i.e., Fawarah,
Gariat Avala, Hamdah, and Ghadarah. Moreover, major fault zones parallel to the Red Sea extend
northward from the south, and their connectivity increases with depth and controls numerous gold
mines, i.e., Jadmah, Wadi Bidah, Mamilah, and Wadi Leif. These fault zones intersect the NFS in the
Midyan Terrane at the northern part of the AS, and their conjugation is suggested to be favorable for
gold mineralization. The SF maps revealed the boundary between the Arabian Shield and Arabian
Shelf, which comprises major shear zones, implying that most known mineralization sites are linked
to post-accretionary structures and are not limited to the Najd fault system (NFS).

Keywords: gravity; edge detection; tectonic; Saudi Arabia; structural map

1. Introduction

The AS is of economic interest as it has promising potential for metallic mineral ex-
ploitation. The AS includes magmatic to late magmatic contact metamorphism, stratiform,
and vein deposits [1]. Many gold (Au) occurrences and other deposits have been detected
in the AS (>800); some of them are in the production stage, such as Mahd Ad Dahab,
Al-Sukhaibarat, and Bulghah [1,2]. Furthermore, the base metals (copper, zinc, and lead)
are delineated in some localities of the AS, for example, Al-Nuqrah, AL-Amar, and Jabal
Sayid [1].
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An important task in interpreting potential field data is to determine the location of the
subsurface density or magnetic susceptibility distributions and relate these to sub-surface
structures [3–7]. The edges of structures are useful in mapping boundaries for mineral and
oil exploration and tectonic investigations [8–12]. Various methods can be used to detect
structure edges, with most methods being based on derivatives of the source field [13,14].
The authors of [15] used the zero values of the first-order vertical gravity gradient to locate
the boundaries of the density-differing sources. Meanwhile, [16] used the peaks of the
horizontal gravity gradient to image structure boundaries, while [17] used the total gravity
gradient to extract density source edges. In [18], they used the analytic signal (ASg) of
the gravity gradient tensor to outline the boundaries of density sources. A limitation of
the vertical, horizontal, and total gravity gradients, and the ASg gravity method, is that
they have difficulty simultaneously determining boundaries of shallow and deep density
sources [19,20]. Several methods have been developed for solving these problems, including
the tilt derivative method, which is an arctan function of the ratio between the vertical and
horizontal gradients [21]; the theta map (TM) method, which normalizes the horizontal
gradient by the total gradient [22]; the horizontal tilt angle filter, which normalizes the
absolute value of the vertical gradient by the horizontal gradient [23]. Although the latter
methods can detect the edges of shallow and deep sources simultaneously, they can also
produce false or secondary edges not related to actual density sources [24,25]. To overcome
this drawback, [26] suggested using the tilt derivative of the horizontal gradient (TAHG) to
avoid producing secondary edges, but this may reduce resolution [27,28]. Recently, [29]
introduced the soft sign function (SF) filter, which is based on the second-order derivatives
of the potential field data. This method effectively improves the resolution of boundary
detection results while avoiding the secondary boundary issue.

In this study, we applied the ASg, TM, TDX, and SF filters to satellite gravity data
from Saudi Arabia to produce a new structural map and to define the relationship between
mineralization and major shear zones

2. Geology

Saudi Arabia is classified by two major geological features: the Arabian Shield (AS) in
the west and the Arabian Shelf, east of the AS (Figure 1) [30]. The AS consists of Precam-
brian igneous and metamorphic rocks, divided into eight terranes (Asir, Jeddah, Afif, Ad
Dawadimi, Ar Rayn, Ha’il, Hijaz, and Midyan) according to their mode of formation [31].
The ANS is part of a wider Proterozoic terrane called the Arabian–Nubian Shield that
extends to Egypt, Sudan, and Eritrea [32]. Most of the lithologies are Neoproterozoic in
age with scattered Archean and Paleoproterozoic lithologies. The Neoproterozoic crust
results from 300 million years of tectonic crustal growth starting at ~850 Ma [32]. Dur-
ing these 300-million-year periods, a series of magmatic arcs, sedimentary and volcanic
basins, and granitic intrusions formed during at least three continental collisions. These
collisions mostly occurred as intraoceanic subduction zones within the Mozambique Ocean,
formed by the breakup of Rodinia. The island arcs above them accreted to the ANS by
the Cryogenian–Ediacaran convergence of cratonic blocks, where the accretion zone is at
the surface as suture zones. The accretions started in the southern ANS, subsequently
moved to the north, and finally terminated in the northeast ANS during the formation of
Gondwana [33]. In the eastern part of the ANS, where the cessation of accretion is poorly
understood, pre-EAO blocks are not recorded. The ANS continues under the Arabian Shelf
or Platform. The Arabian Platform is a sequence of Paleozoic and younger sediments,
mainly formed on passive margins containing up to 10 km of limestones and siliciclastics.
The Paleozoic sequence hosts the world-famous oil and gas fields [34].
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The ANS has been affected by the Najd fault system (NFS), which is a system of NW-
trending, crustal-scale, sinistral strike-slip faults, and ductile shear zones formed during 
the collision between east and west Gondwana (Figure 1b) [37,39,40]. The NFS extends for 
2000 km, is over 400 km wide, and is partially covered by Cenozoic lavas and alluvium 
[32,41]. The NFS consists of a complex of parallel and en echelon faults with secondary 
structures including strike-slip, oblique-slip, thrust, and normal faults, along with folds 
and dike swarms. Movement along the NFS has exposed and formed core complexes, 
such as the Dokhan volcanics, granite plutonism, and molasse basins [37]. The Najd fault 
system cuts through older Neo-Proterozoic terranes and, in some cases, reactivated them. 
Deformation along the NFS is mainly brittle, but there is a penetrative tectonic fabric par-
allel to the fault zone in the southeastern ANS. The NFS consists of a complex of parallel 
and en echelon faults. With the termination of the major faults, secondary structures were 
formed, including strike-slip, oblique-slip, thrust, and normal faults, together with folds 
and dike swarms. Additionally, crustal-scale fault systems include N-S trending strike-
slip faults in the southern AS (Asir Terrane) and the eastern ANS [32]. NE–SW trending 
strike-slip faults occur within western AS in the Jiddah Terrane [41]. The geophysical data, 
and the wells drilled in the Rub’ Al Khali, reveal a basin situated under the Quaternary 

Figure 1. (a) Location and geologic map of Saudi Arabia modified after [35,36]. (b) Mineralization
and structures of the Arabian shield modified from [32,33,37,38].

The ANS has been affected by the Najd fault system (NFS), which is a system of
NW-trending, crustal-scale, sinistral strike-slip faults, and ductile shear zones formed
during the collision between east and west Gondwana (Figure 1b) [37,39,40]. The NFS
extends for 2000 km, is over 400 km wide, and is partially covered by Cenozoic lavas and
alluvium [32,41]. The NFS consists of a complex of parallel and en echelon faults with
secondary structures including strike-slip, oblique-slip, thrust, and normal faults, along
with folds and dike swarms. Movement along the NFS has exposed and formed core com-
plexes, such as the Dokhan volcanics, granite plutonism, and molasse basins [37]. The Najd
fault system cuts through older Neo-Proterozoic terranes and, in some cases, reactivated
them. Deformation along the NFS is mainly brittle, but there is a penetrative tectonic fabric
parallel to the fault zone in the southeastern ANS. The NFS consists of a complex of parallel
and en echelon faults. With the termination of the major faults, secondary structures were
formed, including strike-slip, oblique-slip, thrust, and normal faults, together with folds
and dike swarms. Additionally, crustal-scale fault systems include N-S trending strike-
slip faults in the southern AS (Asir Terrane) and the eastern ANS [32]. NE–SW trending
strike-slip faults occur within western AS in the Jiddah Terrane [41]. The geophysical data,
and the wells drilled in the Rub’ Al Khali, reveal a basin situated under the Quaternary
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sand with structural evolution from the late Precambrian to the Neogene [42]. Additionally,
these data displayed N–S and NW–SE trends. The Moho depth is about 40 km for the Rub´
Al Khali area [43,44].

There are two main types of suture zones within the ANS: arc–arc sutures and arc-
continent sutures. Arc–arc sutures separate juvenile terranes and include the Yanbu–
Onib–Sol Hamed–Allaqi–Heinai suture [45,46], the Nakasib–Bir Umq suture [47,48], the
Baraka–Tulu Dimtu suture [45,49], the Adola–Moyale suture [49], and the Afif terrane
suture [37]. The less common arc-continent sutures separate juvenile EAO blocks from the
pre-Neoproterozoic crust and include the Keraf suture to the west of the ANS [49,50].

The AS is characterized by economic importance as it contains a high potential for
metallic mineral deposits. Many Au occurrences and deposits exist in the AS (>800), with
some in the production stage, such as Mahd Ad Dahab, Al-Sukhaibarat, and Bulghah [1,2].
Additionally, base metal (copper, lead, zinc, and silver) occurrences have been reported in
some locations of the ARS, for example, Jabal Sayid, Al-Nuqrah, and AL-Amar [1].

Ore Deposits on the Arabian Shield

Economic mineral concentrations, including Au mineralization on the ANS, can be
related to three different types of tectonic settings and their host rocks [51]. The mineral
deposits are partially related to the major fault systems or suture zones within the ANS [52].
Volcanogenic massive sulfides (VMS), epithermal base- and precious-metal deposits are
mainly associated with volcano and sedimentary sequences. Some of the sequences have
been reworked by the NFS, where some of the Au-rich VMS and syngenetic Au-poor VMS
deposits were overprinted by regional tectonic deformation and Au mineralization [51]. The
second type of Au mineralization is associated with carbonatize ophiolitic ultramafic rocks,
which formed along the Neoproterozoic suture zones and have been found along with the
Nabitah Al Amar, Di’r Um, and Yanbu suture zones [53]. The third type of Au deposit
is associated with the late Neoproterozoic tectonic activity (640–610 Ma), which included
granitic pluton development and volcanic units associated with these intrusions [54]. Some
of these deposits are structurally controlled by the regional strike-slip faults formed after
the accretion of the terranes that formed the ANS [55].

Orogenic Au (Au-bearing quartz-carbonate veins) [52] is the most common Au deposit
in the ANS, with VMS Au deposits being the second most common [52]. The redistribution
of Au within quartz-carbonate vein-type deposits requires the circulation of low salinity,
high CO2 hydrothermal fluids through structurally controlled channels within mafic-
ultramafic successions [56].

The Arabian–Nubian Shield (ANS) is a fan- or flower-shaped structure of the juvenile
crust, tipped-out at its southern part and expanded E–W toward the north. The ANS is
accreted mainly over intraoceanic subduction zones, with the old intraoceanic subduction
zones preserved at the surface as suture zones. Terrane accretions started from the southern
part moving northward but terminated at the northeastern part of the ANS during the
Gondwana amalgamation [33]. In the eastern part of the ANS, where the cessation of
accretion is poorly understood, pre-EAO blocks are not recorded. Instead, different terranes
with various geologic histories are recorded east of the ANS in Oman, which is considered
a window into Indian Neoproterozoic accretionary growth [57].

Of the two main types of sutures identified in the ANS, the arc–arc sutures are the
most abundant type separating juvenile terranes, including the Yanbu–Onib–Sol Hamed–
Allaqi–Heinai suture [45,46], the Nakasib–Bir Umq suture [47,48,58–60], the Baraka–Tulu
Dimtu suture [45,49], the Adola–Moyale suture [49], and the Afif terrane suture [37]. The
arc-continent sutures separate juvenile EAO blocks from the pre-Neoproterozoic crust, i.e.,
the Keraf suture to the west of the ANS [49,50,61]. The ANS with a mantle geochemical sig-
nature is dominated by Au, Nb, Ta, U, and REE mineralization [37], and their redistribution
to the economic grade is controlled by shear zones and fault systems.

Shear zones are intense ductile deformations that are thin relative to their lateral extent.
Shear zones, similar to faults, typically show offsets of older structures, but unlike faults,
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they lack through-going brittle fractures. In practice, faults and shear zones are closely
related. Many major fault structures at the Earth’s surface probably connect with ductile
shear zones at depth, and in the transition, it is common to find composite zones that
display combinations of brittle fracture and ductile flow.

The Najd fault system (NFS) is one of the main structural features cutting through the
Precambrian Arabian Shield and is an NW–SE trending complex set of crustal-scale sinistral
strike-slip faults and ductile shear zones [37,39,62]. The core complex exhumation, Dokhan
volcanics, younger granite plutonism, and molasse basins are the main morphotectonic
units related to the Najd fault system [37]. The formation of the NFS is probably related to
the E–W Gondwana collision event. As a post-accretionary fault system, it is the largest
exposed Proterozoic transcurrent (strike-slip) fault system on Earth [37,39,63]. The NFS is
between 630 and 540 Ma (Precambrian to Lower Cambrian) and is approximately 300 km
in width [62]. Exposure of the NFS extends for 1100 km inland, while the inferred buried
extensions give it a total length of 2000 km (Figure 1). The NFS deformation is mainly
brittle, but there is a penetrative tectonic fabric parallel to the fault zone in the southeastern
Arabian Shield. Basement block movement along the line of the Najd has affected the
Phanerozoic cover strata for more than 100 km SE from the edge of the shield. The NFS
is a complex of parallel and en echelon major faults, with curved outcrop traces that
intersect or join to form braided zones. At the termination of the major faults, secondary
structures are formed, including strike-slip, oblique-slip, thrust, and normal faults, together
with folds and dike swarms. Local reactivation by the Tertiary Red Sea rifts is present at
the termination of the NFS at the Red Sea coast [64]. The importance of the Najd fault
system includes its sheer size, role in the cratonization of Gondwana, and control on the
distribution of hydrothermal ore deposits [65,66] and groundwater flow [67,68].

Orogenic Au (Au-bearing quartz-carbonate veins) [37] in the Arabian Shield is the
predominant mineral deposit type, but VMS Au deposits are also found and include the
Jabal Say’id deposit [37]. The redistribution of Au into quartz-carbonate vein deposits
requires the circulation of low salinity, high CO2 hydrothermal fluids through structurally
controlled channels within mafic-ultramafic successions [56]. This study delineates the
structural framework of the Saudi Arabian portion of the ANS that controls the distribution
of orogenic Au and the connectivity between these pathways at different depths.

3. Gravity Data Analysis Methodology

In order to investigate the structural controls that helped localize ore deposits within the
ANS, we employed a variety of edge detection methods for delineations in the gravity data.

The authors of [17] proposed using the maximum values of the ASg to distinguish
density source edges, where the ASg is given by:

ASg =

√(
∂F
∂x

)2
+

(
∂F
∂y

)2
+

(
∂F
∂z

)2
. (1)

The ASg method uses the maximum ASg values to infer the source edges. Although
this method is less dependent on the source vector direction, the result is unclear for thin
or deep sources [11,69].

In [22], the TM approach was introduced, which normalizes the total horizontal
gradient by the ASg:

TM = acos

√(
∂F
∂x

)2
+
(

∂F
∂y

)2

|AS| . (2)

The minimum values of the TM correspond to the horizontal boundaries of the poten-
tial field sources. The method can balance the anomaly amplitudes generated by density
sources from different depths. However, it may produce false edges when the model simul-
taneously contains both positive and negative density contrasts or magnetizations [19].
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In [23], they developed the TDX method, which is the normalization of the total
horizontal gradient by the absolute value of the vertical gradient:

TDX = atan

√(
∂F
∂x

)2
+
(

∂F
∂y

)2

∣∣∣ ∂F
∂z

∣∣∣ . (3)

The TDX method uses the maximum TDX values to outline the edges of the density
sources. The method is similar to the TM method, as it can produce edges from both deep
and shallow anomalies, but may produce false edges around sources [66,70].

Another balanced edge detection method, introduced by [29], is called the SF filter.
The filter is defined as follows:

SF =
k×HGz − (k + 2)

√
(HGx)

2 +
(
HGy

)2√
(HGx)

2 +
(
HGy

)2
+

∣∣∣∣k×HGz − (k + 1)
√
(HGx)

2 +
(
HGy

)2
∣∣∣∣ (4)

where k is a positive real number chosen by the interpreter; in this study, we used
k = 4 [29]. HGx, HGy, and HGz are the x, y, and z gradients of the horizontal gradient
HG of the potential field data F, which is given by:

HG =

√(
∂F
∂x

)2
+

(
∂F
∂y

)2
. (5)

The authors of [29] showed that values of k between 1 and 10 provide the best results.
The maximum values of the SF are on the source edges, and it can detect shallow and deep
edges at the same time. The disadvantage of the SF method is that it is more sensitive to
noise than other methods [29]. The major advantage of the method is that it avoids false
edges. However, upward continuing of the gravity data reduces the noise [29].

4. Results

The gravity data were obtained from the global gravity field model EIGEN6C4 [71].
The EIGEN6C4 data have a higher resolution, and their error is lower than that of EIGEN6C3
and EGM2008 [72]. The EIGEN6C4 model was created using the satellite gravity data from
the DTU10, GOCE, LAGEOS, and GRACE projects and available surface gravity data. The
resultant grid has a resolution of approximately 3.66 km. Figure 2 shows the Bouguer
gravity anomaly (BG) map after correcting the free-air gravity anomaly data from the
EIGEN6C4 model. The BG map of Saudi Arabia (Figure 2a) shows a regional variation in
the anomaly values that trend from lower anomaly values in the west to higher anomaly
values in the east. The regional anomaly gradient contrasts with the thickening of the crust
to the east [73], suggesting that this regional gravity anomaly gradient is due to lithological
crust variations. Additionally, there are definite northwest–southeast and north–south
trends in the majority of the anomalies, which can be related to the Neoproterozoic tectonic
terranes and fault systems (Figure 1).

The ASg, TM, TDX, and SF filters were applied to the BG data (Figure 2a). The ASg
map (Figure 2b) does not produce obvious lineaments that can be related to shallow or
deep structures. Figure 2c–d show that the TM and TDX filters generate lineaments that
are intraconnected, which can complicate the interpretation process. The SF map (Figure 3)
indicates a more precise delineation in terms of length and width. The SF-derived lineations
are easier to interpret by visual comparison.



Minerals 2022, 12, 71 7 of 20Minerals 2022, 12, x FOR PEER REVIEW 7 of 22 
 

 

 
Figure 2. (a) Bouguer gravity anomaly map. (b) ASg map of the BG data. (c) TM of the BG data. (d) 
TDX map of the BG data of Saudi Arabia. 

The ASg, TM, TDX, and SF filters were applied to the BG data (Figure 2a). The ASg 
map (Figure 2b) does not produce obvious lineaments that can be related to shallow or 
deep structures. Figure 2c–d show that the TM and TDX filters generate lineaments that 
are intraconnected, which can complicate the interpretation process. The SF map (Figure 
3) indicates a more precise delineation in terms of length and width. The SF-derived line-
ations are easier to interpret by visual comparison. 

Figure 2. (a) Bouguer gravity anomaly map. (b) ASg map of the BG data. (c) TM of the BG data.
(d) TDX map of the BG data of Saudi Arabia.



Minerals 2022, 12, 71 8 of 20Minerals 2022, 12, x FOR PEER REVIEW 8 of 22 
 

 

 
Figure 3. SF map of the BG data of Saudi Arabia. 

The above-filtered maps contain numerous short lineaments, probably due to insig-
nificant density bodies or noise in the data. Therefore, to map subsurface density bound-
aries of interest and suppress high-frequency anomalies, the BG data were upward-con-
tinued [74–78] (to altitudes of 2 and 4 km; Figures 6a and 8a, respectively). These upward-
continued maps, in general, represent density boundaries 3 and 6 km below the Earth’s 
surface [79]. Then the ASg, TM, TDX, and SF filters were applied to the upward-continued 
(UPC) data (Figures 4b–d, 5, 6b–d, and 7). The same general patterns are revealed in the 
up-continued filtered maps above (Figure 2b–d). The ASg filter does not produce useful 
lineaments for deeper density boundaries. The TM and TDX filters created a series of lin-
eaments, but numerous short lineaments made interpretation difficult. The longer linea-
ments generally agreed in location with both methods and the SF filter, but were not as 
highly resolved as the SF-generated lineaments (Figures 5 and 7). The SF filter maps (Fig-
ures 5 and 7) had some short lineaments, but mainly consisted of longer lineaments, even 
at 6 km depth. This made the interpretation of the lineaments easier. Most longer linea-
ments either trended N–S, especially in the southern and western portion of Saudi Arabia, 
or NW–SE elsewhere. These directions agree with the major fault system orientation or 
the trend of the suture zones (Figure 1). 

Figure 3. SF map of the BG data of Saudi Arabia.

The above-filtered maps contain numerous short lineaments, probably due to in-
significant density bodies or noise in the data. Therefore, to map subsurface density
boundaries of interest and suppress high-frequency anomalies, the BG data were upward-
continued [74–78] (to altitudes of 2 and 4 km; Figures 6a and 8a, respectively). These
upward-continued maps, in general, represent density boundaries 3 and 6 km below the
Earth’s surface [79]. Then the ASg, TM, TDX, and SF filters were applied to the upward-
continued (UPC) data (Figures 4, 5, 6b–d and 7). The same general patterns are revealed in
the up-continued filtered maps above (Figure 2b–d). The ASg filter does not produce useful
lineaments for deeper density boundaries. The TM and TDX filters created a series of linea-
ments, but numerous short lineaments made interpretation difficult. The longer lineaments
generally agreed in location with both methods and the SF filter, but were not as highly
resolved as the SF-generated lineaments (Figures 5 and 7). The SF filter maps (Figures 5
and 7) had some short lineaments, but mainly consisted of longer lineaments, even at 6 km
depth. This made the interpretation of the lineaments easier. Most longer lineaments either
trended N–S, especially in the southern and western portion of Saudi Arabia, or NW–SE
elsewhere. These directions agree with the major fault system orientation or the trend of
the suture zones (Figure 1).
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5. Discussion
5.1. The Traced Lineament Inspection by Application of the Various Detectors

The above discussion shows that the SF provided the best resolved or highest re-solved
lineaments for both shallow and deeper density sources. To prove reliability, we compared
the edges obtained from the SF filter with a geologic cross-section across the study area
(Figure 8). We see a good correlation between geologic information and the images of the
SF, with many peaks indicating basement-reverse faults.

To emphasize how the SF filter generated easier-to-interpret and better-resolved linea-
ments due to deep density sources, a close-up of the anomalies from the BG and 4 km UPC
maps are shown (black rectangle) in Figures 2 and 3 and Figures 6 and 7 (Figure 9). The
ASg filter does not accurately produce lineations and thus is hard to interpret (Figure 9a,e).
The TM filter (Figure 9b,f) does produce lineations, but the width of the maxima is too
wide to accurately determine the edge of either a shallow or deep source. Moreover, too
many lineations merge into one another, making interpretation difficult. Although the TDX
filter (Figure 9c,g) does a better job in producing distinct thin lineaments, they are still
interconnected, thus producing false edges. Only the SF filter (Figure 9d,h) produces sharp
and thin edges where the thinner edges are sharper.
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(c) Geologic cross-section across the study area showing basement-reverse faults and Precambrian
(Infracambrian) salt. Modified from [80–82].
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Figure 9. Filter anomalies of the region are highlighted in Figures 2, 3, 6 and 7: (a) ASg of BG
(Figure 2b); (b) TM of BG (Figure 2c); (c) TDX of BG (Figure 2d); (d) SF of BG (Figure 3); (e) ASg of
4 km UPC (Figure 6b); (f) TM of 4 km UPC (Figure 6c); (g) TDX of 4 km UPC (Figure 6d); (h) SF of
4 km UPC (Figure 7).



Minerals 2022, 12, 71 14 of 20

In order to emphasize the lineaments, we used ArcGIS algorithms to trace and de-
lineate the structural lineaments on all BG and 4 km UPC-filtered maps. Figure 10 shows
the maxima of the ASg, TM, and TDX filtered results (Figures 2 and 6); the orientations
of these maxima are shown as rose diagrams. The ASg and ASg-4km UPC lineaments
and rose diagrams (Figure 10a,d,g,j) cannot produce significant lineations from shallow
or deep density bodies. This is especially true in the southeastern part of Saudi Arabia,
where the ASg failed to detect density boundaries beneath the thick sedimentary cover. The
blurred and wide maxima from the TM and TM-4km UPC maps produce lineaments, but
the maxima lineaments are disconnected, making them hard to relate to regional structures
(Figure 10b,e,h,k). The connected edges are reflected in the connectivity of the traced max-
ima lineaments from the TDX filter (Figure 10c,i). The rose diagrams of the TDX lineaments
(Figure 10f,l) indicate a broad trend that does not agree with mapped structures within
Saudi Arabia, indicating that the TDX filter generates false lineaments.
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Figure 10. Lineament maps of the maxima anomalies using the BG data from the various filters:
(a) ASg; (b) TM; (c) TDX, as well as Rose diagrams of the orientations of BG-generated lineaments:
(d) ASg; (e) TM; (f) TDX. Lineament maps of the maxima anomalies using the 4 km UPC data from
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UPC-generated lineaments: (j) ASg; (k) TM; (l) TDX.
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Figure 11 shows the lineament and statistical analysis (rose diagrams) of the SF filters
and the main structural features and Au deposits [32,33,83]. The SF results from the shallow
and deeper density bodies are easier to interpret as they are more connected than the other
filtered results. The rose diagrams additionally indicate trends of the lineaments that agree
with the mapped structures of Saudi Arabia [32].
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Figure 3 showed that the SF method could sharply detect important structural features.
The Najd fault system (NFS) can be delineated in near-parallel lines extending from the
southeastern to the northwestern sides of Saudi Arabia. The boundary between the AS,
Arabian Shelf, and another area [32,33] and references therein can be sharply detected.
Moreover, the main sutures and shear zones separate the AS terranes. Multiple intersection
zones and high, abrupt curvatures in the structures can be delineated from the SF map
(Figure 3).

Geodynamically, the AS is one of the Earth’s most significant megastructures [84].
Accordingly, the SF maps (Figures 3, 5 and 7) unveil the first tectonostructural map of Saudi
Arabia (Figure 11). The structures, boundaries, and lineaments of Saudi Arabia are outlined
and traced (Figure 11a–c) and statistically examined in rose diagrams (Figure 11d–f) for
the SF–BG, SF-2 km UPC, and SF-4 km UPC results, respectively. These figures reveal
that the NW to WNW trends have notable structures dominating the evolution of the AS
and Arabian Shelf in Saudi Arabia. Based on the irregularities, the rheological and lateral
abnormalities, multiple junctions, and tectonic characteristics of the gravity data (Figure 3),
we can partition the AS of Saudi Arabia into tectonic terranes/territories (Figure 12). These
subclasses harmonize well with the published subdivisions based on structural/field
investigations and geological observations [32,85]. The Asir terrane is differentiated from
the neighboring terranes (Jeddah and Afif) based on the distinguished curvature in the
lineaments and boundaries (Figure 3). Figures 3 and 11 unveil that the Hijaz terrane is
distinguished by the NW architectural style; WNW is dominant in the Ha’il terrane, while
the NNW and NW trends affect the Afif terrane. The application of a sharp SF edge detector
to gravity data outlined and interpreted the main tectonics well, and we were consequently
able to produce a new structural map for all of Saudi Arabia.
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5.2. The Relationship between the Main Structures and Au Mineralization

Major Au deposits in Saudi Arabia are controlled by shear zones [86,87]. When su-
perimposed onto the SF map (Figure 5), known mineralization sites linked to the NFS
and major shear zones reflect the structurally controlled mineralization of Saudi Arabia.
Au-related deformation events linked to ore genesis were distinct from high-level, brittle
deformation typical of many epithermal deposits. Au-ore genesis is related to a high-level
deformational event; these tectonic events accompanied significant fluid flows [88]. Tecton-
ically, ANS Au mineralization is related to the deformational tectonothermal events active
during the primitive stages of the island-arc formation. Pre-orogenic Au mineralization
was formed by hot brines accompanying submarine volcanic activity [89].

Many orogenic Au deposits are controlled by shear zones and fault systems (Figure 11).
The conjugate NFS with sinistral displacement in an NW direction (i.e., Qazaz, Ajjaj,
Halaban-Zarghat, Ar Rika, and Ruwah fault zones) and dextral sense with a NE direction
(i.e., Hanabiq, Al Amar, Ad Damm, and Nabitah fault zones) exist in limited zones relative
to the total area of the Arabian Shield. There are numerous Au mines located outside the
NFS zone, and, unexpectedly, the connectivity between the conjugate systems of the NFS
decreases downward (Figure 11a–c). Additionally, the connectivity along the same fault
zone decreases downward (Figure 11a–c), and the central zones in each fault zone become
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more significant with increasing depth. The potentiality of extensive Au mineralization
increases above the central zones, confirmed by the location of large Au mines directly
above the central zone, i.e., Fawarah, Gariat Avala, Hamdah, and Ghadarah. Therefore,
the presence of small mines lacking structural controls at greater depths is related to
disconnectivity with the fault’s central zones (Figure 9a–c), which are the main feeding
zones for Au mineralization, resulting from fluid circulation at greater depths.

Unexpectedly, major fault zones parallel to the Red Sea extend south to north; their
connectivity increases downward and controls numerous Au mines, i.e., Jadmah, Wadi
Bidah, Mamilah, and Wadi Leif. These fault zones intersect the NFS in the Midyan Terrane
at the northern part of the AS, and their conjugation is a favorable area for Au mineralization
at greater depth.

6. Conclusions

Economically, Saudi Arabia is one of the most essential regions of the world. Producing
a new structural map for Saudi Arabia with structurally related mineralizations was the
main target of our study. To achieve the results, we applied the ASg, TM, TDX, and SF
methods to actual satellite BG data of Saudi Arabia. The SF filter applied to the gravity
data of Saudi Arabia efficiently delineated the contacts and lineaments for both shallow
and deep components of Saudi Arabia.

We produced new structural maps for BG and upward-continued data of Saudi Arabia
by applying the accurate and sharp SF filter. The deduced structures from the SF filter
were compared with structures from previous studies and known mineralized zones of
Saudi Arabia. The results revealed that most of the known mineralization sites in Saudi
Arabia are structurally controlled but not governed by the NFS. Most orogenic Au deposits
were controlled by prominent and subsidiary shear zones. Au-related deformation events
linked to ore genesis were distinct from high-level, brittle deformation typical of many
epithermal deposits.

Finally, the SF filters were successfully employed to construct new deep and shallow
tectonostructural maps of Saudi Arabia. These new tectonostructural maps were used to
decipher the structural framework controlling the mineral deposits of Saudi Arabia.
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