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Abstract: This paper provides a summary of traditional, current, and developing exploration tech-
niques using indicator minerals derived from glacial sediments, with a focus on Canadian case
studies. The 0.25 to 2.0 mm fraction of heavy mineral concentrates (HMC) from surficial sediments
is typically used for indicator mineral surveys, with the finer (0.25–0.50 mm) fraction used as the
default grain size for heavy mineral concentrate studies due to the ease of concentration and sep-
aration and subsequent mineralogical identification. Similarly, commonly used indicator minerals
(e.g., Kimberlite Indicator Minerals—KIMs) are well known because of ease of optical identification
and their ability to survive glacial transport. Herein, we review the last 15 years of the rapidly grow-
ing application of Automated Mineralogy (e.g., MLA, QEMSCAN, TIMA, etc) to indicator mineral
studies of several ore deposit types, including Ni-Cu-PGE, Volcanogenic Massive Sulfides, and a
variety of porphyry systems and glacial sediments down ice of these deposits. These studies have
expanded the indicator mineral species that can be applied to mineral exploration and decreased the
size of the grains examined down to ~10 microns. Chemical and isotopic fertility indexes developed
for bedrock can now be applied to indicator mineral grains in glacial sediments and these methods
will influence the next generation of indicator mineral studies.

Keywords: indicator minerals; mineral chemistry; automated mineralogy; MLA; QEMSCAN; laser
ablation; mineral exploration; ore deposits

1. Introduction

Most new mineral deposits yet to be discovered are likely concealed underneath cover
rocks or unconsolidated sediments. The ability to see through this cover and to detect and
understand the nature of the underlying bedrock ore environment has become a fundamen-
tal aspect of modern mineral exploration and ore deposit science [1–3]. The detection of
buried mineral deposits using a variety of surficial materials has been aided using indicator
mineral methods, specifically in our ability to (1) identify minerals that are indicative of
specific mineral deposit types; (2) identify and separate these same indicator minerals from
sediment samples; and (3) measure the unique chemical and isotopic composition of these
indicator minerals [4–7].

The extent of the Last Glacial Maximum (LGM) was likely around 34.5 million km2

with the greatest areas impacted in the Northern Hemisphere and covered by the Laurentide
and Fennoscandian ice sheets [8]. Over the last 2 million years, most of Canada was
glaciated leaving only 10% of its bedrock surface exposed as outcrop [9]. Approximately
80% of Canada is covered primarily by glacial and related sediments varying from <1 to
300 m in thickness. Over the past 30 years, indicator mineral methods in Canada have
advanced such that they can now be used to detect a broad spectrum of mineral deposit
types that are covered by glacial sediments (Table 1). In this paper, we present an overview
of the current methods for, and applications of, indicator mineral chemistry with examples

Minerals 2022, 12, 59. https://doi.org/10.3390/min12010059 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min12010059
https://doi.org/10.3390/min12010059
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://doi.org/10.3390/min12010059
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min12010059?type=check_update&version=2


Minerals 2022, 12, 59 2 of 27

from the glaciated terrain of Canada, and in particular for till—the optimal indicator
mineral sample medium in glaciated terrain [5].

Table 1. Common indicator minerals that can be readily recovered from glacial sediment samples
derived from different mineral deposit types (modified from McClenaghan et al., 2020) [10].

Deposit Type Ore
Elements Common Indicator Minerals Published Reviews and Selected Examples

Kimberlite-hosted
diamonds C Cr-pyrope, Cr-diopside, eclogitic garnet,

Mg-ilmenite, chromite, olivine, diamond

Lehtonen et al. (2005) [11]; McClenaghan and
Kjarsgaard (2001, 2007) [12,13];

McClenaghan et al. 2002, 2004, 2012c) [14–16];
Strand et al. (2009) [17]; Stea et al. (2009) [18];

Pell et al. (2013) [19]

Volcanogenic
massive sulphide

Cu, Pb, Zn,
Ag, Au

chalcopyrite, sphalerite, galena,
pyrrhotite, gold, pyrite, gahnite,
staurolite, cassiterite, spessartine,

sillimanite, andalusite, beudantite,
jarosite, barite, tourmaline, hogcomite,

nigerite

Lalonde et al. (1994) [20]; Morris et al. (2002)
[21]; Averill (2001) [22]; Paulen et al., (2013)
[23]; McClenaghan et al. (2015a,b) [24,25];

Makvandi et al., (2016) [26]; Lougheed et al.
(2020) [27]

Carbonate-hosted
lead-zinc

Ag, Cu, Pb,
Zn

chalcopyrite, sphalerite, galena, pyrite,
barite, spessartine, smithsonite, anglesite,

cerussite

Paulen et al. (2011) [28]; Oviatt et al. (2015)
[29]; McClenaghan et al., (2018) [5]

Gold Au, Ag
gold, scheelite, tourmaline, rutile,
sulphides, tellurides, PGM, barite,

cinnabar

Averill and Zimmerman (1986) [30]; Averill
(2001, 2013, 2017) [22,31,32]; Plouffe (2001) [33];
McClenaghan (2001) [34]; Sarala et al. ( 2009)

[35]; McClenaghan and Cabri (2011) [36];
Sarapää and Sarala (2013) [37]; Manéglia et al.

(2018) [38]

Magmatic
Ni-Cu-PGE Ni, Cu, PGE

pentlandite, chalcopyrite, pyrite,
millerite, PGM, chromite, Cr-diopside,

enstatite, olivine, Cr-andradite

Bajc and Hall (2000) [39]; Barnet and Averill
(2010) [40]; McClenaghan and Cabri (2011) [36];
Averill (2011) [41]; McClenaghan et al. (2013;

2020b) [42,43]; Hashmi et al. (2021) [44];
Makvandi et al. (2021) [45]

Rare metals Rare Metals

pyrochlore, columbite, Ta-minerals,
allanite, zircono-silicates, apatite,
monazite, fluorite, rhabdophane,

arfvedsonite

Lehtonen et al. (2015) [46]; Sarapää and Sarala
(2013) [37]; Mao et al. (2016) [47]; Mackay et al.

(2016) [48]; McClenaghan et al. (2019) [49]

Porphyry
Cu-Au-Mo

Cu, Mo, Au,
Ag

chalocopyrite, chalcocite, pyrite,
molybdenite, gold, silver, epidote,

tourmaline, apatite, andradite, barite,
monazite, rutile, titanite, zircon, jarosite,

malachite, pyrolusite, magnetite

Averill (2011) [41]; Kelley et al. (2011) [50];
Eppinger et al. (2013) [51]; Hashmi et al. (2015)

[52]; Chapman et al. (2015, 2018) [53,54];
Plouffe et al. (2016; 2019) [55,56]; Pisiak et al.

(2017) [57]; Plouffe and Ferbey (2017) [58];
McClenaghan et al. (2020c) [59]; Lee et al., 2021

[60]; Beckett-Brown et al. (2021) [61]

Intrusion-hosted
Sn-W Sn, W, Mo

cassiterite, scheelite, wolframite,
molybdenite, chalcopyrite, Bi sulphides,

sulphides, fluorite, topaz, tourmaline

McClenaghan et al. (2017a, 2017b) [6,7];
Poulin et al. (2018) [7], Lougheed et al., 2021

[62]

Iron oxide-
Copper-Gold Fe, Cu, Au magnetite, gold, apatite, pyrite,

chalcopyrite, pyrrhotite, titanite, epidote
McMartin et al. (2011) [63]; Sappin et al. (2014)

[64]; Normandeau et al. (2018a, b) [65,66];

Uranium U

uraninite (*pitchblende), thorianite,
tourmaline, sulphides, monazite, allanite,

zircon, baddelyite, niccolite, U-Th
anatase, U-Th rutile, brannerite,

magnetite

Geddes (1982) [67]; Makvandi et al. (2017, 2019,
2021) [68–70]

PGM = Platinum Group Minerals; PGE = Platinum Group Elements; * pitchblende- brown or black pitchy massive
form of uraninite.
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2. Mineral Identification and Mineral Chemistry
2.1. Mineral Identification for >0.25 mm (Medium to Very Coarse Sand-Sized) Grains

The separation and visual identification of indicator minerals from glacial sediment
samples relies on characteristics largely related to mineral chemistry, i.e., visual distinc-
tiveness and moderate to high density [13,22,41]. Indicator minerals are selected from
a >0.25 mm heavy mineral concentrate (HMC) after a sediment sample has undergone
concentration and separation using various combinations of sizing, density, and magnetic
methods (McClenaghan, 2005, 2011) [4,71]. During an optical examination of an HMC
under a stereoscopic microscope, indicator minerals are counted and a selection of grains
is “picked”, a process that may require up to 3 h per sample. A few grains to several
thousand grains may be separated into vials based on colour and mineral habit, such as
the well-known kimberlite indicator minerals used for diamond exploration (Figure 1).
The production of high-quality HMCs and mineral identification and selection by expe-
rienced technicians are vitally important in the first critical step of any indicator mineral
chemical study. Selected mineral grains are commonly epoxy-mounted in organized rows
(Figure 2A,B), polished, and carbon-coated for examination using microanalytical tech-
niques. Traditional indicator mineral picking of the >0.25 mm HMC of till samples for
mineral exploration in glaciated terrain has been used for more than 50 years, mostly for
the exploration for gold and diamond deposits [4,12,13,22,43].

Figure 1. Examples of the colour and habit variations in kimberlite indicator minerals that can be
observed using optical techniques (modified from McClenaghan and Paulen, 2020): (a) purple to pink
Cr-pyrope; (b) Cr-pyrope with dark green-grey kelyphite rims (k); (c) Cr-diopside; (d) eclogitic garnet;
(e) Mg-ilmenite; (f) chromite showing resorbed crystal faces; (g) forsteritic olivine; (h) diamond.
Mineral photography by Michael J. Bainbridge. Eclogitic garnet grains provided by Mineral Services;
diamond provided by Herb Helmstaedt, Queen’s University. Modified from McClenaghan and
Paulen (2018) [5].
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Figure 2. Example of the indicator mineral chemistry workflow from epoxy mount to laser ablation
analysis. (A) Epoxy-mounted mineral grains after mineral separation. (B) Optical stereo binocular
photomicrograph of polished grains in an epoxy mount; most grains 0.25–0.5 mm diameter. (C) False-
colour processed Mineral Liberation Analysis (MLA) image of mineral grains in an epoxy mount.
(D) MLA image (upper) of chromite grains (grey) with inclusions (red, yellow) and corresponding
backscatter secondary electron image (lower); both imagesf show circular 50 µm laser ablations spots
in each grain. Scale bar is 500 µm. Modified from Layton-Matthews et al., 2014 [72].

2.2. Mineral Identification for <0.25 mm (Silt to Fine Sand-Sized) Grains

The most cost- and time-effective means to identify indicator minerals in a <0.25 mm
(medium silt and finer) HMC of a sediment sample is using Automated
Mineralogy [27,46,48,73–75]. The mineral grains in this size range are too small and too
numerous to visually sort, identify and count. Instead, Automated Mineralogy methods
can be used to identify the minerals (10,000–100,000) in this smaller size fraction. A HMC
is produced prior to mineral identification. The <0.25 mm fraction of the HMC can be



Minerals 2022, 12, 59 5 of 27

further sieved into still smaller size fractions (e.g., 185–250 µm, 125–250 µm, or <64 µm)
and then a split (~0.2–0.4 g) of a specific size fraction is mounted as a monolayer epoxy
mount containing 1000s of grains (Figure 3). Better density and representivity of HMC
can be achieved through a two-step mounting procedure [27]. Better physical individual
grain separation can be facilitated by thoroughly mixing with powdered fine and high
purity graphite as a parting agent (~1:1 graphite to sample by mass) [76–79]. This greatly
reduces the digital separation needed in the post-analytical workflow. These mounts are
then careful polished, carbon-coated and examined using automated mineralogy methods
(see below for further details).

Figure 3. Example of mounting schematic of till in two mounting stages. (A) Primary grain mount
was quartered, and three quarters are reoriented and made into (B) second grain mount that was
quartered, and three quarters are reoriented and to display one basal surface and two cross-sectional
surfaces for analysis. (C) MLA false colour output quarter labelled “2” in B. Cross-sectional surfaces
are indicated by the black grey bar in A pane of figure. Modified from Lougheed et al., 2020 [27].

2.2.1. Electron-Based Techniques

Most mineral chemical investigations examine the indicator mineral mounts using an
electron-based instrument. Traditionally, a scanning electron microscope (SEM) is used to
examine the spatial distribution of backscatter secondary electrons (BSE), which reflects
differences in the average atomic number of an area of a grain. This scanning is done
in combination with energy dispersive spectrometry (EDS) to identify relative element
concentrations within mineral phases (Figure 4) and mineralogy.

The goals of using an SEM are to (1) confirm of mineralogy that has been determined
through visual mineral identification; (2) document mineral associations; (3) document min-
eral textures and morphology (shape, rounding, size, etc.); and (4) identify optimal mineral
grains for further, more costly, mineral chemical characterization. The full characterization
of a single epoxy mount with 200 to 500 grains can take 6 to 12 h on a traditional SEM by
an experienced technician. Recent advances in automated scanning electron microscopy
coupled with energy-dispersive X-ray spectroscopy (EDS) are transforming the analysis of
mineral grain mounts [21,25]. Time-consuming and qualitative mineral descriptions have
now been replaced with fast, quantitative, and repeatable SEM analyses. These automated
SEM methods provide confirmation of mineralogy, quantification of mineral textures and
morphology, and reduces grain mount analysis time to 1 to 2 h.
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Figure 4. Example of sample workflow for automated mineralogy for (A) mineral liberation analysis
(MLA) and (B) QEMSCAN™. Modified from Layton-Matthews et al., 2014 [72].

The most popular automated SEM supplier was FEI; the company offered tungsten-
based or field emission gun-based hardware that can be coupled with either QEM-SCAN® [80]
or MLA software [81]. Mineral Liberation Analysis (MLA) was initially developed for the
mining industry by the University of Queensland, Australia (JKTech) [82,83]; QEMSCAN®

was developed for the mining industry by CSIRO, Australia [80–86]. However, both software
packages are currently licensed and sold through Thermo Fisher and are under new software
development under the MAPS software package. With the proliferation of the applications
of Automated Mineralogy several additional hardware-software platforms have seen appli-
cation in surficial media characterization, including TESCAN Integrated Mineral Analyzer
(TIMA) [87], ZEISS MinSCAN [88] and Oxford Instruments IncaMineral [89].

MLA-automated mineralogy is based on high-resolution BSE images, image analysis,
and elemental chemistry from EDS. There are several different MLA data collection modes
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(i.e., XBSE, SPL, XMOD [79,90]), however most rely on the collection of BSE images that
are combined to create a mosaic image of an epoxy grain mount or region of interest
(Figure 4). An individual grayscale (0–255 range) BSE image is used to remove epoxy
from the image using a user defined value (~10), allowing the isolation and centroid image
analysis of segmented grains and minerals into individual particles. The MLA software
then collects a full X-ray spectrum (EDS) at the centre of each particle (Figure 4) at a user
defined dwell time. In post-collection processing, the full X-ray spectrum is compared with
a user-defined mineral EDS library and the BSE image to create a coherent data set, which
includes a false-colour mineral map (Figure 2C), modal mineralogy, grain size, mineral
associations (occurrence and interlocking), particle properties (roundness, area, shape), and
mineral liberation.

QEMSCAN®-automated mineralogy is fundamentally different from MLA, in that is
based on fast mineral identification using point analysis on a finely spaced grid. In most
routine analysis, QEMSCAN® collects BSE images to create a mosaic image of an epoxy
grain mount; however, during automated measurement, the system collects EDS spectra
along a pre-defined grid (similar to modal counting using a petrographic microscope).
QEMSCAN® uses the EDS spectra in combination with the BSE image data to determine
areas of epoxy and areas of mineral, minimizing the collection of background data. On
scanning of mineral phases, a low-count EDS spectrum is collected that allows for ultra-
fast discrimination of most minerals. QEMSCAN® also differs from MLA in the way
that mineralogy is determined. In MLA, minerals are identified through comparison of
unknown EDS with a user-defined EDS database of known minerals. In QEMSCAN®, a
built-in library of 72 elemental reference spectra is used to build a composite elemental
spectrum that is then used in conjunction with user-defined Species Identification Protocols
(SIP) to identify discrete minerals. In addition to output data similar to MLA, QEMSCAN®

produces elemental maps and mineral maps [80,85,91].
MLA- or QEMSCAN®-generated BSE and false-colour images of a mounted indicator

minerals (Figure 2C) have many advantages over traditional optical microscopy [48,83,90,92]:
(1) measurement of compositional data; (2) measurement of thousands of points per sample
mount; (3) repeatable and quantitative measurements; (4) fully automated workflow; (5)
faster processing time; (6) less mineral identification training required; (7) modal mineralogy
calculated assay data; (8) micron-scale resolution; (9) ability to measure and compare grain
size; and (10) better determination of analysis points for texturally difficult (i.e., polymineralic)
grains and for choosing grains for in situ chemical or isotopic analyses.

The occurrence and modal quantification of distinct heavy minerals in till is of great
importance in the definition of glacial dispersal trains in many ore exploration programs
(i.e., gold); however, many HMC grain mounts are further characterized for individual min-
eral chemistry. Many indicator mineral studies in glaciated terrain (e.g., McClenaghan et al.
2002, 2013; Morris et al. 2002; Lehtonen et al. 2005, and references therein) [11,14,21,42]
have demonstrated the use of major and minor element mineral chemistry to identify the
bedrock provenance and assess fertility.

The quantification of major elements can be obtained quickly for many elements from
EDS software using a SEM with detection limits between 2000 and 10,000 ppm (Z > 4).
However, because EDS requires that individual X-ray spectra be separated from other X-ray
spectra in a mineral analysis, some X-ray energies cannot be separated from background
radiation (high detection limit) or from X-ray spectra of other elements (i.e., peak overlap).
Most modern EDS detectors have an energy resolution of 130 to 160 eV (Full Width Half
Max). For example, the quantitative analysis of molybdenite (MoS2) by EDS is not easily
accomplished because the Mo L alpha line is at 2.2930 keV and overlaps with the S K alpha
line at 2.3070 keV [93].

More commonly, indicator minerals are analyzed for major and minor elements using
electron probe microanalyzer (EPMA). In principle, an EPMA is very similar to a SEM,
as the electron source and focusing column are nearly identical. However, an EPMA and
a SEM collect X-ray data differently. Both instruments collect chemical spectra using an
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EDS detector, but on an EPMA, spectra are also collected using wave-length dispersive
spectroscopy (WDS). During the collection of WDS, spectra are separated by the mechan-
ical diffraction of X-rays into wavelengths that are individually measured by a detector.
Most modern EPMA have up to 5 wavelength dispersive spectrometers that allow the
simultaneous measurement of five elements. EDS and WDS each have advantages and
disadvantages. EDS can quickly collect a full X-ray spectrum in 10s of seconds; whereas
WDS is time consuming, requiring the movement of a diffraction crystal to measure each
individual element. Much of the spectral interference encountered during EDS can be
eliminated by the high-energy resolution of WDS (~10 eV). The biggest disadvantage of
both EDS and WDS systems are the detection limits (~0.1 and 0.01%, respectively) for
most elements in the characterization of mineral chemistry and the inability of WDS to
quantify light elements such as carbon [94,95]. However, the biggest advantage to EPMA
is the small sampling volume and spatial resolution, especially with field emission gun
instruments [96,97].

2.2.2. X-ray-Based Techniques

Mineral characterization and analysis by Micro Energy Dispersive X-ray Fluorescence
(µ-EDXRF) mapping is becoming a routine non-destructive method for the identification of
mineralogy and determination of mineral chemistry [98–100]. These benchtop instruments
are similar to synchrotron radiation X-ray micro-beam XRF (SR-µXRF) [101–103] however,
use much lower source energies (e.g., 50 keV vs. >2 GeV) [100,104], are less expensive
and are more widely available. Ideally suited for any geological materials, including loose
HMC grain mounts, µ-EDXRF gives optimal results on flat, polished mounts because of
detrimental topographic shading of the fluorecence [105] on rough surfaces. Advances
in capillary optics focus X-rays, producing a small beam (~5–20 µm) [106,107] which
has allowed the development of high spatial resolution, commercial benchtop µ-EDXRF
instruments, such as the M4 Tornado (Bruker Nano GmbH, Germany) [98,108]. As with
many of these instruments, beam-size, dwell time and atomic mass can greatly affect the
detection limits, however in general for most elements >10 ppm limits of detection (LOD)
are acheivable in geological media.

The Bruker M4 Tornado µ-EDXRF uses an MLA- and QEMSCAN-like software, the
Advanced Mineral Identification and Characterization System (AMICS), and is the latest
software package for automated identification and quantification of minerals. The AM-
ICS software [109,110] is divided into 3 parts that include: (1) Investigator, a µ-EDXRF
instrument control and data acquisition package; (2) AMICSProcess, a data processing
and analysis package and; (3) MineralSTDManager, a mineral database management pack-
age [108]. Within the Investigator, several parameters can be set, saved and recalled that
include spatial resolution, particle grid (Figure 5A), and dwell time, and assign a mineral
database for on-the-fly classification. Post analysis allows AMICSProcess to create an X-ray
Intensity mosaic (similar to the BSE mosaic imaging in MLA or QEMSCAN) that reflects
the average atomic number (Z) of individual image pixels. The false-coloured Particle Grid
(Figure 5A) can be sorted by area within each group (Figure 5B), allowing particles to be
grouped by mineralogy, calculated for modal mineralogy (wt%, Area %, particle count, etc.
Figure 5C) or assay or elemental distribution. Within AMICSProcess sample images can
be created to reflect minerals classified (Figure 5D) or can be filtered to highlight and find
a specific mineral(s) of interest (Figure 5E). Additionally, AMICSProcess also allows the
export of major and trace elemental contents reduced by fundamental parameters [111–114]
to be used in data exploration software such as ioGAS (REFLEX, Australia) [115] or through
commercial services such as Portable Spectral Services—https://www.portaspecs.com/
(accessed on 23 March 2021)(Figure 5F).

https://www.portaspecs.com/
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Figure 5. Examples of µ-EDXRF AMICS data exploration. (A) False-coloured sample image classified
using the M4 Tornado MineralSTDManager software [108]. (B) Size and mineralogy (olivine, garnet
and plagioclase) sorted Particle Grid [58]. (C) Sorted calculation table including wt%, Area%, and
Particle Numbers [108]. (D) False-coloured sample image of 2.5 cm epoxy mount. (E) False-coloured
sample image of 2.5 cm epoxy mount filtered for chalcopyrite (olive green). (F) Bivariate plot of S
(ppm) vs. Cu (ppm) filtered by Cu > 150,000 ppm in ioGAS™ [115] to identify chalcopyrite grains
of interest. Note images D, E, and F supplied by Portable Spectral Services (PSS) (Pers. Comm., N.
Brand 2021).

µ-EDXRF has several distinct advantages over SEM-based methods. Firstly, the av-
erage cost of a µ-EDXRF instrument such as the Bruker M4 Tornado is in the order of
$200k USD, whereas the MLA/QEMSCAN equipped SEM instruments are >$1 million
USD. Second, quanatative µ-EDXRF can be completed on a variety of media and unlike
quantitative MLA/QEMSCAN do not require coating with a conductive layer (i.e., carbon
or gold), leaving the material available for repeat or alternate instrument analysis. Thirdly,
using similar spatial resolution on identical samples with simple textures (i.e., HMC epoxy
mounts), an AMICS µ-EDXRF characterization is faster than that of MLA or QEMSCAN,
making instruments such as the Bruker M4 Tornado ideal for quick initial characterization.
Fourthly, µ-EDXRF can simultaneously provide mineralogical identification and major and
trace element contents. SEM-based methods are limited by EDS requiring the additional use
of mass spectrometry-based techniques (see Section 2.2.3) for trace element quantification.
One of the main detrimental aspects of µ-EDXRF is spatial resolution. Field emission gun
MLA instrumentation are capable of submicron analysis, whereas the capillary optics of
µ-EDXRF limit the resolution to ~5 µm.
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2.2.3. Mass Spectrometry-Based Techniques

The use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)
for characterization of mineral chemistry has grown since its first application to geological
media [116,117]. Its application for characterizing mineral chemistry has grown in the past
15 years to include a broad range of minerals [118–129].

Conceptually the application of laser ablation for mineral chemical and isotopic analy-
ses is a straightforward, albeit destructive, technique. A short-pulsed (femto- to nanosec-
ond) laser ablates a small volume (5–8000 µm3) of a mineral sample over a period of 10 s of
seconds. During ablation the mineral is converted into vapour and aerosol components.
This material is then continually transferred in an Ar or He carrier gas to be ionized in an
inductively coupled plasma and mass analyzed in either a quadrupole or magnetic-sector
mass spectrometer [130].

There are several instrument parameters that must be optimized to measure element
and isotopic compositions of a mineral by LA-ICP-MS [131–133]; these include (1) laser
pit-size; (2) laser wavelength; (3) laser pulse-rate; (4) mass spectrometer; (5) matrix-match
standards; and (6) curve calibration. Most laser ablation instruments are capable of adjust-
ing the laser beam size from 1–2 to 300 microns, however, most analyses are completed at
~30 microns (Figure 2D). If a laser pit is too small, not enough material is ablated to create a
suitable signal in the mass spectrometer. If a laser pit is too large, the mass spectrometer
detector may become saturated or go beyond the element calibration curve.

Numerous studies have examined the analyses of geological media using variable laser
wavelengths [134–137] and laser pulse-rates [138–142] and collectively using similar laser
energies. There is consensus that shorter wavelengths and higher laser pulse rates produce
superior data that require fewer corrections for elemental and isotopic bias. In mineral
analysis, a shorter wavelength laser (i.e., 193 nm vs. 213 nm) produces a flat-bottomed
and sharp-walled ablation pit. The higher pulse rate (i.e., femtosecond vs. nanosecond)
of the mineral can produce less thermal heating with a lower abundance of secondary
condensates [138,143–145].

Ultimately, the ability of LA-ICP-MS to measure low-concentration elemental and
isotopic data is a function of the mass spectrometer paired with the laser ablation system.
There are three options for inductively coupled plasma mass spectrometers for use in laser
ablation: (1) Quadrupole; (2) Time of Flight; (3) High-resolution single collector; and (4)
High-resolution multi-collector.

By far the most common mass spectrometer used in laser ablation studies of mineral
chemistry is the quadrupole mass analyzer. These instruments filter ions created in the
plasma by mass and charge (m/z) as they travel to the detector using variable DC voltages
on four parallel stainless steel rods. By adjusting the DC voltage on the quadrupoles, the
transient ions created in laser ablation can be filtered and analyzed for most elements on
the periodic table in milliseconds [130].

Time-of-flight mass spectrometers have seen less application to laser ablation applica-
tions in geological sciences. However, they are ideally suited to capitalize on the extremely
fast washout times of new ablation cells and higher laser frequencies [146,147]. These
plasma-based instruments use the difference in ballistic travel and kinetic energy of light
versus heavy isotope masses through a vacuum and a charge potential to separate mass to
charge ratios over short time intervals [148]. Current Time-of-flight mass spectrometers can
complete a full mass scan at ~30 µs allowing 33,000 full mass scans per second [96]. Early
Time-of-flight mass spectrometers did not have the sensitivity of quadrupole mass analyz-
ers, however recent research would suggest sensitivities that rival sector field instruments
and allow single digit parts per million for single-shot laser pulse from a 10-µm diameter
laser spot [149].

In high-resolution mass spectrometers, ions created in laser ablation and in the induc-
tively coupled plasma are passed along a curved flight path through magnetic and electrical
fields to disperse ions according to their momentum and translational energy [150]. By
adjusting the magnetic and electro-static fields, the transient ions arriving at the detector(s)
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can be varied on the basis of mass. Because of this geometry, the mass resolution of these
instruments is superior to that of quadrupole instruments (e.g., ~10,000 versus ~600, re-
spectively). As such, fractions of mass unit can be effectively separated during analysis,
allowing for separation of polyatomic interferences [130].

For effective ion transmission through both the magnetic and electrical sectors, ions
are accelerated at much higher energies than in quadrupole instruments (e.g., 10 kV versus
10 eV, respectively). As such, less ion scatter is created, and lower detection limits are
observed using high-resolution instruments. For many mineral chemical applications, a
high-resolution mass spectrometer commonly has only one detector. However, in appli-
cations where isotopic ratios are measured, high-resolution instruments commonly have
several detectors (known as multi-collector). These instruments can measure individual
isotopes (i.e., 204Pb, 206Pb, 207Pb, 208Pb) simultaneously, without adjustment of the magnetic
or electric sectors, which yields superior isotopic ratios [151].

Quadrupole and high-resolution mass spectrometers each have advantages and dis-
advantages in mineral chemical analyses using laser ablation. In quadrupole instruments,
a wide range of elements (i.e., m/z) can be analyzed very quickly, compared to magnetic
and electrical field sector instruments. In high-resolution instruments, the magnetic sector
must be adjusted and allowed to stabilize before analyzing the next mass range [152,153].
Given the transient nature of laser ablation analysis, a quadrupole instrument is much
better suited for mineral analyses of samples with varied element mass (i.e., rare earth
elements, U, Pb). When there are narrow mass differences (<30%), very small laser ablation
pits (<10 µm) or isotopic ratios are needed, for which high-resolution mass spectrometers
offer vastly superior precision and detection limits [154].

Multi-element trace element analysis by LA-ICP-MS requires the use of suitable refer-
ence materials with similar matrix compositions [155,156] and calibration using multiple
external standards with a wide-range of elements contents [156–158]. Over the past 10 years
there has been a limited effort to find or create matrix-matched standards with variable but
homogeneous concentrations of trace elements (i.e., 10, 100, 500 ppm), which is necessary to
create standard calibration curves and element quantification. Many of these studies have
focused on geological glasses that have been created from rock powder standards [159–163]
or by the doping of rock powder standards at variable concentrations [163,164]. The use of
these standards in conjunction with EPMA data now allows the reliable quantification of
many trace elements in minerals using LA-ICP-MS.

3. Indicator Mineral Examples in Glaciated Terrain

Examples of the application of automated mineralogy, EPMA and LA-ICP-MS to char-
acterize indicator minerals used to explore for mineral deposits in the recently (Pleistocene)
glaciated terrain of Canada are described below.

3.1. Volcanogenic Massive Sulphide Deposits

To assist exploration for volcanogenic massive sulphide (VMS) deposits in northern
Canada, an indicator mineral survey was completed around the Archean Izok Lake Zn-Cu-Pb-
Ag volcanogenic massive sulphide (VMS) deposit (Figure 5) in Nunavut, Canada [24,165,166].
During the mid to Late Wisconsinan, southwest ice flow followed by west- to west-northwest-
trending ice flow eroded indicator minerals from the mineralized bedrock and transported
and deposited them down ice as till [23].

Mineralized bedrock samples as well as till samples were collected up- and down-ice
of the Izok Lake deposit (Figure 5) and processed to recover HMCs (>3.2 g/cm3) from
which the 0.25–0.5, 0.5–1.0, and 1.0–2.0 mm non-ferromagnetic heavy mineral fractions were
examined using optical techniques [165]. Grain mounts for indicator minerals recovered
from bedrock samples were examined first using MLA-ESEM to quantify modal mineralogy,
mineral associations (Figure 6), grain shape, and grain size to determine the minerals
that could be expected in till samples. EPMA was completed on a selection of indicator
minerals to confirm visual identification and to characterize trace element compositions.
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Indicator minerals identified in mineralized bedrock and till down ice of the deposit
include: chalcopyrite, galena, sphalerite, chalcopyrite, and gahnite (Zn-spinel) (Figure 7).
The distribution of gahnite in till reflects both phases of ice flow, forming a wide glacial
dispersal fan down ice of the deposit (Figure 8). EPMA data were used to identify the
compositional range (Mg-rich vs. Fe-rich) of gahnite (Figure 9), showing that most grains
in till are Fe-rich and that the rarer Mg-rich grains were sourced from the central zone of
the deposit.

Figure 6. MLA-SEM image of gahnite grain mount 10-0269-P01 for Izok Lake samples. Adhering
gangue mineral compositions are indicated with various colours outlined in the legend. Till sample
numbers are listed on the outer sides of the image and grain position numbers on the mount are listed
at the end of each row. Red circles indicate those grains for which the LA-ICP-MS/EPMA mineral
chemistry is anomalous (Hicken, 2012 [165]).

Figure 7. Gahnite grains in bedrock and till samples from Izok Lake: (A) polished slab of drill
core (sample 09-MPB-R69); (B,C) polished thin sections (sample 09-MPB-R37 and 09-MPB-R41B,
respectively); (D) grains from heavy mineral concentrate of till sample 12-MPB-913 (photograph by
M.J. Bainbridge Photography). Modified from Hicken (2012) [165].
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Figure 8. Fan-shaped glacial dispersal of gahnite abundance in the 0.25–0.5 mm fraction of till
(normalized to a 10 kg) down-ice of the Izok Lake volcanogenic massive sulphide deposit in northern
Canada. The fan formed by two phases of ice flow towards the southwest (blue polygon) and
northwest (yellow polygon). Arrows indicate relative ice-flow chronology (1 = oldest) and vigor
(arrow size) of flow events. Blue dots indicate the four till samples for which the <0.25 mm heavy
mineral fraction was examined using MLA. Modified from McClenaghan et al. (2015 [24]). Location
of mineralization indicated by solid red polygons and additional gahnite-bearing rocks by green stars.

The gahnite found in till at Izok Lake was found to contain elevated contents of
transition metals (Co > Ti > Ni > Mo > Cr > Cu > Pb) through LA-ICP-MS. Given the age
of the Izok Lake deposit (~2.7 Ga) [167,168] and the possible younger granitic or Helikian-
aged Mackenzie Swarm provenance for the gahnite, LA-ICP-MS in Pb contained in the
gahnite was completed. The Pb/Pb dating of individual grains allowed the interpretation
of gahnite sourcing from metamorphic footwall stringer sulphide zone from the Izok Lake
deposit (Figure 10).

The <0.25 mm HMC of 4 till samples ranging from 1 km up-ice to 9 km down-ice of the
deposit (Figure 8) was examined using MLA-ESEM to compare abundances and mineral
associations to the coarser (>0.25 mm) optically counted indicator minerals. MLA of the
finer HMC fraction indicates that the same indicator minerals occur in the <0.25 mm and
that these smaller grains can be detected much farther down ice (Lougheed et al., 2020),
thus expanding the areal extent of the glacial dispersal fan, and hence the exploration target.
For example, sulphide minerals in the coarse (>0.25 mm) HMC are detectable up to 2 km
down ice of the deposit and up to 8 km down ice in the fine grained (<0.25 mm) HMC
(Figure 11).
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Figure 9. Ternary plot of zincian spinel compositional in terms of gahnite, spinel and hercynite
end members for: (A) bedrock from Izok Lake deposit, and (B) till samples down ice of the Izok
Lake deposit.
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Figure 10. (A) Box and Whisker plot of LA-ICP-MS quadrupole trace element data for gahnite
from tills from the Izok Lake VMS and the Thompson Ni-Cu PGE deposits areas. (B) LA-ICP-MS
207Pb/206Pb age relations for Izok Lake VMS (green circles) and Halfmile Lake VMS (Bathurst Mining
Camp, New Brunswick: red circles). (C) LA-ICP-MS 208Pb/206Pb age relations for Izok Lake VMS
(green circles) and Halfmile Lake VMS (Bathurst Mining Camp, New Brunswick: red circles). Red
lines are an approximation of terrestrial lead isotopic evolution (Stacey and Kramers 1975) [169].
High-precision U/Pb ages for Halfmile Lake is 465 Ma (van Staal et al. 2003) [170], for is Izok Lake is
2623 ± 20 Ma (Mortensen et al. 1988) [168] and 2680.5 +7/−3 Ma (J. Gebert, unpub. 1995).
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Figure 11. Lines plots comparing the abundance of pyrite, galena, and chalcopyrite grains in 5
different size fractions of heavy mineral concentrates (HMC) from till samples up and down ice of
the Izok Lake VMS deposit. Location of mineralization is indicated by grey vertical line in each plot.
Uppermost plots (250–500 µm) represent grain abundance/10 kg determined by visual inspection of
the HMC. Lower 4 plots (<250 µm fractions) represent grains abundance/1000 grains determined by
MLA. Modified from Lougheed et al. (2020) [27].

3.2. Magmatic Ni-Cu Deposits

Sulphide, oxide and silicate indicator minerals have been recovered from till down ice
of known magmatic Ni-Cu-PGE deposits. These minerals include pentlandite, pyrrhotite,
chalcopyrite, pyrite, gold, platinum group minerals (PGM), chromite, Cr-diopside, and
Cr-andradite [39–43]. However, few studies of magmatic Ni-Cu indicator minerals in
glacial sediments have included the use of mineral chemistry. One exception to this is
the McClenaghan et al. [42] application EPMA techniques to chromite in mineralized
and barren bedrock samples to document the mineralization signature (elevated ZnO) for
the Proterozoic Thompson Nickel Belt Ni-Cu deposits (Figure 12-colored symbols). They
identified similar mineralization signatures in chromite in till down ice (west and southwest)
of the Thompson deposits (Figure 12-black symbols). LA-ICP-MS of chromite further
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confirmed the elevated ZnO content and also identified V as an additional discriminator to
identify the Thompson Ni-Cu ore signatures in spinels [171].

Figure 12. (a) Cr2O3 versus MgO and (b) Cr2O3 versus ZnO concentrations in chromian spinels from
bedrock and till samples from the Thompson Ni Belt: mineralized bedrock (orange and red symbols),
unmineralized bedrock (blue and green symbols), and till samples (black symbols). Dashed vertical
line indicates 2 wt % ZnO. Modified from McClenaghan et al. (2013) [42].

The occurrence of the highest metamorphic grade in the belt (at Thompson Mine-South
Pit) [172–174] coupled with the highest ZnO and Al2O3 contents of spinel group minerals
that trend toward the gahnite-hercynite tie line imply a metamorphic/metasomatic origin
for these spinels. The correlation of the highest ZnO within spinel group minerals and the
highest concentration of sulfide mineralization in the Thompson Nickel Belt implies that
this unique spinel group mineral chemistry is indicative of a mineralized ore system at
upper amphibolite facies. This study showed that the distinctive mineralization signature
in chromite in the belt can be used to further explore the heavy-drift covered region using
indicator methods.

3.3. Porphyry Cu Deposits

Common indicator minerals of porphyry Cu deposits that can be readily recovered
from glacial sediments include chalcopyrite, pyrite, gold, epidote, tourmaline, jarosite,
apatite titanite, and andradite [41,50,58,175,176]. Some case studies around porphyry Cu
deposits in the glaciated terrain of western Canada have used EPMA and LA-ICP-MS
methods to establish deposit signatures from bedrock samples and identified the same
signature in till samples down ice, providing insights into glacial dispersal patterns and
demonstrating that mineral chemistry can be used to identify the presence of mineralized
bedrock in a region.

One example of the use of mineral chemistry is the study of tourmaline in till down
ice of the Woodjam porphyry Cu-Au deposit [177] in western Canada. The distribution of
tourmaline in till (Figure 13A) indicates that it is likely an indicator of the mineralization,
but the broad tourmaline distribution pattern, including in samples up ice of mineralization,
suggest that some tourmaline grains in till may also be derived from unmineralized bedrock.
Using a combination of EPMA and LA-ICP-MS chemical (oxy-dravite povondraite trend,
high Sr, low Zn and Pb) and physical characteristics (lack of inclusions, grain color),
Beckett-Brown et al. (2021) [61] demonstrated that porphyry-derived tourmaline can
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be distinguished from background tourmaline in till (Figure 13B). In a second example,
Pisiak et al. (2017) [57] used LA-ICP-MS analysis to distinguish between porphyry-derived
and background magnetite grains in glacial sediments down ice of the Mount Polley
porphyry Cu-Au-Ag deposit (Figure 14). Other porphyry-related indicator mineral studies
have identified discrimination criteria for epidote, zircon [178], and apatite [179,180]. These
studies demonstrate that mineral chemistry can be an important exploration tool for
porphyry Cu mineralization in glaciated terrain.

Figure 13. (A) Distribution of 0.25–0.5 mm tourmaline in the 2.8–3.2 specific gravity fraction of till
samples down ice of the Woodjam porphyry Cu-Au deposits, counts normalized to 10 kg. White
dots indicate samples for which the tourmaline grains were analyzed by MLA. (B) Percentage of
tourmaline grains that were analyzed and that were identified as ‘porphyry-derived’ based on high
concentrations of Sr, low concentrations of Zn and Pb, and their lack of inclusions. Bedrock geology
from Logan et al. (2010) [181] and Plouffe and Ferbey (2017) [58]. Modified from Beckett-Brown et al.
(2021) [61].
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Figure 14. Percentage of magnetite grains that were identified as ‘hydrothermal porphyry’ based on
the Ti-Ni/Cr discrimination diagram of Dare et al. (2014) [118] in 20 till samples around the Mount
Polley Cu-Au deposit. Symbol size is proportional to percentage of total number of magnetite grain
analyzed. Deposit location indicated by yellow star. Bedrock geology from Logan et al. (2010) and
Plouffe and Ferbey (2017) [58]. Modified from Pisiak et al. (2017) [57].

4. Conclusions

This paper presents an overview of the current methods for, and applications of,
indicator mineral chemistry to mineral exploration in the glaciated terrain of Canada. In-
dicator mineral chemistry can now be used to identify potential bedrock sources of the
mineral grains and assess bedrock source fertility and help to prioritize targets for further
exploration. There will always be a role for traditional heavy mineral concentrate meth-
ods, however automated minerology instrumentation can now augment these methods
providing a means to identify more that optically distinct minerals (i.e., Cr Diopside, Cr
Pyrope, etc.) and provide fertility indexes using mineral chemical of trace elements.

Successful mineral exploration using surficial sediment indicator mineral methods
in glaciated terrain requires a high degree of specialization. This type of work requires a
person with not only a background in bedrock geology and ore deposits, but also a shift
in training to include surficial sample collection and preparation, mineralogy, analytical
chemistry, and Quaternary geology. Current exploration models use a team approach,
where each individual contributes their own area of expertise and future exploration success
will need to incorporate the roles of automated mineralogy and mineral chemistry.

Mineral separation methods are well established for size fractions larger than 0.25 mm,
and these methods require a highly qualified mineralogist to visually identify minerals.
Indicator mineral identification chemical characterization that utilizes the smaller grain size
(i.e., <0.25 mm) and less dense fractions (i.e., <2.85 g/cm3) of sediments, and methods that
incorporate new, faster, and more accessible analytical instruments (i.e., hyperspectral) are
becoming more widely available and are currently used in the mineral exploration industry
by the combination of SEM, EDS, WDS and LA-ICP-MS methods. Ongoing developments
of these methods will decrease the need for extensive specialized mineral identification
training, decrease the time and cost of HMC characterization, extend the spatial footprint of
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glacial dispersal trains, and ultimately lead to the identification of new indicator minerals
in uncharacterized mineralized systems.
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