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Abstract: Porosity and particle arrangement are important parameters affecting soil tortuosity, so
it is of great significance to determine the intrinsic relationship between them when studying soil
permeability characteristics. Theoretical derivation and geometric analysis methods are used to
derive a two-dimensional geometric tortuosity model. The model is a function of particle arrange-
ment parameters (m and θ) and porosity. An analysis of the model and its parameters shows that:
(1) The arrangement of particles is one of the reasons for the different functional relationship between
tortuosity and porosity, which proved that the tortuosity is not only related to the porosity but also
affected by the particle arrangement. (2) The greater the anisotropy parameter m is, the greater the
tortuosity is, indicating m varies when fluid passes through the soil from different sides resulting
in different values of permeability. (3) The tortuosity increases with the increase in the blocking
parameters θ. (4) With increasing porosity, the influence of the parameters m and θ on the tortuosity
gradually decreases, suggesting that the influence of particle arrangement on tortuosity gradually de-
creases. The results presented here increase the understanding of the physical mechanisms controlling
tortuosity and, hence, the process of fluid seepage through soil.

Keywords: particle arrangement; porosity; tortuosity; geometric analysis; two-dimensional; seepage

1. Introduction

Porous media materials exist in a wide range of fields, such as rocks and soils in
mines [1,2] and in slopes [3]. As a typical porous medium material, soil has good perme-
ability. Although there are many factors affecting the permeability of soil, such as porosity,
particle arrangement, shape and size and fluid properties, it is generally believed that the
distribution of pores in soil is the main factor that determines the permeability of soil [4].
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The intercommunication of soil pores forms the channels for fluid seepage in the soil,
but these channels are usually tortuous, and the degree of twists and turns is described
by tortuosity.

Tortuosity is a term used to describe the sinuosity and interconnectedness of the pore
space as it affects transport processes through porous media [5,6]. In recent years, the
influence of tortuosity on the penetration process of fluids in soils has been increasingly
studied. For example, the tortuosity effect was considered in penetration of grouting [7,8]
and oil recovery for petroleum applications [9–11]. Therefore, tortuosity is an important
factor to consider when attempting to understand the permeability of soil.

A model of tortuosity can be determined by experiment, numerical analysis, or ge-
ometric analysis [12–14]. Using the experimental method, Comiti [15] and Wyllie [16]
derived an empirical model of tortuosity, using a fluid flow through fixed beds that are
packed with particles of different shapes, which employed fitting parameters related to
particle shape, and Wyllie suggested the parameter was between 2 and 3. Mota et al. [17]
carried out experiments with a porous media composed of spherical particles, and their
statistics suggested that the tortuosity increases as a power function with the decrease in
porosity, but the model was only useful for transport phenomena analysis in granular beds.

Considering numerical analysis, Koponen et al. [18,19] obtained tortuosity models
with and without considering the effective porosity of two-dimensional porous media by
numerical simulation. For a given two-dimensional porous medium, the numerical analysis
results showed that the tortuosity almost does not change when the lattice resolutions
is different. Mayken et al. [20] used the lattice Boltzmann method (LBM) to generate
two-dimensional porous media with different particle shapes and obtained corresponding
expressions for tortuosity. Based on the analysis of these expressions, it was found that
they have the same trend, but the numerical values were quite different.

Examples of using geometric analysis include Yu and Li [21] who first used the
fixed arrangement of square particles to analyze and obtain a model of two-dimensional
tortuosity. Plessis and Masliyah [22] used the concept of average volume to analyze and
obtain a tortuosity model for isotropic porous media. Recently, a tortuosity model for
different particle arrangements was obtained by Yan Han et al. [23].

The above tortuosity models are listed in Table 1. It can be seen from the table that,
compared with the experimental method and numerical analysis, the tortuosity models
derived using geometric analysis do not contain fitting parameters and, hence, can better
reflect the physical mechanism of tortuosity. At the same time, most of the current tortuosity
models are a function of just porosity. Although the model obtained by Yan Han et al. [23]
takes into account the effect of particle arrangement on tortuosity, Yun et al. [24] believes
that a tortuosity model derived from the hypothesis of square particles is not universal.
The calculated value by Yan Han et al. [23] appears larger than estimated by the other
tortuosity models in the low porosity section when the particles are arranged at the lower
limit (Figure 1), which may be caused by the assumption that the soil particles are square.

Table 1. Summary of published tortuosity models.

Models Source Comment

ξ= 1− P ln φ reference [15,16] A function of porosity containing fitting
parameters related to particle shape

ξ = φ−β reference [17] A function of porosity containing fitting
parameters

ξ = 1 + 0.8(1− φ) reference [18] A function of porosity containing fitting
parameters (0.8)

ξ = 1 + a 1−φ

(φ−φc )m
reference [19] A function of porosity containing fitting

parameters

ξ = 1.47e−0.3708φ reference [20] A function of porosity containing fitting
parameters (1.47)

ξ =

1
2

1 + 1
2

√
1− φ +

√
(1−
√

1−φ)
2
+(1−φ)/4

1−
√

1−φ

 reference [21] A function of porosity

ξ = φ

1−(1−φ)2/3 reference [22] A function of porosity

Note: ξ is tortuosity; φ is porosity; φc is effective porosity; other symbols are fitting parameters.
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Figure 1. Comparison of tortuosity models. (Red curve [23], Blue curve [17], Green curve [18] and
Black curve [22]).

In view of the fact that most tortuous models contain fitting parameters only consid-
ering the influence of porosity, this paper uses geometric analysis and assumes that the
shape of the soil particles is circular to derive a two-dimensional soil geometric tortuosity
model with a comprehensive inclusion of porosity and particle arrangement. The model is
compared to the results of other published models. Finally, the model and its parameters
are analyzed and corresponding conclusions are drawn. The results presented here increase
the understanding of the physical mechanisms controlling tortuosity and, hence, the pro-
cess of fluid seepage through soil, providing a theoretical basis for solving the geotechnical
engineering diseases caused by water seepage or air permeability [25,26].

2. A Two-Dimensional Geometric Tortuosity Model

The concept of tortuosity is usually defined by the following formula [27]:

ξ =
Lt

L0
(1)

where ξ is tortuosity, Lt is actual streamline length in porous media, and L0 is the length of
the straight line corresponding to Lt. Thus, tortuosity is a dimensionless number not less
than 1.

There are many streamlines in the actual seepage process. Therefore, a soil geomet-
ric tortuosity model is obtained by calculating the average tortuosity of representative
streamlines around soil particles [21], namely:

ξ =
1
N ∑

i
ξi (2)

where N is the total number of streamlines, and ξi is the tortuosity of the streamline i.
It is very difficult to calculate the tortuosity owing to the complexity of soil pore

structure. Therefore, the following assumptions are made based on the model established
by Yun [24]:

(1) The shape of soil particles is circular with a uniform size;
(2) The passing fluid is Newtonian and in laminar motion.
Soil particles are uniformly distributed and the assumed direction of seepage is from

left to right (Figure 2a). r is the particle radius, C is the distance between adjacent particles
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parallel to the flow direction, B is the distance between two soil particles perpendicular
to the flow direction, and m = B/C is defined as an anisotropic parameter. θ is the offset
angle of two adjacent rows of particles in the vertical flow direction, which is defined as the
obstruction parameter ranging from 0 to arctan(B/2C), where θ= 0 represents the lower
limit arrangement (Figure 2b) and θ = arctan(B/2C) indicates the upper limit arrangement
(Figure 2c). The arrangement of soil particles is determined by the two parameters m and
θ [23].
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The dotted line in Figure 2b,c indicates the representative unit, and its porosity can be
expressed by the following formula:

φ =
At − As

At
=

BC− πr2

BC
(3)

Therefore:

BC =
πr2

1− φ
(4)

where At is the area of the representative unit, and As is the area of the solid part in the
representative unit. Combining the above with anisotropic parameters, we obtain:

r
C

=

√
(1− φ)m

π
(5)

When the fluid flows in from the B side of the unit body with laminar flow state, three
different streamlines may appear, as shown in Figure 3.
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As can be seen in Figure 3, the length of streamline 1 can be represented as:

L1 = πr +
C

cos θ
− 2r (6)

Combined with Equation (1), ξ1 can be obtained:

ξ1 =
πr + C

cos θ − 2r
C

=
(π − 2)r cos θ + C

C cos θ
(7)

The length of streamline 2 can be expressed as

L2 = 2r +
√
(C− 2r)2 + C2 tan2 θ (8)

Combined with Equation (1), ξ2 can be obtained:

ξ2 =
2r +

√
(C− 2r)2 + C2 tan2 θ

C
(9)

In reality, the soil particles will overlap each other. When the particles are completely
packed, fluid cannot pass through the region on the left and right sides of the unit body,
and the actual streamline length is shown by streamline 3 in Figure 2. Combined with
Equation (1), ξ3 can be expressed as:

ξ3 =

√
(C− 2r)2 + C2 tan2 θ

C− 2r
(10)

Combining Equations (2), (6), (8) and (9), a two-dimensional geometric tortuosity
model based on soil particle arrangement and porosity can be obtained:

ξ =
1
3
(ξ1 + ξ2 + ξ3) =

1
3

π
r
C
+

1
cos θ

+

√
(2

r
C
− 1)

2
+ tan2 θ +

√
(2 r

C − 1)2 + tan2 θ

1− 2 r
C

 (11)

Putting Equation (4) into Equation (10), it becomes:
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ξ =
1
3

√πm(1− φ) +
1

cos θ
+

√
(2

√
m(1− φ)

π
− 1)

2

+ tan2 θ +

√
(2
√

m(1−φ)
π − 1)

2
+ tan2 θ

1− 2
√

m(1−φ)
π

 (12)

Equation (11) is a two-dimensional soil geometric tortuosity model, which includes the
comprehensive effects of particles arrangement and porosity. It can be seen that tortuosity
is a function determined by porosity and particles arrangement, without the need for
empirical constants and that clearly expresses the physical mechanism of tortuosity. The
arrangement relationship of particles is described by m and θ together.

Meanwhile, 1− 2
√

m(1−φ)
π > 0 specifies that the applicable porosity range of the

model is (1− π/4m) ∼ 1, which shows that the applicable range of porosity of the model
is related to the parameter m. However, the determination of the particle arrangement
parameters involves complex microprocesses, so there is no effective method to obtain them.
It is found by comparative analysis (see Figures 4–6) that the tortuosity model proposed in
this paper is in good agreement with the previous models when m = 1. So, bringing m = 1
into (1−π/4m)− 1 to calculate the applicable porosity range of the model is 0.21–1, which
is basically consistent with the value range of soil natural porosity (0.2–1) [28]. According
to θ = arctan(B/2C) and m = 1, the value range of θ is 0–26.57◦.
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When the lower limit of soil particles arrangement is applied, θ = 0 in Formula (11), i.e.,

ξ =
1
3

√πm(1− φ) + 1 +

√
(2

√
m(1− φ)

π
− 1)

2

+

√
(2
√
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π − 1)
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1− 2
√

m(1−φ)
π
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When the upper arrangement limit is present, bringing θ = arctan(B/2C) into
Formula (11) results in:

ξ =
1
3

√πm(1− φ) +

√
1 +

m2

4
+

√
(2

√
m(1− φ)

π
− 1)

2

+
m2

4
+

√
(2
√

m(1−φ)
π − 1)

2
+ m2

4

1− 2
√

m(1−φ)
π

 (14)

Equations (12) and (13) show that when the porosity of soil is constant, the tortuosity
is not a fixed value but changes over an interval. The upper limit and lower limit of this
interval correspond to the upper limit arrangement and the lower limit arrangement of the
soil particles respectively, as shown in Figure 2a,b.

When φ→ 0 , the soil particles occupy the whole space, and the particle arrangement
can be regarded as the upper limit arrangement. Therefore ξ → ∞ is obtained by Formula
(13). When φ→ 1 , pores occupy the whole space, so the model becomes closer to the lower
limit arrangement, and ξ → 1 is described by Formula (12). These properties of the model
are in line with the reality, which preliminarily suggests the reliability of the model.

3. Comparison with Published Models

In order to verify the correctness of the model, the upper and lower limit arrangement
results of the proposed model were compared with previously published results. The
comparisons results are shown in Figures 4 and 5, respectively. The results show that the
tortuosity model proposed in this paper has the same changing trends and estimated values
(the maximum difference is 0.2, Figure 5) as the previous tortuosity models under the two
extreme conditions of soil particle arrangement.

Some classical tortuosity model curves are drawn in Figure 6, and there are obvious
differences between them, which is mainly caused by the differences in research methods
and research objects. Further analysis of Figure 6 shows that the results from the previous
tortuosity models lie between the upper limit arrangement and the lower line arrangement
of the model established in this paper and, hence, are special cases of the current model.
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4. Analysis of Tortuosity Model

As can be seen in Figures 4 and 5, the change of tortuosity with porosity is also different
when the arrangement of soil particles is different, which indicates that tortuosity is not
only related to porosity but also affected by the arrangement of particles. Figure 6 shows
that: (1) The tortuosity shows obvious differences when the porosity is low. This is because
when the porosity is small, the particles are in the upper limit arrangement and the flow
path will be mostly in the form of streamline 1 (Figure 3), which leads to the enlargement
of the flow path, resulting in larger tortuosity, and the curve is concave (Figure 4). When
particles are in the lower limit arrangement, there is still a channel for fluid to pass through
as the soil particles are round, so the tortuosity is relatively small and the curve is convex
(Figure 5); (2) With the increase in porosity, the tortuosity of the upper and lower limit
arrangements gradually tends to 1. This is because with the increase in porosity, the internal
channels of porous media become larger, and the streamlines will gradually approach the
macroscopic straight-line length, which indicates that with the increase in porosity, the
influence of particle arrangement on tortuosity gradually decreases.

5. Influence of Parameter m on Tortuosity

In order to explore the influence of parameter m on tortuosity, in the lower limit
arrangement (Figure 2), different m values are obtained by changing the direction of fluid
entering the soil. The operation is as follows: assuming that the medium is isotropic, m = 1;
if anisotropic, that is, the soil is heterogeneous, when the fluid flows in from B, suppose
m = 0.8, B = 0.8C, so when flowing in from C, C = 0.8B and m = 1.25.

These three different values are taken into Equation (13) respectively, and the results
are shown in Figure 7. The tortuosity increases with the increase in m. This shows that for
the same soil, when the fluid passes through the soil from different sides, the tortuosity is
different, resulting in different permeability, which is in line with reality [29,30].
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6. Influence of Parameter θ on Tortuosity

In Equation (12), the curve of the relationship between tortuosity and porosity with
different θ values can be obtained by assuming m = 1 and keeping it unchanged, as shown
in Figure 8. The results show that tortuosity is positively correlated with parameter θ.
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As indicated in Figures 7 and 8, the influence of parameters m and θ at low porosity
on tortuosity is significant, then it decreases gradually with the increase in porosity. This
confirms that the effect of particle arrangement on tortuosity decreases with the increase
in porosity.

7. Conclusions

In this paper, a tortuosity model, which included the comprehensive effects of soil
particle arrangement and porosity was established by theoretical derivation and geometric
analysis. The model compares well with previously published models.

The analysis of the model and its parameters draws the following conclusions:

(1) Besides porosity, soil particle arrangement is another important factor affecting tortu-
osity. When particles are arranged differently, the tortuosity and porosity of soil can
present completely different functional relationships.

(2) With the increase in porosity, the influence of parameters m and θ on tortuosity
gradually decreases, that is, the influence of particle arrangement on tortuosity gradu-
ally decreases.

(3) The greater the anisotropic parameter m is, the greater the degree of tortuosity is,
which means that for the same soil, when fluid passes through the soil from different
sides this will lead to different permeabilities, which is in line with observations from
reality; when the porosity is constant, the tortuosity is positively correlated with the
parameter θ.

(4) It is suggested that the value of parameter m is 1, so the range of parameter θ is
0–26.57 ◦, and the applicable porosity range of the model is 0.21–1, which is consistent
with the natural distribution of soil porosity (0.2–1).

The tortuosity model established in this paper only considers the influence of porosity
and particle arrangement, and ignores the two main factors of particle shapes and size.
Because the establishment of the tortuosity model by geometric method involves the
process of quantitative calculation, the calculation results can be obtained for a single
standard shape particle, but it is difficult to calculate the results when considering arbitrary
irregular shape of particles. At the same time, the size of particles can be characterized
by fractal dimension, but a large number of particles of different sizes need to be used in
the establishment of geometric model, which makes the calculation process complex, the
amount of calculation is too large, and it is difficult to calculate the results. Of course, the
establishment of a tortuosity model with the comprehensive effect of multifactors is a more
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important research topic, which may be obtained with the improvement of experimental
technology and equipment in the future.
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