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Abstract: The seismic exploration method could explore deep metal ore bodies (depth > 1000 m).
However, it is difficult to describe the geometry of the complex metal ore body accurately. Seismic full
waveform inversion is a relatively new method to achieve accurate imaging of subsurface structures,
but its success requires better initial models and low-frequency data. The seismic data acquired in the
metal mine area is usually difficult to meet the requirements of full waveform inversion. The passive
seismic data usually contains good low frequency information. In this paper, we use both passive
and active seismic datasets to improve the full waveform inversion results in the metal mining area.
The results show that the multisource seismic full waveform inversion could obtain a suitable result
for high-resolution seismic imaging of metal ore bodies.
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1. Introduction

As the demand for metal ores has increased in recent years, discovering new shallow
deposits has become increasingly difficult. Therefore, the target for the exploration and
development of metal mineral resources has gradually shifted to deeper parts of the Earth
(>1 km). Potential field and electromagnetic methods are the most common geophysical
method in mineral exploration. However, these methods have a limited penetration depth
with high resolution. The seismic reflection method is the only exploration method to
provide high-resolution images of the subsurface and have the penetration depth required
for current mineral planning and exploration for deep mineral resources. There have been
many successful cases of the seismic exploration of metal mines [1–5].

However, the metal ore bodies are usually irregular and small. The impedance differ-
ence between the ore body and the surrounding rocks is relatively small, and the reflected
energy is weak. These factors lead to poor conventional seismic imaging. Full waveform
inversion (FWI) is a method that can invert seismic velocity with high precision. It is the
most accurate velocity inversion method in seismic exploration and has great potential
in metal mine exploration. FWI was initially proposed by Lailly [6] and Tarantola [7]
and in the time domain. In the 1990s, Pratt and his colleagues extended the method to
the frequency domain and made the industrial application of the method possible [8,9].
Currently, FWI has a wide range of applications in different exploration fields [10–16].

There are only a few applications of FWI in metal mine exploration. Sun et al. used
visibility analysis and energy compensation in FWI to invert the metal ore model and
achieved good results [17]. Egorov et al. tested the potential use of FWI in VSP data
from hard rock environments [18]. Mao et al. used the direct wave and the adjoint-state
source function inversion method to invert the source wavelet accurately and the similarity
phenomenon to reconstruct the low-frequency data for the FWI application in deep metal
ore bodies [19]. Hlousek et al. used FWI for velocity model building in a tailored workflow
for advanced high-resolution seismic imaging of mineral exploration targets [20]. Singh et al.
applied FWI for 3D velocity model building in an iron-oxide mining site in Sweden [21].
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The main problem in applying the FWI method in metal mine exploration is that the
metal mines’ seismic data usually lack good low-frequency data. It is difficult to obtain
a good initial model due to the complexity of the exploration area. Passive seismic data
usually contain better low-frequency information. The low-frequency component of the
passive seismic data can be used to construct a better initial velocity model for the FWI of
the active seismic data. There have been some studies on passive seismic FWI.

Some studies have focused on using the FWI to invert microseismic source param-
eters [22–24]. Some researchers have applied the FWI to original passive seismic data to
reconstruct the velocity models. Kamei and Lumley used the FWI to reconstruct the velocity
changes from time-lapse passive seismic data [25,26]. Sun et al. used diagonal precondi-
tioning in full waveform inversion of passive seismic data for sources and velocities [27].
Zhang et al. proposed a passive source illumination compensation-based FWI method [28].
Another way is to use seismic interferometry to build virtual shot gathers from passive
data, then use that for the FWI. Zhang et al. used seismic interferometry to construct the
virtual source from passive noise data and applied the source-independent FWI for velocity
inversion [29]. Zhang et al. proposed the joint elastic wave full-waveform inversion for two
different types of source seismic data that combine both active and passive sources [30].

The mining process of some metal mines may produce strong passive sources that
can be used to compensate for the active seismic data and thus improve the FWI results.
The joint use of active and passive source data for full waveform inversion in mineral
exploration is a novel research topic. In this paper, we tried to use both passive and active
seismic data to improve the FWI results and the imaging quality of the metal ore body.
First, we generated synthetic passive and active seismic datasets based on the velocity
model from a complex metal ore body. We filtered the active dataset with a high pass
filter to simulate the lack of low-frequency information of the real condition. Then, we
tested the multisource FWI using both active and passive seismic datasets in different
conditions. In the first test, we assumed a perfect condition where we know the type and
location of the source wavelet for both active and passive seismic datasets. We directly
used passive seismic data to build a velocity model, then used that as the initial model
for the active data FWI. In the second test, we assumed that we did not know the source
wavelets, which is common in real cases. We used a source-independent objective function
to solve this problem [31–33]. Finally, we added noise to both active and passive seismic
datasets. The other procedures were the same as the first and second tests. The results
showed that the multisource seismic full waveform inversion could obtain a suitable result
for high-resolution seismic imaging of metal ore bodies.

2. Synthetic Datasets

Our goal in generating the synthetic data was to verify the effectiveness of our inver-
sion method. The complexity of the synthetic dataset is not comparable with the field data,
so we tried our best to make the synthetic datasets close to the filed datasets. We used a
velocity model of a complex metal ore body. The model was modified from a geological
ore body model in the Luzong Basin, China and is shown in Figure 1. The deposit consists
of several ore bodies. The overall ore body is complexly layered and gently lenticular. Its
plane projection is elliptical. The ore body is dome-like in spatial expression, with leached
poor iron ore dominating in the center and rich and thick ore surrounding it. Only two of
them are relatively large in scale, and the rest are small [34].

We used our own finite-difference program based on the MATLAB software to model
both active and passive datasets, which were used for this work. The finite-difference
program uses a 8th order accuracy and PML (perfect match layer) boundary condition. The
modeling parameters are shown in Table 1. The model size was 376 * 126 with a grid size
of 10 m for both dx and dz. There were 376 receivers at the model surface as shown in
Figure 1, marked with blue inverted triangles. The distance between each receiver is 10 m.
The receiver locations are the same for both active and passive data sets. The active source
locations marked with red dots are shown in Figure 1. We use a 20 Hz Ricker wavelet



Minerals 2022, 12, 4 3 of 15

as the source wavelet for the active data set, and 75 shots are generated. The distance
between each shot is 50 m. The passive source locations marked with red stars are shown
in Figure 1. Fifty passives shots were generated. We assumed that the passive sources had
a relative uniform distribution and put the passive source locations around the ore bodies.
We generated two passive source datasets. First, we used a 10 Hz source wavelet for all
the source locations for one passive source dataset. This dataset was used to test whether
the method will work in an ideal case. To make the synthetic test more realistic, another
passive dataset used different source wavelets for the other source locations. We also added
random noise to different datasets. Six different datasets were generated for future tests, as
shown in Table 2.

Minerals 2022, 12, x FOR PEER REVIEW 3 of 16 
 

 

condition. The modeling parameters are shown in Table 1. The model size was 376 * 126 
with a grid size of 10 m for both dx and dz. There were 376 receivers at the model surface 
as shown in Figure 1, marked with blue inverted triangles. The distance between each 
receiver is 10 m. The receiver locations are the same for both active and passive data sets. 
The active source locations marked with red dots are shown in Figure 1. We use a 20 Hz 
Ricker wavelet as the source wavelet for the active data set, and 75 shots are generated. 
The distance between each shot is 50 m. The passive source locations marked with red 
stars are shown in Figure 1. Fifty passives shots were generated. We assumed that the 
passive sources had a relative uniform distribution and put the passive source locations 
around the ore bodies. We generated two passive source datasets. First, we used a 10 Hz 
source wavelet for all the source locations for one passive source dataset. This dataset was 
used to test whether the method will work in an ideal case. To make the synthetic test 
more realistic, another passive dataset used different source wavelets for the other source 
locations. We also added random noise to different datasets. Six different datasets were 
generated for future tests, as shown in Table 2. 

In order to simulate the lack of low-frequency information in the active source data, 
we performed high-pass filtering with low cut frequency at 5 Hz on the active source da-
tasets. Figure 2 shows the example shot gathers of the active and passive synthetic seismic 
datasets. Figure 2a is the active seismic shot gather that was shot at the center of the sur-
vey, and Figure 2c is the same shot gather with random noise. Figure 2b is an example 
passive seismic shot gather with a 10 Hz source wavelet, and Figure 2d is the same shot 
gather with random noise. 

 
Figure 1. The complex velocity model of a metal ore body from the Luzong Basin, China. The active 
sources, passives sources, and receiver locations are marked with different marks, as shown in the 
right upper corner of the figure. 

Figure 1. The complex velocity model of a metal ore body from the Luzong Basin, China. The active
sources, passives sources, and receiver locations are marked with different marks, as shown in the
right upper corner of the figure.

Table 1. Modeling parameters for the active and passive seismic datasets.

Parameters/Data Sets The Active Seismic Dataset The Passive Seismic Dataset

Source wavelet 20 Hz Ricker wavelet 10 Hz Ricker wavelet, or 10 Hz Ricker wavelet
convoluted with random sequences

Model size (nx × nz) 376 × 126 376 × 126
Model dx and dz 10 m 10 m

Sample rate/Record length 0.8 ms/2 s 0.8 ms/2 s
Source number 75 50

Receiver number 376 376

Table 2. The active and passive seismic datasets were generated for the tests.

Datasets

1. Dataset 1: Active dataset without low frequencies information (no data below 5 Hz);
2. Dataset 2: Dataset 1 with random noise;
3. Dataset 3: Passive dataset with 10 Hz source wavelet for all the source locations;
4. Dataset 4: Passive dataset with different source wavelets for different source locations;
5. Dataset 5: Dataset 4 with random noise;
6. Dataset 6: Ten randomly picked passive shot gathers from dataset 5;
7. Dataset 7: Ten randomly picked pass shot gathers from dataset 4 with real noise, and every
5th receiver channel is used;
8. Dataset 8: Dataset 1 with real noise and every 5th receiver channel is used.

In order to simulate the lack of low-frequency information in the active source data,
we performed high-pass filtering with low cut frequency at 5 Hz on the active source
datasets. Figure 2 shows the example shot gathers of the active and passive synthetic
seismic datasets. Figure 2a is the active seismic shot gather that was shot at the center of the
survey, and Figure 2c is the same shot gather with random noise. Figure 2b is an example
passive seismic shot gather with a 10 Hz source wavelet, and Figure 2d is the same shot
gather with random noise.
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Figure 2. Example of shot gathers of the active and passive synthetic seismic datasets used in this
work. (a) An example of the active shot gather. (b) An example of the passive shot gather. (c) An
example of the active shot gather with noise. (d) An example of a passive shot gather with noise.

3. Multisource Full Waveform Inversion
3.1. Theory
3.1.1. Conventional Full Waveform Inversion

FWI is used to find a model that generates a synthetic seismic wavefield that fits the
real observed seismic wavefield. The conventional FWI workflow is shown in Figure 3.
The objective function E can be defined as:

E =
ns

∑
i

nr

∑
j

∥∥uij − dij
∥∥2

(1)

where uij is the synthetic seismic data; dij is the observed seismic data; i is the source
location; and j is the receiver location. This is a nonlinear inversion problem. FWI usually
uses a local optimization algorithm to solve it.
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3.1.2. Source Independent Full Waveform Inversion

A successful full waveform inversion needs a good source wavelet estimation of
the observed seismic dataset. In real conditions, it is very hard to obtain a good source
estimation, especially for the passive seismic dataset. There is one approach called source
independent FWI that can solve this problem [32].

We could use Green’s function and source wavelet to replace the uij(m) and dij in
Equation (1). The new misfit function is:

E =
ns

∑
i

nj

∑
j

∥∥∥Gu
ij ∗ Su − Gd

ij ∗ Sd
∥∥∥2

(2)

where G and S are the Green’s function and source wavelet; the * represents the convolution
process; and superscripts u and d are the modeled and observed seismic data, respectively.
The source independent FWI uses a special misfit function that consists of the convolution
of the observed wavefields with a reference trace from the modeled wavefield and the
convolution of the modeled wavefields with a reference trace from the observed wavefield.
The new misfit function can be written as follows:

E =
ns

∑
i

nr

∑
j

∥∥uij ∗ dik − dij ∗ uik
∥∥2

(3)

where uik and dik are the reference traces from the modeled and the observed seismic data
at the kth receiver position, respectively. The misfit function E can be rewritten with G
and S:

E =
ns

∑
i

nj

∑
j

∥∥∥Gu
ij ∗ Gd

jk ∗ Su ∗ Sd − Gd
ij ∗ Gu

jk ∗ Su ∗ Sd
∥∥∥2

(4)

The effects of the source wavelets are eliminated as the source wavelet of the ob-
served and the modeled wavefields are equally convolved with both terms in the new
misfit function.

3.1.3. Multisource FWI Workflow

FWI is based on the Born approximation and can be considered as a local optimization
problem. The success of active source FWI depends on the good initial model and low-
frequency data. However, the real seismic data may not contain good low-frequency
information or have a very low signal-to-noise ratio (SNR) in the low-frequency band.
The passive seismic data usually carries low-frequency information, and when used to
compensate for the active seismic data, it has a more physical basis than pure mathematical
methods. Although passive seismic data have the advantages above-mentioned, its weak
energy, low signal-to-noise ratio, and unknown source locations and source wavelets also
limit its application in FWI.

There are many forms of joint FWI of active source and passive source seismic data.
The main idea is to compensate the active source FWI by taking advantage of the richer
low-frequency information contained in the passive source data. In general, there are three
different approaches.

1. Directly apply FWI to the passive source seismic data to construct an initial model for
the active source seismic data FWI;

2. Use the passive seismic data to compensate for the insufficient illumination of the
active seismic data [28,30];

3. Merge the active source and passive source seismic data using a specific method to
compensate for the low-frequency information; and



Minerals 2022, 12, 4 6 of 15

4. Use the seismic interferometry method to process the passive source data and generate
virtual shot gathers, then directly inverts it to provide an initial model for the active
seismic FWI [29].

In this study, we chose the first multisource FWI approach. To further carry out our
research, we made the following assumptions. We assumed we could relative correctly
locate the passive source locations. This is a strong assumption, but in some cases, we could
achieve it. We did not consider the elastic problem. Both forward modeling and inversion
were conducted using the acoustic wave equation. The workflow is shown in Figure 4.
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3.2. Numerical Examples

To verify our multisource FWI method and workflow, we designed three different
numerical tests. We used the same initial velocity model shown in Figure 5 for all tests.
First, we tested the method in a near-perfect condition. Second, we tested the condition
where we did not know the source wavelet for the active and passive seismic datasets.
Finally, we tested how the method works with noise in both the active and passive datasets.
We conducted five different tests, as shown in Table 3.
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Figure 5. The initial velocity model for FWI.

Table 3. Numerical tests for the multisource FWI method.

Tests

1. Test 1 (noise-free, known source locations and known one single wavelet for all source
locations, use datasets 1 and 3, the conventional FWI)
2. Test 2 (noise-free, known source locations and unknown wavelets for each source location, use
datasets 1 and 4, the source-independent FWI)
3. Test 3 (with noise, known source locations and unknown wavelets for each source location,
use datasets 2 and 5, the source-independent FWI)
4. Test 4 (fewer passive data, with noise, known source locations and unknown wavelets for
each source location, use datasets 2 and 6, the source-independent FWI)
5. Test 5 (fewer passive data, with noise, known source locations and unknown wavelets for
each source location, fewer receivers for both active and passive data, use datasets 7 and 8, the
source-independent FWI)
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3.2.1. Test 1: Test with Ideal Condition

We conducted a simple numerical test to compare the multisource FWI and conven-
tional active source FWI. We used the synthetic datasets 1 and 3, as shown in Table 2. We
assumed that we knew the passive source location and source wavelets for both passive
and active sources. First, we applied the multiscale FWI to the active source seismic dataset.
The multiscale approach was conducted by filtering the data with different frequency bands
(low pass filter with a stop frequency at 24 Hz, 32 Hz, 40 Hz, and 50 Hz). The result of the
lower frequency band data was used as the initial model for the higher frequency band
data. The upper figure in Figure 6 shows the active source FWI result. Compared with
the true velocity model, it provides a relatively correct shallow part of the model. We can
roughly see some outlines of the ore body. However, it is difficult to obtain a clear idea
of the ore body’s shape. The main reason is that the active source survey is at the surface.
The gradients were weak in the deep parts of the model. The insufficient illumination will
influence the final results of FWI, and it is hard to invert the deep parts of the model. The
lack of low-frequency information of the active seismic dataset also limits the accuracy of
the inversion results.
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Figure 6. The results of numerical test one. The upper figure shows the FWI result only using the
active dataset (dataset 1 in Table 2). The middle figure shows that the FWI result only uses the passive
dataset (dataset 3 in Table 2). The lower figure shows the FWI result when using both active and
passive datasets.

For the multisource FWI, we used the same approach as the active FWI. However, we
used the FWI result of the passive source dataset as the initial model for the active source
dataset. The middle figure in Figure 6 shows the FWI result of the passive source dataset.
Although the resolution of the shallow layer was not as good as the result of the active
source dataset, it provided a much better result of the ore body. This is because the passive
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sources are located around the ore body, which has a better illumination condition. The
rich information of the low-frequency information of the passive dataset also improves
the stability and accuracy of the inversion. The lower figure of Figure 6 shows the FWI
results of the active source dataset using the passive source dataset that was the result
of the initial model. The result velocity model was significantly improved by using both
passive and active source data. We could see the details of both the shallow and deep parts
of the model. The shapes of the two relatively large-scale and even some small ore bodies
are clearly imaged.

3.2.2. Test 2: Numerical Test with Unknown Source Wavelets

The previous simple test showed that our multisource FWI approach works in an ideal
condition. In this test, we weakened the preconditions for our method. In a real case, the
inaccuracy of the source location and wavelets will also affect the inversion result. The
source wavelets are more difficult to obtain compared with source locations. We simulated
the condition that we did not know the source wavelets for the passive and active datasets.
We used the synthetic datasets 1 and 4 as shown in Table 2. Figure 7 shows the source
wavelets used to generate the synthetic datasets. The passive source wavelets at different
source locations were generated by using a 10 Hz Ricker wavelet convoluted with a random
sequence. We used the source independent FWI algorithm that did not rely on the source
wavelet, which can overcome the influence of the inaccuracy of the passive source wavelets
on the inversion result. The low-frequency information of the passive source data can be
used to obtain the large-scale structure information of the model. The resulting model of
the passive source data can be used as the initial model for the FWI of the active source
data that is missing low-frequency information. For the active source data FWI, we used
the same multiscale approach as in the previous test.
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Figure 8 shows the source independent multisource FWI inversion result. The upper
figure is the source independent passive source FWI result. It provided relatively correct
large-scale information of the model. The result was worse than the passive FWI result
shown in Figure 6. This is because both the passive datasets and FWI approach were
different. The lower figure of Figure 8 shows the source independent active FWI result
using the passive source FWI result as the initial model. The result shows that we could
obtain a similarly good result even when we did not know the correct source wavelets.
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3.2.3. Test 3: Numerical Test with Noise and Unknown Source Wavelets

We also added noise to the passive and active source datasets to test the multisource
FWI in a more realistic condition. We used synthetic datasets 2 and 5, as shown in Table 2,
in this test. A relatively strong noise (30 db Gaussian white noise) was added to both the
active and passive source seismic datasets. We chose this noise level because most of the
real datasets could reach this level after processing. Figure 9 shows the conventional FWI
result of the noisy passive source seismic dataset. The inversion failed to converge due to
the noise and unknown source wavelets when using the conventional FWI approach. Then,
we tried the source independent FWI approach that was the same as test 2. Figure 10 shows
the source independent FWI results of the noise datasets. The result is very similar to the
FWI result in test 1, which is shown in Figure 6. This means that the source independent
FWI method can handle the noise dataset quite well. However, due to the influence of
noise, the final inversion results were slightly worse than test 1.
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3.2.4. Test 4: Numerical Test with Noise, Unknown Source Wavelets, and Less
Passive Shots

In a real case, we may not get 50 usable passive sources records as we did here. We
also tested the condition where we were only able to obtain 10 passive source records. We
randomly picked 10 passive shots from dataset 5. We applied the same inversion procedure
to datasets 2 and 6. First, we applied source independent FWI to dataset 6. Then, we
used the inversion result as the initial model for dataset 2. Figure 11 shows the inversion
results. From the results, we could see that even if we only used 10 passive shots, the
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passive dataset inversion still builds up large-scale information of the velocity structure.
This provides a useful initial model for the active dataset inversion. The active dataset
inversion result was comparable with the previous one.
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3.2.5. Test 5: Numerical Test with Real Noise, Unknown Source Wavelets and Fewer
Passive Shots and Fewer Receivers for Both Passive and Active Dataset

In addition, we also tested our method with real noise data and less dense acquisition
geometry. We took the real background noise from a mining area. The noise was directly
added to the synthetic datasets. We also used only 10 randomly picked passive shots
(dataset 7). We took every 5th receiver channel from both passive and active datasets
to simulate the less dense acquisition. Figure 12 shows the example shot gathers with
real noise and less dense acquisition geometry. The same inversion perdure was applied
to datasets 7 and 8. First, we applied source independent FWI to dataset 7. Then, we
used the inversion result as the initial model for dataset 8. Figure 13 shows the inversion
results. The results show that the method works fine in real noise conditions and sparse
acquisition geometry.
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4. Discussion

Figure 14 shows the final FWI result and the differences between the final FWI test
and the true model for each test. The ideal test gave the best result. We can clearly identify
the geometry of the main ore bodies. However, the velocity of the ore body obtained by
the FWI was about 10% lower than the actual velocity. Figure 15 shows the comparison
between the observed active shot gather (generated from the true model) and the synthetic
active shot gather (generated from each multisource FWI test). We found that the data
fitting was pretty good for all the tests. When adding different noise and making the data
set sparse, we could still obtain a reasonable result using our multisource FWI approach.
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There are also some limitations to our current numerical tests. We chose a complex
model built from a real mining area, added real noise to the synthetic datasets, and used
sparse acquisition geometry. The synthetic datasets were still idealized compared with real
datasets. We may also face many other issues in the real datasets such as complex noise
characteristics, discontinuity, and complexity of the shot gather signal and elastic effects.
However, these were not within our study scope. It is possible to minimize these effects by
preprocessing the dataset in some real cases.

Another main assumption was that the location of the seismic sources is known.
Numerical tests 4 and 5 showed that we could only use a few passive shots to build a
suitable initial model for the active data inversion. We believe that it is possible to obtain a
few usable passive shots in some actual cases.

The best way to test our multisource FWI approach is to apply it to an actual dataset.
However, there is no suitable real dataset available for testing at present, which can be
considered as research content in the future.
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5. Conclusions

The active seismic data acquired in the metal mine area usually lacks low-frequency
information. It is challenging to use only active source data to obtain good imaging of the
ore bodies. The multisource FWI method uses effective low-frequency signals from the
original passive source information, proving the potential use of low-frequency passive
source information in constructing large-scale velocity models. The passive seismic FWI can
provide a good initial model for the active seismic FWI, thus reducing the dependence of the
active seismic FWI on the initial model and low-frequency information. We chose a complex
velocity model from a mining area and generated serval datasets to test our method. The
numerical results of the perfect condition show that the multisource seismic full waveform
inversion could obtain a suitable result for high-resolution seismic imaging of metal ore
bodies. The method also worked fine when the source wavelets are unknown, and the
datasets had a relatively high noise level by introducing the source independent approach.
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