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Abstract: Cobalt (Co) mine production primarily originates from the sediment-hosted copper (Cu)
deposits of the Democratic Republic of Congo (DRC). These deposits usually consist of three ore
zones with a supergene oxide ore blanket overlying a transition zone which grades into a sulphide
zone at depth. Each of these zones display a mineral assemblage with varying gangue mineralogy
and, most importantly, a distinct state of oxidation of the mineralisation. This has direct implications
for Cu and Co extraction during mineral processing as it dictates which processing method is to be
used (i.e., leaching vs. flotation) and affects the performance of these. To optimise resource efficiency,
reduce technical risks and environmental impacts, comprehensive understanding of variation of ore
mineralogy and texture in the deposit is essential. By defining geometallurgical ore types according
to their inferred metallurgical behaviour, this information can serve to classify the resources and
improve resource management. To obtain insight into the spatial distribution of mineral grades, it is
necessary to develop techniques that have the potential to measure rapidly and, preferably, within
the mine at relatively low-cost. In this study, the application of portable Fourier transformed infrared
(FTIR) spectroscopy is investigated to measure the mineralogy of drill core samples. A set of samples
from a sediment-hosted Cu-Co deposit in DRC was selected to test this approach. Results were
validated using automated mineralogy (QEMSCAN). Prediction of gangue and target mineral grades
from the FTIR spectra was achieved through partial least squares regression (PLS-R) combined with
competitive adaptive reweighted sampling (CARS). It is shown that the modal mineralogy obtained
from FTIR can be used to classify the ore according to type of mineralisation and gangue mineralogy
into geometallurgical ore types. This classification supports selection of a suitable processing route
and is likely to affect the overall process performance.

Keywords: infrared spectroscopy; FTIR; modal mineralogy; geometallurgy; PLS-R; CARS; QEMSCAN

1. Introduction

Geometallurgy is a cross-discipline that seeks to maximise the economic value and im-
prove the sustainability of the extraction of metals and minerals by documenting variability
of key geological, mineralogical, and metallurgical ore properties and quantifying their
impact on mineral processing and metallurgical processes performance [1–3]. The quan-
titative spatially-based database generated can be readily integrated into a 3D predictive
model for mine planning and mineral processing to support production management and
reduce technical risks, securing the economical optimisation of the whole operation [3–6].
Two different approaches exist to link key ore properties to metallurgical process perfor-
mance, the traditional geometallurgical approach and the particle-based approach. The
traditional approach relies on geometallurgical testing of a selection of a large number
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of geo-referenced test samples to determine metallurgical parameters [4,7–9] while the
particle-based approach relies on minerals and particles as common parameters for process
modelling and simulation [10,11]. Ore mineralogical properties (modal mineralogy, tex-
tures, etc.) are the main, if not the most important, geometallurgical ore properties as they
define not only the value of the deposit but also the method of extraction and concentration.

This is particularly true for the stratiform sediment-hosted copper-cobalt deposits
of the Democratic Republic of Congo (DRC) from which most of the current cobalt mine
production originates [12,13]. These deposits usually consist of three main zones: an
oxide supergene ore blanket overlying a transitional mixed sulphide-oxide zone grading
into a sulphide ore at depth [14,15]. The mineralisation is hosted in a variety of rocks
associated with carbonates (mostly dolomite) and carbon-rich lithologies, and siliceous
gangue minerals such as quartz and talc. The minerals of economic interest range from
oxide minerals such as malachite for copper and heterogenite for cobalt in the supergene
zone to sulphide minerals at depth, including carrollite for cobalt, and chalcopyrite and
bornite for copper [16–18].

1.1. Importance of Ore Mineralogy

The overall mineralogy of the ore, oxidation state of the mineralisation, and gangue
composition vary from one zone to the other. This plays a critical role during mineral
processing. Indeed, while the oxide ore is usually processed through a leaching/solvent
extraction/electrowinning (L/SX/EW) route, the mixed and sulphide ores are usually
treated using flotation, sulfating roasting, leaching and electrowinning [12,13]. Gangue
mineralogy is considered as the single most important parameter affecting operating costs
and recoveries of hydrometallurgical projects [19] and it can be the decisive factor for
selection of the processing route [20]. In practice, dolomitic ores are generally harder [15]
and the presence of dolomite affects the floatability of oxide copper-cobalt minerals and
requires the use of the sulphidisation method [20–22] or reverse flotation [23]. Significantly,
dolomite is a major sulphuric acid consumer and it often determines whether the ore can be
treated economically with sulphuric acid leaching [24]. Other problematic gangue minerals
are chlorites which must be removed prior to flotation in order to achieve grades acceptable
for further processing of the concentrates [25] and which are also known to be powerful
long-term acid consumers [19]. Hence, quantifying both gangue and valuable minerals
in the ore is of paramount interest. Moreover, mineral grades are an important input
parameter for the mineral-based geometallurgical approach and corresponding process
models [26]. To obtain high-resolution insights into the spatial distribution of the ore modal
mineralogy, i.e., mineral grades, it is necessary to develop innovative technologies and
approaches that have the potential to measure mineral grades within the mine rapidly and,
preferably, at low cost.

While modal mineralogy has traditionally been determined by optical microscopy
using point counting, there is a trend towards the use of automated techniques, which are
both less time-consuming and more accurate. These include quantitative X-ray diffraction
(QXRD) with Rietveld refinement [27], optical microscopy image analysis and multispec-
tral imaging [28] and automated mineralogy. Image analysis techniques which interpret
scanning electron microscopy (SEM) data (QEMSCAN, MLA, MinSCAN, TESCAN, etc.)
provide more rapid quantitative analysis of mineral grades and textures [29–33]. However,
within geometallurgical programs, it is desirable to have an ore characterisation technique
that is fast, inexpensive and above all practical [34]. The aforementioned techniques are
costly, with a turnaround time (including sample preparation) in the range of a few hours
and require an experienced operator. More recently, the element-to-mineral conversion
(EMC) method, based on the simultaneously solving of a set of mass balance equations for-
mulated between chemical elements and minerals, allows to estimate mineral grades [11].
The method is however, restricted to relatively simple mineralogy with a limited number
of minerals not larger than the number of analysed components (major elements, metals).
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Hence, it is of interest to investigate the use of a hand-held device that can provide a rapid
estimate of the modal mineralogy of core samples.

1.2. Infrared Technology

Infrared (IR) is a well-known technology used for mineral identification. Indeed,
the IR part of the electromagnetic spectrum can be used to determine the presence of
certain minerals by identifying features in a transmitted or reflected spectrum [35–38].
In particular, near infrared (NIR), as well as hyperspectral visible to near-infrared (VNIR),
have been considered as potential tools for ore sorting [39–42]. The absorption spectra
observed in the short-wave infrared (SWIR) region (1300–2400 nm) are due to overtones
and combinations of the fundamentals occurring at longer wavelengths [36]. These longer
wavelengths (2.5–25 µm), in the mid- and long-wave infrared (MWIR/LWIR) range, host
features of intense fundamental molecular vibrations related to chemical components [43].
The intensity of these vibration bands is so high that a mirror-like opacity is induced,
leading to high reflectance peaks that are referred to as the reststrahlen band [44]. Silicates,
carbonates and hydroxides minerals are known to be active in the MWIR range and display
a unique reflectance feature due to fundamental stretching and vibrational motions [45,46].

When interpreting the spectra measured from hard rock or core samples, consisting of
complex mineral assemblages, all of which potentially influence the spectrum, overlaps
can occur between the characteristic features of individual minerals. Indeed, most of these
features are observed at similar wavelengths and this may cause issues with identification
of the minerals. When analysing a mixture of minerals, MWIR spectra express a linear
combination of the spectra of constituent pure minerals spectra as long as particles are larger
than the wavelengths [47]. Authors have suggested that spectral mixing remains essentially
linear for particle sizes down to 60 µm and that, with appropriate particle diameter end-
member spectra for the corresponding mixtures, the errors are reduced significantly, and
linearity continues through to the 10–20 µm size fraction [48]. For smaller particle sizes,
however, the volume scattering will influence the spectra, meaning that non-calculated
peaks and troughs can appear [44]. Particulate materials may have relatively rough surfaces
which cause multiple surface scattering, resulting in a cavity effect that reduces the contrast
of the reststrahlen bands. On the other hand, spectra of solid rocks with a relatively smooth
surface are dominated by surface scattering, which results in reststrahlen bands with high
spectral contrast [49].

Fourier transformed infrared (FTIR) is a rapid, non-destructive, and low-cost method
which requires little or no preparation of the sample. FTIR is considered to be one of the
most underused tools in applied geology [50]. When obtaining FTIR reflectance spectra,
more accurate and complete spectra are measured due to the presence of an interferome-
ter [51]. Quantitative mineralogy of reservoir rocks obtained through both XRD and FTIR
showed good agreement between the two techniques [52–54] and, in one case, reservoir
properties could be directly deduced from FTIR data [55]. FTIR was demonstrated to be
a reliable technique to obtain the mineralogy of sediments when applying a generalised
least squares inversion against a library of mineral standards with unique IR spectra [56].
Recent developments have shown that application of a bench-scale FTIR equipped with an
attenuated total reflection (ATR) sample analysis unit allowed to perform mineral quan-
tification on powdered samples for a wide range of rock matrix (pegmatites, sedimentary
rocks) through univariate or multivariate (partial least squares regression) spectral data
analysis with satisfactory validation results when compared to XRD [57]. In all previously
mentioned studies, a significant amount of sample preparation was performed, as samples
were crushed and pelletized before measuring the reflectance spectra. However, only a
limited number of studies have attempted to use portable FTIR spectroscopy for quan-
titative mineralogy from spectra measured directly on drill core sample [58]. While the
results obtained in the aforementioned study were promising, the semi-automated method
yielded variable accuracy, only allowing for first approximations of mineral distributions.
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This paper investigates the development of a practical way to determine modal miner-
alogy from drill cores of a DRC Cu-Co sediment-hosted ore using portable FTIR technology,
with the results being validated by the QEMSCAN analysis. The objective is to develop a
simple and robust method that can be used for geometallurgical characterisation or core
samples and in-pit ore analyses. The mineralogical information is then used to propose
a mineral-based geometallurgical ore-type classification scheme which provides informa-
tion for subsequent processing steps or pre-concentration strategies depending on the
mineralogy of the feed ore.

2. Materials and Methods
2.1. Material

Samples used in this work originate from an operational open pit mine located in the
DRC which extracts ore from a sediment-hosted Cu-Co deposit. The operation is currently
only processing ore from the oxide horizon through a traditional L/SX/EW process. The
process produces cathode copper while cobalt is recovered as a by-product in the form of
cobalt hydroxide. We selected 34 quarter core samples representing the variation of cobalt
grade, mineralogy and textures within the orebody from a core sample library. The selected
samples were cut to produce thin sections for QEMSCAN analysis while the mirror image
of these thin sections, which remained on the drill cores, were analysed using handheld
FTIR (Figure 1). As a first approximation, this mirrored sample is considered to have the
same mineralogical content as the corresponding thin section.
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Figure 1. Sample preparation procedure and correspondence between the thin section analysed by
QEMSCAN and the mirrored sample analysed by Fourier transformed infrared (FTIR) spectroscopy.

2.2. Fourier Transformed Infrared (FTIR) Spectroscopy
2.2.1. FTIR Measurements

The reflectance spectra were obtained using an Agilent 4300 Handheld FTIR (Edin-
burgh, UK) with a wavelength range set between 2.5 µm and 15.8 µm, a resolution of
4 cm−1 and a spot size of approximately 5–7 mm. The instrument is fully portable—it is
hand-held, weighs less than 2.2 kg and is battery powered. To accommodate potential
uneven surfaces that causes light to be reflected at all angles, a diffuse reflectance sample
interface was used. This enables measurement of both internal and external reflectance,
making it more suitable for reflection from rough surfaces such as those of cut drill cores
used in this study [59]. Calibration was performed using a gold/silver standard and
126 background measurements were performed in order to subtract the background noise.
Each reflectance spectrum is the average of 64 reflectance measurements, automatically
computed by the device. The data from the hand-held device is collected using MicroLab
Mobile software (Agilent, Santa Clara, CA, USA). For predictive purposes, all spectra were
recorded as the logarithm of the reciprocal reflectance, log(1/R).

For each selected drill core, between 10 and 15 individual measurements were made
on the thin section mirrored image using the handled FTIR docked in a stand and moving
manually the sample following the workflow described in Figure 2. The individual spectra
were averaged to provide an average spectrum for the whole mirrored image which could
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be compared to the modal mineralogy of the corresponding thin section, as obtained by
QEMSCAN. Alternatively, to capture the characteristic features of some key minerals in the
ore, fieldscan images from the QEMSCAN analysis were divided into tiles which followed
the scheme used for the individual FTIR measurements on the mirrored image. This offers
the possibility to compare the tiles modal mineralogy given by the QEMSCAN to the
corresponding individual FTIR spectra (Figure 2).
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corresponding QEMSCAN tiles on the thin section.

2.2.2. Spectra Pre-Processing

Spectral pre-processing is applied to the raw FTIR data to remove noise and physical
phenomena in the spectra in order to improve the subsequent multivariate regression
(Figure 3). The pre-processing procedure is performed by a smoothing step using a moving
average on a finite-size spectral window, the size of which is optimised for each mineral.
Next, two scatter-corrective methods are applied independently, i.e., standard normal
variate (SNV) transformation and multiple scatter correction (MSC). Both techniques are
very similar and aim to remove the multiplicative interferences of light scattering and
particle size. Furthermore, shifts in the baseline of the reflectance spectra transformation
were corrected by row centring and row scaling, filtering out multiplicative interferences of
scatter and particle size [60]. Data correction is performed using the following equation:

xcorr =
xraw − b0

b1
(1)

where xraw is the raw sample spectra measured by the handled FTIR, xcorr is the corrected
spectra, and b0 and b1 are scalar parameters which differ for each sample. For SNV, b0 is the
average value and b1 the standard deviation of the sample spectrum to be corrected [61],
while for MSC b0 and b1 are obtained by least-squares regression fit against a reference
spectrum [61]:

xraw = b0 + b1·xref + ε (2)

where xref is a reference spectrum, in this case the average spectrum of the whole sample
set and ε is the modelling error. Spectral derivatives were also applied to explore the effect
of both additive and multiplicative effects in the spectra and to correct baseline effects
in spectra. The 1st derivative of the spectrum is computed using the Savitzky and Golay
(SG) algorithm which includes a smoothing step [62]. Details about the SG derivative
computation method can be found in the papers [60,62].



Minerals 2022, 12, 15 6 of 20

Minerals 2022, 11, x  6 of 22 
 

 

spectra. The 1st derivative of the spectrum is computed using the Savitzky and Golay (SG) 
algorithm which includes a smoothing step [62]. Details about the SG derivative compu-
tation method can be found in the papers [60,62]. 

 
Figure 3. Illustration of some spectra pre-processing methods. (a) Raw spectra, (b) smoothed spectra 
(window = 11), (c) standard normal transformed spectra, (d) multiplicative scattering corrected 
spectra, and (e) first derivative spectra of the selected core samples. 

2.3. QEMSCAN 
Quantitative mineralogical analysis was carried out using a QEMSCAN 4300 at Cam-

borne School of Mines, University of Exeter, UK. This consists of a Zeiss EVO 50 SEM and 
four light element Bruker silicon drift detector (SDD) X-ray detectors [29,63]. The acquired 
EDX spectra are combined into one signal and compared to a computer-based database 
to allow rapid determination of the spatial distribution of the minerals present [64]. Se-
lected samples were prepared into polished uncovered thin sections with a volume of 
about 100 μm (thickness) × 25 mm (width) × 47 mm (length) and carbon coated to 25 nm 
prior to analysis using an Emitech K950 carbon coater. The measurement was performed 
using the following settings: default beam settings of 25 kV and 5 nA, X-ray count rate of 
1000 per pixel, a working distance of around 22 mm under high vacuum, and beam cali-
bration every 30 min. To allow for mounting of the sample, a surface area of approxi-
mately 20 mm × 38 mm was analysed using the fieldscan measurement mode at an X-ray 
resolution or pixel spacing of 10 μm and a 1500 μm2 field size (×43 magnification). This 
produced approximately 6 million data points per sample and X-ray signals, and the BSE 
signal when required, at each point were analysed following standard in-house practice. 
This included adding and improving SIP (species identification protocol) entries in the 
database as was deemed appropriate. Development of the database included all copper 
and cobalt minerals specific to these samples, as reported in Tijsseling et al. (2019). During 

Figure 3. Illustration of some spectra pre-processing methods. (a) Raw spectra, (b) smoothed spectra
(window = 11), (c) standard normal transformed spectra, (d) multiplicative scattering corrected
spectra, and (e) first derivative spectra of the selected core samples.

2.3. QEMSCAN

Quantitative mineralogical analysis was carried out using a QEMSCAN 4300 at Cam-
borne School of Mines, University of Exeter, UK. This consists of a Zeiss EVO 50 SEM
and four light element Bruker silicon drift detector (SDD) X-ray detectors [29,63]. The
acquired EDX spectra are combined into one signal and compared to a computer-based
database to allow rapid determination of the spatial distribution of the minerals present [64].
Selected samples were prepared into polished uncovered thin sections with a volume of
about 100 µm (thickness) × 25 mm (width) × 47 mm (length) and carbon coated to 25 nm
prior to analysis using an Emitech K950 carbon coater. The measurement was performed
using the following settings: default beam settings of 25 kV and 5 nA, X-ray count rate
of 1000 per pixel, a working distance of around 22 mm under high vacuum, and beam
calibration every 30 min. To allow for mounting of the sample, a surface area of approxi-
mately 20 mm × 38 mm was analysed using the fieldscan measurement mode at an X-ray
resolution or pixel spacing of 10 µm and a 1500 µm2 field size (×43 magnification). This
produced approximately 6 million data points per sample and X-ray signals, and the BSE
signal when required, at each point were analysed following standard in-house practice.
This included adding and improving SIP (species identification protocol) entries in the
database as was deemed appropriate. Development of the database included all copper
and cobalt minerals specific to these samples, as reported in Tijsseling et al. (2019). During
this process, all mineral categories were checked by examination of elemental abundance,
elemental ratios, and BSE signal. All data acquisition was undertaken using the iMeasure
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v4.2SR1 software and spectral interpretation and data processing used iDiscover software
v4.2SR1 and 4.3 [65].

2.4. Multivariate Regression Methods

Partial least squares regression (PLS-R) is generally considered as the most accurate of
the available mathematical methods for quantitative evaluation of IR spectra [66]. The main
advantages of PLS-R are that it can account for overlapping peaks, sample impurities, and
non-linearities in Beer’s Law due to molecular interactions [53]. PLS-R allows modelling
of the correlation between a set of predictor variables in the form of a multivariate X
matrix (in this case the reflectance data given by the FTIR analysis) and a set of dependent
response variables in the form of a Y matrix (in this case the mineral grades as given
by the QEMSCAN analysis) by regression. PLS-R models can be interpreted as inter-
related principal component analysis (PCA) scores of the predictors, t, and the responses,
u, aiming to maximise the covariance between t and u [67]. Like PCA, PLS-R reduces the
dimensionality of the predictor matrix by extracting latent variables (LVs) which are linear
combinations of all X-variables (PLS components). LVs are correlated to the responses
while simultaneously capturing the largest possible amount of variation in the predictors.
A detailed description of the PLS-R method and analytical features can be found in the
literature [66–69].

Full spectra, which include all measured wavelengths, contain much redundant infor-
mation, uninformative data, or noise that often leads to bad prediction results. Hence, it is
common practice to select informative wavelengths prior to the establishment of the final
regression model. There are many selection techniques but a recently developed method
called competitive adaptive reweighted sampling (CARS) has proved to be very efficient
when applied to NIR data [70–72]. The CARS algorithm chooses an optimal subset of
wavelengths, i.e., points in the X-matrix (instrumental data), to build a PLS-R model with
the lowest value of root mean square error of cross validation (RMSECV) by selecting the
variables with the largest absolute regression coefficients. For a detailed description of the
CARS method, refer to Li et al. [70]. The procedure followed for each y (mineral) can be
summarised as follows:

I. A first PLS-R is applied to the full spectrum. The absolute values of regression coeffi-
cients of the obtained PLS model are calculated and used as an index for evaluating
the importance of each variable.

II. CARS sequentially select N subsets of wavelengths from N Monte Carlo sampling
runs in an iterative and competitive manner based on the importance level of each
variable. In each sampling run, a fixed ratio of samples is first randomly selected to
establish a calibration model.

III. A two-step procedure, including exponentially decreasing function (EDF)-based en-
forced wavelength selection and adaptive reweighted sampling-based competitive
wavelength selection, is then adopted to select the key variables based on the regres-
sion coefficients.

IV. Finally, a 10-fold cross validation is applied to choose the optimal subset of variables
with the lowest RMSECV.

Ultimate multivariate predictive models validation was performed by test set valida-
tion which is considered to be the only correct validation method in chemometrics [69,73].
In this study, test set validation is performed by splitting the samples into a calibration set
and a validation set with an 8:2 ratio, respectively. Dataset partitioning into calibration
and validation subsets for the first PLS-R (step I) was performed using the SPXY (sample
set partitioning based on joint X–y distances), an alternative to the Kennard–Stone algo-
rithm which allows partitioning the dataset according to their differences in both X and
y spaces [74]. Alternatively, for the second PLS-R after the CARS algorithm, partitioning
was performed using SPXYE (sample set partitioning based on joint X–y-e distances),
an improved version of the SPXY method. This method also takes into account the error of
the preliminary PLS-R predictive model (e) for data partitioning by choosing the samples
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according to X, y and e spaces [75]. While most partitioning strategies aim to choose a
representative training set, the algorithms were used to allocate samples to the training and
validation set alternatively, therefore ensuring the representativity of both subsets.

The performance of the models was evaluated in terms of RMSE and determination
coefficient (R2), pertaining to a fitted linear regression model between predicted versus
reference mineral grades, for both the calibration set (RMSEC, Rc

2) and the validation
set (RMSEP, Rp

2). In addition, the RMSECV of the 10-fold cross validation used for the
selection of the optimal number of LVs in the PLS-R model is also considered. Spectral
pre-processing techniques, PLS-R models, and variable selection were performed using
Matlab® (version R2018b, MathWorks Inc., The Aztec, MA, USA). The CARS algorithm is
included with LibPLS toolbox [76], available online: http://www.libpls.net/ (accessed on
the 10 September 2020).

3. Results
3.1. Feature Identification

The relatively homogenous zones observed within some thin sections, where one
mineral is clearly dominant (>90 wt.%), can be used to establish reference FTIR spectra
for the minerals present in the samples. For this purpose, FTIR spectra relating to the
relatively homogeneous tiles in QEMSCAN fieldscan images were used (Scale 2, Figure 2).
The reference spectra of five major minerals and the corresponding QEMSCAN fieldscan
tiles of the area from which these were measured are presented in Figure 4. The reference
spectra obtained for pure (>99 wt.%) malachite display multiple reststrahlen features. The
main features include peaks at 6.62 µm and 7.17 µm, caused by C-O stretching, a peak at
9.52 µm due to OH vibration and a shoulder followed by a peak at 12.20 µm, both due to
OCO bending [77,78]. An almost pure (88 wt.%) carrollite tile enabled the determination of
a reference spectrum for carrollite, which display a maximum feature at 9.37 µm. Although
FTIR spectra for carrollite are scarce in the literature, the position of the maximum feature is
in agreement with the metal-sulphide maximum reported in literature [46,79]. Equally, it is
close to the feature located at 9.34 µm in the RRUFF database FTIR spectra for carrollite [80].
The purest QEMSCAN tile found for chlorite (69 wt.%) yields an FTIR spectrum with the one
main feature at 9.65 µm attributed to Si-O stretching. The presence of numerous impurities
(mainly quartz, carrollite and bornite) may explain the absence of the two features observed
at 9.40 µm and 10.40 µm in previous studies [81] and reference spectra [46]. The most
homogeneous (94 wt.%) dolomite QEMSCAN tile produced an FTIR spectrum with two
reststrahlen features at 6.40 µm and 11.20 µm which are attributed to bending of the C–O
bond. This is in agreement with previous studies and reference spectra [36,37,46]. The
pure quartz spectrum obtained from relatively homogenous tile (95 wt.%) displays two
reststrahlen features at 8.60 µm and 12.60 µm due to the stretching of the Si–O bond, similar
to those observed in previous studies [37,46].

Analysis of the (almost) pure mineral spectra allows identification of the characteristic
features of minerals of interest. However, the investigated core samples are composed
of a mixture of those minerals plus some others for which no pure mineral spectra could
be extracted. Hence, due to a high degree of band overlap, identification of pure mineral
features and quantitative modal mineralogy requires the use of multivariate predictive
methods such as PLS regression (PLS-R).

In this paper we use PLS-R for the quantification of a limited number of key minerals.
Some minerals like heterogenite, which is one of the main cobalt carriers in oxide ores, have
not been included as no satisfying results could be obtained due to an insufficient amount
or dissemination and intergrowth with minerals having overlapping characteristics bands
in the set of samples collected for this study.

http://www.libpls.net/
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3.2. Multivariate Analysis for Modal Mineralogy
3.2.1. Optimal Pre-Processing Sequence Selection

Following the recommendation of Rinnan et al. [60], the optimal pre-processing se-
quence was selected by applying a full-spectrum PLS-R on the FTIR dataset after smoothing,
SNV, MSC, SG 1st derivative (SG 1d) and combinations of these. An optimal spectral win-
dow selection was first performed for the pre-processing sequence including a smoothing
step, i.e., smoothing, SG 1st derivative and combination of the latter with SNV or MSC. For
each mineral, selection of the optimal spectral windows is based on lowest RMSEP of the
full spectra PLS-R model (Table 1).

Table 1. Optimum spectral window for the pre-processing sequence including a smoothing step.
These are selected based on lowest RMSEP of the full spectra PLS-R model for each mineral.

Mineral Smooth SG 1d SNV + SG 1d MSC + SG 1d

Carrollite 29 7 53 19
Chalcopyrite 75 7 9 3

Malachite 77 29 95 21
Dolomite 63 7 95 93

Quartz 75 19 17 13
Mg-chlorite 77 99 95 95

The performance of the PLS-R model for the different pre-processing sequences is
summarised in Table 2. Overall, good predictions are obtained with SG 1st derivative
alone or combined with SNV (which include a smoothing step), whereas MSC appears to
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lead to less suitable models. The reason for these differences in PLS-R model performance
between pre-processing sequences described in Table 2 is complex and may be related to the
differences in the way in which characteristic features of each mineral are highlighted by the
different pre-processing methods. For each mineral, the selection of the best pre-processing
sequence was based on the lowest RMSEs of the full-spectra PLS-R model by comparing
the product of the three RMSEs, i.e., RMSECV × RMSEC × RMSEP.

Table 2. Comparison of the full spectra PLS-R model performance as a function of the pre-processing
sequence for each mineral using the averaged FTIR data. The model with the lowest root mean
squared errors (RMSEs) product (RMSECV × RMSEC × RMSEP) are highlighted in bold.

Mineral Index Raw S * SNV S + SNV MSC S + MSC SG 1d * SNV + SG 1d * MSC + SG 1d *

Carrollite
RMSECV 8.864 8.863 10.269 10.706 12.926 9.694 14.064 9.685 12.875
RMSEC 8.456 8.457 5.871 6.150 9.429 1.249 11.818 0.880 5.039
RMSEP 13.069 13.068 13.062 13.159 13.777 15.434 4.435 4.372 14.454

Chalcopyrite
RMSECV 5.713 5.684 7.634 7.851 7.646 4.171 6.624 7.603 8.730
RMSEC 2.634 2.729 0.818 0.771 6.302 0.721 4.085 0.002 1.168
RMSEP 6.130 4.330 2.228 4.859 6.685 67.132 1.763 1.674 1.801

Malachite
RMSECV 2.266 3.758 3.656 4.029 38.395 44.748 2.300 3.643 2.707
RMSEC 0.830 0.782 2.823 2.075 9.432 9.068 0.805 2.313 0.577
RMSEP 12.871 6.488 6.579 4.088 5.083 7.480 1.120 2.080 131.531

Dolomite
RMSECV 5.994 6.491 7.032 7.213 5.156 7.360 5.447 7.010 9.211
RMSEC 3.537 3.306 3.624 4.550 0.471 1.041 1.688 2.530 7.505
RMSEP 7.134 7.328 9.640 24.575 42.731 10.085 5.426 4.851 11.432

Quartz
RMSECV 5.267 6.118 7.105 7.836 6.600 7.895 7.582 8.403 8.563
RMSEC 3.008 3.232 1.289 3.377 4.014 4.688 2.399 0.203 3.809
RMSEP 11.996 11.647 10.275 9.971 14.001 11.382 10.878 9.863 11.793

Mg-
chlorite

RMSECV 5.387 5.292 2.900 2.561 4.364 4.467 3.450 2.487 4.026
RMSEC 1.927 0.870 1.079 0.740 3.043 2.867 0.279 0.090 1.927
RMSEP 15.637 12.523 13.625 16.757 12.305 3.991 0.974 2.189 4.088

* Smoothing, computed using the optimal spectra windows given in Table 1.

The relatively high RMSECV of certain full-spectra PLS-R models for some minerals
may be explained by the redundancy or noise due to the use of the full FTIR spectra for
the calculations and the relatively low number of samples used for this analysis. These
points will be addressed in the following sections. First, the CARS method is applied to
the optimised pre-processed spectra to reduce the number of variables used to build the
PLS-R models.

3.2.2. Competitive Adaptive Reweighted Sampling (CARS) Partial Least Squares
Regression (PLS-R) on Average Spectra

Using the previously defined optimal pre-processing sequence for each mineral, PLS-R
was first applied to the full spectrum and then to a selected sub-set of informative variables
using the CARS algorithm. Table 3 shows the summary statistics for both full-spectrum PLS-
R and CARS PLS-R models for each mineral with corresponding pre-processing procedure,
number of variables (nVAR), latent variables (nLVs), and model performance indexes.
The full-spectrum PLS-R models display good performance with satisfactory validation
results, i.e., R2

P of 0.922, 0.979, 0.989, 0.975, 0.947 and 0.859 with RMSEP of 4.372, 1.674,
1.120, 5.426, 9.863 and 0.974 for carrollite, chalcopyrite, malachite, dolomite, quartz and
magnesiochlorite, respectively. However, it should be noted that a relatively high number
of latent variables were used for some models, notably for carrollite (12 LVs), chalcopyrite
(17 LVs), quartz (13 LVs) and magnesiochlorite (18 LVs). This increased model complexity
may lead to overfitting issues. For example, there is a significant difference between
RMSECV/RMSEC/RMSEP for carrollite, of 9.685, 0.880, respectively 4.372. This could
be explained by the very large number of variables used for PLS-R, with the full spectra
containing no less than 2760 variables. As a result, there is likely to be a significant amount
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of redundant information, uninformative data, or noise that affects the number of LVs in
the PLS-R model and thus its performance.

Table 3. Summary statistics and performance indicators for the full spectra PLS-R and the CARS
PLS-R calibrations using the average spectra data.

Minerals Pre-Processing
Procedure nVAR * nLVs *

Calibration Set (n = 28) Validation Set (n = 6)
RMSECV R2

C RMSEC R2
P RMSEP

Full spectrum PLS-R
Carrollite SNV + SG 1d 2750 12 9.685 0.999 0.880 0.922 4.372

Chalcopyrite SNV + SG 1d 2750 17 7.603 1.000 0.002 0.979 1.674
Malachite SG 1d 2750 5 2.300 0.997 0.805 0.989 1.120
Dolomite SG 1d 2750 7 5.447 0.993 1.688 0.975 5.426

Quartz SNV + SG 1d 2750 13 8.403 1.000 0.203 0.947 9.863
Mg-chlorite SG 1d 2750 18 3.450 0.999 0.279 0.859 0.974

CARS PLS-R
Carrollite SNV + SG 1d 83 8 1.610 0.999 0.672 0.937 3.094

Chalcopyrite SNV + SG 1d 40 13 0.312 1.000 0.054 0.976 3.378
Malachite SG 1d 148 4 0.906 0.999 0.527 0.961 2.093
Dolomite SG 1d 17 3 2.183 0.986 2.392 0.982 5.146

Quartz SNV + SG 1d 72 10 1.159 1.000 0.405 0.961 9.002
Mg-chlorite SG 1d 77 15 0.375 1.000 0.133 0.898 0.806

* nVar and nLVs denotes the number of selected variables and latent variables, respectively.

In order to eliminate the uninformative variables, the CARS algorithm has been
applied to the full spectra prior to PLS-R. CARS was performed for all minerals with a
number of Monte Carlo sampling runs set to 100. This number is taken as the default value
since the number of Monte Carlo sampling runs does not have a significant influence on
the performance of CARS [70]. Figure 5 shows the evolution of the number of sampled
wavelengths and the ten-fold RMSECV values with the increasing number of sampling runs.
For all minerals, the number of sampled wavelengths decreases fast during the first stage of
the EDF and then very slowly at the second stage of the EDF (Figure 5a). Simultaneously the
RMSECV decreased, more progressively depending on the mineral, as the uninformative
wavelengths were eliminated while the informative ones were retained up to a point where
key wavelengths start to be removed, resulting in a sharp rise of the RMSECV value
(Figure 5b). Even if not marked here, the optimal wavelengths subset, corresponding to
a minimal RMSECV, is reached after 50–60 sampling runs for most minerals. Finally, 83,
40, 148, 17, 72 and 77 wavelengths were selected out of 2750 for carrollite, chalcopyrite,
malachite, dolomite, quartz and magnesiochlorite, respectively.
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An illustration of the informative wavelengths selected by CARS is shown in Figure 6.
The selected wavelengths are widely distributed in the wavenumbers 6–14 µm, especially
for Mg-chlorite and carrollite. Indeed, for some minerals, like malachite or quartz, the
selected key wavelengths are mostly located in the region where their characteristic features
are located. For other minerals like carrollite, the selected wavelengths are much broadly
distributed. This may be attributed to the wide distribution of the characteristic features
of the investigated minerals in this region (Figure 4), strong overlaps, high correlations
in IR spectra, the broad reflectance features of some minerals [72,82] or the absence of
a clear distinct feature as in the case of carrollite (Figure 4). In addition, mineralogical
associations, and correlations between some mineral occurrences may also translate into
characteristic wavelengths of these associated minerals being selected. Moreover, it should
be noted that the multivariate analysis, unlike the reference work on which the characteristic
features have been identified, is performed on the logarithm of the reciprocal reflectance,
i.e., log(1/R), which may affect the relative strength of some spectral features that may
appear stronger when the reflectance is plotted and thus the selected wavelength may
differ slightly.
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The results obtained with the CARS PLS-R models for each mineral are presented
in Table 3 and Figure 7. As expected, the number of latent variables is reduced for all
minerals even if some models still have a relatively high number of latent variables, notably
chalcopyrite (13 LVs) and magnesiochlorite (15 LVs). Consequently, the CARS-PLS-R
models display much lower RMSECV than the full-spectrum PLS-R models, with the
RMSECV reducing by a factor of 2 to 9. The CARS PLS-R models display good performance
with satisfactory validation results, i.e., R2

P of 0.937, 0.976, 0.961, 0.982, 0.961 and 0.898 with
RMSEP of 3.094, 3.378, 2.093, 5.146, 9.002 and 0.806 for carrollite, chalcopyrite, malachite,
dolomite, quartz and magnesiochlorite, respectively. Overall, the RMSEP obtained after
CARS variable selection is also lower with the exception of chalcopyrite and malachite.
Moreover, the regression models of all minerals, with the exception of quartz, have a
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smaller difference between RMSECV and RMSEP, suggesting a better performance and
stability of the models [83].
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4. Discussion on the Potential Application to Geometallurgical
Ore-Type Classification

Resource classification for sediment-hosted Cu-Co deposits are usually based on total
Cu (TCu) and total Co (TCo) grades and occasionally on acid soluble Cu (AsCu) and Co
(AsCo) content. The latter are usually determined by digesting (half-) core samples in a 10%
sulphuric acid solution. The acid soluble AsCu and AsCo grades are taken to represent the
presence of oxide Cu/Co-minerals while acid insoluble Cu (AiCu) and Co (AiCo), which
follow from the difference between TCu/TCo and AsCu/AsCo, are used as a proxy for
sulphide minerals [84]. However, not all oxide Cu/Co oxide minerals are readily soluble in
sulphuric acid, they may be Co oxides locked in silicates or intergrown with clays and Fe-
oxy-hydroxides [85], and secondary and some primary Cu/Co sulphide minerals are only
partially soluble in acid [86]. This may affect the reliability of the aforementioned indicators
as proxies for the amount of oxide/sulphide minerals [87]. Gangue acid consumption
(GAC) and soluble iron content are alternative parameters that may be considered. While
these indicators are good proxies to assess the recoverable Cu and Co during leaching,
it requires an extensive test work program which is time-consuming and costly. In addition,
these indicators are relevant for the leaching process but do not provide much information
about the potential to recover AiCu and AiCo through flotation, which is also influenced
by carrier and gangue minerals. All aforementioned indicators can be derived from modal
mineralogy which drives the ore processing requirements (e.g., leaching versus flotation,
leaching agent, flotation reagents, etc.) as the beneficiation route mainly depends on the
state of the mineralisation (i.e., oxidised/weathered, mixed or reduced/sulphides) and the
gangue mineralogy which influences acid consumption and flotation performance [12,26].

When developing a geometallurgical ore-type classification, it is important to capture
essential elements which are relevant in terms of metallurgical and commercial signifi-
cance [5,11]. A preliminary geometallurgical ore type classification for the investigated
sediment-hosted Cu-Co deposit must include all the critical mineralogical features which
not only influence but also define the mineral processing route: (1) overall Cu-Co mineral
grades, (2) mineralisation type, i.e., oxide, sulphide or mixed, (3) gangue mineralogy, i.e.,
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siliceous or carbonated, and (4) the presence of problematic minerals, i.e., chlorites, clays,
talc, etc.

In sediment-hosted Cu-Co deposits, the oxide zones are usually processed through
a classic leaching and solvent extraction-electrowinning (SX-EW) process, i.e., L/SX/EW
while the sulphide ore is processed through a flotation route for the siliceous sulphide ore
and a separate sulphidisation flotation route for the dolomitic sulphide ore and the mixed
ore [14,20,21]. An example of a mineral-based geometallurgical ore-type classification
scheme using modal mineralogy data obtained by FTIR-PLS-R is shown in Figure 8 with the
corresponding variability in terms of ore mineralogy for each of these ore types (Figure 9).
This classification proposal was kept as simple as possible while ensuring the metallurgical
meaning of all geometallurgical ore types. It can be visualized as a decision tree for
blending, stockpiling or mine planning which means that any ore pertaining to a given
geometallurgical ore type should behave similarly during mineral processing. If not, the
problematic ore type should be subdivided into relevant sub-types. Note that the values
for the threshold presented in Figure 8 are only indicative and would need to be refined
based on process performance.
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Figure 8. Mineral-based geometallurgical ore type classification scheme proposal using modal
mineralogy data obtained from CARS-PLS-R applied to FTIR. OX/SUL: ratio between the amount (in
wt.%) of Cu-Co oxide and Cu-Co sulphide minerals, CARB: total amount (in wt.%) of carbonates
(Dolomite, ankerite, magnesite) and CHL: amount (in wt.%) of chlorites. Classification thresholds are
only indicative.

The first stage of classification considers the type of mineralisation, i.e., oxide, sulphide
or mixed, by calculating the ratio between oxide target minerals and sulphide target mineral
grades. This can either be done using Cu/Co mineral grades determined through FTIR
or by using the AsCu/AsCo data. Such information is critical as it defines the processing
route to which the ore will be dispatched. The second stage of classification is undertaken
on the gangue mineralogy, especially the presence of carbonates (dolomite, magnesite)
and chlorites which are problematic for both leaching and flotation [12,23,26]. For this
particular case study, the oxide horizons only display low grades of carbonate minerals.
Hence, the oxide ore type is only subdivided in two categories, i.e., OXIDE for the common
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siliceous oxide ore and OX-CHL for the chlorite-rich oxide ore. The mixed ore (MIXED)
typically display high carbonate grades (especially dolomite) and can contain relatively
high chlorite grades as well [22]. Sulphide ore has been subdivided into three ore types:
carbonate-rich (SUL-CAR), chlorite-rich (SUL-CHL), and a “common” sulphide ore (SUL).
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While the ore types have distinct mineralogical compositions, there is some variation
in mineral abundances within an ore type (Figure 9). In particular, the amount of target
minerals (e.g., carrollite in sulphide ores, malachite in oxide ores) as well as gangue minerals
(e.g., quartz in oxide ore types, Mg-chlorite in the mixed ore type) display a large amplitude
of variation. This furthers strengthens the need, beyond ore-type classification, for accurate
spatial quantification or the mineralogical variability within the deposit.

This study represents the first step in developing a geometallurgical model for the
investigated Cu-Co mining operation. While process control typically aims to limit absolute
variation in mineral recovery to say 0.5%, it can be shown through error propagation that
this corresponds to an accuracy of 1 wt.% in the determination of mineral grades [26].
The lower level of accuracy may be fit-for-purpose in the context of geometallurgy [11].
Indeed, to establish geometallurgical domains and identify significant geometallurgical
ore types, an accuracy of about ±5 wt.% (1σ) is considered to be adequate [88]. Results
presented in Table 3 suggest that the level of accuracy for the determination of mineral
grades used in the classification scheme presented in Figure 8 is sufficient for establishing
geometallurgical domains.

The approach developed in this study, combining CARS-PLS-R to portable FTIR data,
has the potential to be used as a geometallurgical tool with many advantages compared
to currently available methods such as QXRD, automated mineralogy, element to mineral
conversion, see Table 4. Indeed, portable FTIR can collect many spectra in a relatively short
period of time, allowing accurate logging of mineralogy for many datapoints over large
depth intervals along the borehole at the drilling site in real time or in the core shed [53].
This method is also quite cost-effective compared to existing methods as it does not require
extensive sample preparation (e.g., preparation of bulk samples), and it can be applied
directly to core samples and it has very low operational costs. The instrumentation cost is
moderately high but still an order of magnitude lower that the aforementioned analytical
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methods. It should be noted that mineral conversion requires a consequent geochemical
dataset covering all major elements and key trace elements, which may be prohibitive
for small-scale operations. Portable FTIR is easy to operate, and the data processing and
regression models can be routinely implemented to convert spectra into mineral grades.
Ultimately, the choice of the method to be used for quantitative mineralogy depends on
the required level of accuracy and the available budget, which varies per application. The
results presented here suggest that geometallurgical ore-type classification and domaining
using portable FTIR is a viable option.

Table 4. Comparison of different available methods for modal mineralogy with the potential to be
use for geometallurgical ore-type classification, using data from the literature, and the experience of
the authors and experts.

Method Quantitative X-ray
Diffraction (QXRD)

Automated
Mineralogy (AM)

Element to Mineral
Conversion (EMC) FTIR-CARS-PLS-R

Required data

Phase ID by XRD or
other methods: crystal

structure information of
the phases

Mineralogy inferred
from chemistry

Samples chemistry,
Minerals chemistry
Optional: approx.

mineral grades (XRD)

-

Cost per sample (approx. US$) 100–200 200–500 ~0 1 ~0
Turnaround time (approx. hours) 3–7 2 16–32 ~0 1 ~0

Preparation time 1–3 2 8–20 - -
Analytical time 1–3 2 4–8 ~0 1 ~0
Processing time 1–2 4 ~0 ~0

Experienced operator needed Yes Yes No No
Analysis Bulk Surface Bulk Surface/Bulk

Typical Precision (wt.%) 3 ~2 ≤1 ~5 1–5
Typical closeness against AM (wt.%) 3 ~3 - 1–10 4 5–10

Detection limit (wt.%) 3 0.2–5 ≤0.01 0.01–0.14 1–5

Problem minerals Amorphous phases,
solid solution series

Polymorphs,
nanocrystalline

materials
Polymorphs Ionic (e.g., halides)

Portable Possible but less
accurate No N/A Yes

Calibration No, internal standards
can be used

Beam current (every
30 min), greyscale,

EDS, beam alignment
Complex Easy

Additional information obtained

Lattice parameters,
<200 nm crystallite size,
crystal structure details,

amorphous content

Textural information,
liberation,

associations,
grainsizes

Mineral
chemistry -

References [54] [29,89,90] [11,91] [53,54,92]

1 Provided that the chemistry of the sample and the minerals therein is known. 2 Sample preparation and analytical
time may vary drastically depending on the mineral composition (e.g., iron content). 3 Precision, closeness against
automated mineralogy (AM) and detection limits in absolute value. These values are only indicative and are
mineralogy dependent, on only for the minerals that are actually quantified. 4 Also depends on the technique
used to collect the sample chemistry.

While satisfactory results were obtained in this study, further investigation is required
before considering this methodology as a universal solution for geometallurgical ore-type
classification and mineral quantification. For instance, the effect of mineral grain size (as
opposed to particle size) on the spectra when measured from a solid smooth surface like
a core sample (as opposed to a bulk particulate material) remains unclear. Grainsize and
texture are expected to influence the FTIR spectra and thus the outcome of the CARS-
PLS-R and ultimately the geometallurgical ore-type classification. Hence, there may be
ores, e.g., fine-grained intergrown mineralisation, for which the approach presented in
this study may not apply. Other factors, such as a low abundance of highly IR responsive
mineral (e.g., micas) in a matrix of low IR response minerals (e.g., feldspar, pyroxene),
may bias the classification. Here, the major gangue minerals (quartz, dolomite) being IR
responsive this issue was not investigated. Another important aspect not investigated in
this study is the evolution of the RMSEP with mineral grades obtained by QEMSCAN.
This would allow the effect of the latter on the closeness of the CARS-PLS-R FTIR method
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compared to QEMSCAN to be assessed, especially towards the low mineral abundances.
The applicability of the approach described here may thus be limited to specific ores and
deposits and further work is needed to define these limits of application.

5. Conclusions

The use of portable characterisation techniques such as FTIR is increasingly becoming
a focus of research as it offers rapid and cost-effective approaches to mineral quantification,
notably for geometallurgical applications. In this study, the application of FTIR to core
samples from a sediment-hosted Cu-Co deposit from DRC enabled successful identification
and quantification of major gangue minerals (quartz, dolomite, chlorite) and some sulphide
minerals (chalcopyrite, carrollite). CARS-PLS-R applied to FTIR spectral data, using the
corresponding QEMSCAN analysis as a reference, allowed prediction of gangue and target
minerals grades with satisfactory validation results. While the overall accuracy of the
generated regression models is an order of magnitude lower than those of bench-scale
technology such as QXRD or automated mineralogy, this method could potentially be used
for successful determination of ore types for mineral-based geometallurgical classification.
This information may, therefore, be used to optimise resource efficiency and reduce risks
linked to variable ore mineralogy. While the level of accuracy is sufficient for ore-type
classification, further development is needed to reach the level of accuracy required to use
the quantitative mineralogy data for process mineralogy applications.
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