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Abstract: Combined observations from natural and experimental deformation microstructures are
often used to constrain the rheological properties of the upper mantle. However, relating natural
and experimental deformation processes typically requires orders of magnitude extrapolation in
strain rate due to vastly different time scales between nature and the lab. We examined a sheared
peridotite xenolith that was deformed under strain rates comparable to laboratory shearing time
scales. Microstructure analysis using an optical microscope and electron backscatter diffraction
(EBSD) was done to characterize the bulk crystallographic preferred orientation (CPO), intragrain
misorientations, subgrain boundaries, and spatial distribution of grains. We found that the mi-
crostructure varied between monophase (olivine) and multiphase (i.e., olivine, pyroxene, and garnet)
bands. Olivine grains in the monophase bands had stronger CPO, larger grain size, and higher
internal misorientations compared with olivine grains in the multiphase bands. The bulk olivine
CPO suggests a dominant (010)[100] and secondary activated (001)[100] that are consistent with the
experimentally observed transition of the A to E-types. The bulk CPO and intragrain misorientations
of olivine and orthopyroxene suggest that a coarser-grained initial fabric was deformed by disloca-
tion creep coeval with the reduction of grain size due to dynamic recrystallization. Comparing the
deformation mechanisms inferred from the microstructure with experimental flow laws indicates
that the reduction of grain size in orthopyroxene promotes activation of diffusion creep and suggests
a high activation volume for wet orthopyroxene dislocation creep.

Keywords: olivine; xenolith; mantle; Wyoming craton; deformation; olivine CPO

1. Introduction

Analysis of rock microstructure and fabric (e.g., grain size and texture) by solid-state
deformation serves as a tool for reconstructing the mechanical and thermo-chemical condi-
tions of deformation (e.g., [1]). Understanding how mantle microstructure evolves with
deformation under various conditions is particularly important for assessing the prevailing
rheological flow laws and for our ability to understand mantle kinematic and dynamic
properties from seismic data. However, many variables can affect the grain size and texture
of peridotitic samples, including: differential stress, mechanism of deformation, water
content, pressure, temperature, melt fraction, degree of annealing, pre-existing texture, and
the fraction and distribution of auxiliary minerals such as pyroxenes and garnet [2–11].
Most constraints for the microstructural evolution come from laboratory experiments
where the stress, pressure, temperature, chemical environment, and initial fabric are well-
constrained [12–19]. Therefore, microstructures of natural samples are interpreted and
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benchmarked by comparison with experimentally induced microstructures. Nonetheless,
this comparison is hampered by the necessary extrapolation of strain rate. Due to the
limited timescale of laboratory experiments, strain rates from the lab (~10−4–10−7 s−1)
typically differ by orders of magnitude from strain rates in the mantle (~10−10–10−15 s−1).
Other experimental challenges include deforming multiphase samples (since trade-off
between temperature and strain rate is hindered by melting) under high confining pressure
and high strains (G≥ 10) (e.g., Figure 1e,f).

Seismic anisotropy observations and rheological considerations suggest the origin of
wide-scale anisotropic upper mantle that is caused by dislocation creep of olivine resulting
in the preferred orientation of their crystal lattices [20–23]. Therefore, the relations between
the style and conditions of deformation and resulting crystallographic preferred orientation
(CPO) have been of great interest [24–26]. However, in some cases, the experimental data
are difficult to compare directly with the natural observations. The formation of CPO
types under different conditions [27] illustrates inconsistencies between the expected
experimentally based theory and observations from mantle samples [28,29]. In addition,
the abundance and spatial distribution of “secondary” minerals (i.e., minerals with lower
modal abundance) in mantle peridotite may impact its rheology. Although olivine has
the dominant effect on the elastic-plastic properties of the mantle, secondary phases such
as orthopyroxene (opx) [30–33], clinopyroxene [34], spinel, and garnet [35] also play a
significant role in shaping the microstructure and rheological evolution of the mantle. For
example, viscosity contrasts between the secondary minerals and olivine can be significant
when considering a polymineralic upper mantle [36–38].

The application of laboratory flow laws to model the relevant deformation conditions
in the upper mantle requires extrapolation of flow laws between conditions in the mantle
and lab, particularly in stress and strain rate. In addition, high strain experimental data for
the dominant deformation mechanisms are harder to acquire for multiphase aggregates, in
particular, at mantle pressures [39]. Thus, the uncertainties related to extrapolation in strain
rates compel researchers to adopt simplifications and assumptions when relating experi-
mental data to natural conditions (e.g., Figure 1e,f). However, natural rocks that preserve
textural evidence of relatively high stress and strain rate deformation, though generally
rare, allow us to more directly compare natural and laboratory microstructures formed
under similar conditions (e.g., Figure 1f, [3,40,41]). Here, we analyze microstructures in
a sheared mylonitic mantle xenolith and then compare these observations to rheological
properties inferred from deformation experiments on similar mantle assemblages. The
presence of discrete monophase and multiphase domains in the studied mylonite facilitates
comparisons with experiments that typically involve simplified lithologies. Importantly,
the temperature, pressure, and water content of the natural xenolith are well-constrained,
and inferred strain rates are comparable to laboratory conditions. Thus, this xenolith
provides a unique opportunity to “ground truth” rheological parameters derived from
the lab.

2. Materials and Methods
2.1. Sample Description

The mylonitic xenolith, H69-15F, is a garnet harzburgite [42,43] from the Williams
diatreme, located at the edge of the northern Wyoming craton [44]. Williams xenoliths
are divided into low-temperature spinel-bearing peridotites and high-temperature garnet-
bearing peridotites. The latter record overall Mg# of 91.4 [43] and equilibration tempera-
tures above a stable shield geotherm, suggesting recent heating [45]. The mylonitic xenolith
reported here is garnet-bearing with an equilibrated temperature of T = 1320 ◦C, pressure of
P = 4.6 GPa [45], and low-to-moderate water content in olivine (12.4 H2O ppm wt.; [42,46]).
However, since the diffusion of hydrogen is slower in opx than in olivine at high tempera-
ture, we used the olivine–opx partition coefficient of Dolv/opx = 0.11 [47] to estimate the
water content in olivine (33.5 H2O ppm wt.) from the measured water content in opx (305
H2O ppm wt.). We regarded the P-T-H2O conditions as representative of the conditions of
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the sample in the mantle rather than conditions related to the kimberlite eruption because
we did not observe chemical zoning or late-stage features that would suggest a chemical
change during the eruption [48]. The sample shows a mylonitic microstructure (Figure 1a)
suggesting significant shear strain (G ≥ 10). Bands comprising only olivine (monophase)
alternate with bands consisting of olivine, opx, and garnet (multiphase) (Figure 1b,c).
In addition, a distinctive population of olivine is characterized by tablet-shaped grains
interpreted as a brief post-deformation stage where these grains grew by discontinuous
static recrystallization (DiSRX) (Figure 1d; [46]). H69-15F exhibits the highest degree of
shearing compared to other xenoliths from the same kimberlite. Thus, we consider that
the microstructure in H69-15F reflects a region of short-lived, highly localized deformation
events—inferred to result from lithospheric delamination and kimberlite volcanism at the
edge of the Wyoming craton [42,43].
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Figure 1. (a) Optical photomicrographs taken with cross-polarized light of sample H69-15F. North-South is normal
to the foliation, and East-West is parallel to the lineation. White boxes delineate the main microstructural features in
(b–d). (b) Multiphase band comprise olivine, orthopyroxene (Opx), and/or garnet (Grt). (c) Olivine-rich band. (d) post-
deformation, tabular-shaped olivine grains growing into deformed grains with undulatory shading. The formation and
growth kinetics of the tabular-shaped olivine grains were discussed in Boneh et al. [46]. (e) Microstructural analysis
and thermobarometry indicate high stress and high strain rates for the H69-15F sheared lherzolite—comparable to the
laboratory conditions. (f) Schematic plot of pressure versus strain illustrating the deformation conditions for the sheared
peridotite, along with the common conditions of background mantle flow, which are, for the most part, yet inaccessible in
the laboratory.

2.2. Analytical Methods

Electron backscatter diffraction (EBSD) mapping was done using a field emission gun
FEI Apreo LoVac scanning electron microscopy (SEM) equipped with Oxford Instruments
Symmetry EBSD detector at UC San Diego. Step sizes varied from 1–5 µm, at a working
distance between 26 to 28 mm, current of 26 to 51 nA, and accelerating voltage of 20 kV. We
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used three EBSD maps normal to each other from the three orthogonal X-Z, X-Y, and Y-Z
planes in the kinematic reference frames (lineation and foliation were determined using
the opx shape and crystallographic preferred orientations, see [42]). Post-acquisition data
visualization and calculation were done using MTEX software version 5.5.0 [49,50].

Grain boundaries are defined with a minimum misorientation angle of 10◦. Grain
orientation spread (GOS) was used to determine the intragrain misorientations angle rela-
tive to the grain averaged orientation (“mis2mean” function). Grain reference orientation
deviation (GROD) is used to define the full misorientation vector between misorienta-
tions at the grain interior. The GROD analysis enables plotting the axis of misorientation
in the pre-defined grains, which can be plotted in both the kinematic (pole figure) and
crystallographic (inverse pole figure) reference frames. Pole figures were calculated either
as area-weighted (where CPO is mostly affected by the large grains) or as one point per
grain (where CPO is mostly affected by the small grains) contoured by the density of the
orientation distribution function (ODF) with a half-width of 10◦. The type of pole figure
calculation (area-weighted vs. one-point-per-grain) were used as needed, as defined in the
figure caption. Strength of the CPO was quantified using the dimensionless J-index [51]
and M-index [52]. Shape preferred orientation (SPO) was calculated using grains with
aspect ratios larger than 1.2 by plotting the orientations of the principal long and short axes
of the crystal shape with respect to the crystal axes reference frame [53].

3. Results
3.1. Microstructures, CPO, and Inter- and Intra-Grain Misorientations

Microstructure and textural characteristics of the mylonitic sample were analyzed
and the distribution of phases, CPOs, and intragrain misorientations were determined.
Using the three orthogonal EBSD maps, we show the microstructure of the sample in 3-D
(Figure 2). The 3-D view (maps are not spatially linked to each other at their corners)
demonstrates bands defined by elongated domains of similarly oriented olivine grains. The
elongated domains of grains are seen in the X-Z plane as elongated bands ~4–5 mm width
and broader bands with 5–7 mm width in the X-Y plane (e.g., polygon on Figure 2a,b). In
the Y-Z plane, these domains appear more equant with a weak elongation parallel to the
Y-axis (Figure 2c). The cumulative grain orientations of the three maps yield a bulk olivine
CPO of the sample with the [100] aligned parallel to the lineation and the [010] aligned
normal to the foliation and with moderate strength (M-index = 0.13). This texture fits the
A-type fabric using the classification of Karato et al. [27] and suggests the dominance of
(010)[100] slip system. Importantly, in addition to the characteristic A-type fabric, the CPO
also includes a weaker [010] girdle on the Y-Z plane. The opx exhibits a CPO indicative
of easy slip on its typically activated (100)[001] slip system with a weaker [100] maxima
aligned towards the Y-axis and a weaker [010] maxima aligned towards the Z-axis. The
two weaker maxima in [100] and [010] suggest the (minor) activation of the less frequently
observed opx CPO, indicative of the (010)[001] slip system.

To further examine the style and mechanism of deformation, we used intragrain
misorientation maps (“mis2mean”) depicting the orientation variations within crystals
caused by geometrically necessary dislocations associated with deformation by dislocation
creep. Most of the olivine grains had low intragrain misorientation, with only a few
grains with total misorientation over 5◦ (warm colors in Figure 3b,c). The latter population
of grains included medium-size porphyroclasts and smaller, often elongated, euhedral
grains, suggesting previously strained grains with recrystallized grains at their boundaries,
either during dynamic or static conditions [54]. Large opx porphyroclasts with high
intragrain misorientations showed small recrystallized opx grains at their boundaries with
low intragrain misorientation that often formed a characteristic “tail” structure ([6,55]).
The degree of recrystallization was significantly lower for the opx grains, easily visible
when comparing the ratio between the cool colors (recrystallized grains) and the warm
colors (porphyroclast grains) in olivine (Figure 3b) and opx (Figure 3c). Garnet grains were
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relatively large (~2 mm in diameter) and round with negligible intragrain misorientation,
suggesting that they did not deform significantly by internal plastic deformation.
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3.2. Olivine Monophase and Multiphase Bands

The X-Z cross-sections of the mylonite (Figures 1 and 3) show characteristic banding
with regard to olivine, opx, and garnet modal abundance. These bands consist of either only
olivine (“monophase”) or olivine with opx/garnet (“multiphase”) and are ~2 and 5 mm
wide, respectively. The olivine–olivine grain boundary misorientation map in Figure 3d
illustrates that the mono/multiphase bands are also distinguished by lower/higher grain
boundary misorientations, respectively (Figure 3d). To analyze the microstructural prop-
erties of individual bands, we used a higher-resolution map (3 µm step size) of the X-Z
plane (area delineated with white frame in Figure 3a). The analysis of different bands
demonstrates a difference in CPO strength, with monophase bands showing a stronger
olivine CPO than multiphase bands (Figure 4). Most olivine bands show an A-type fabric.
However, one band (band in Figure 4b) shows a characteristic E-type fabric with the [100]
maxima rotated beyond the lineation [56,57], strong [010] maxima parallel to the Y-axis,
and [001] maxima oriented clockwise from the normal to foliation (Z-axis). The shape
preferred orientation (SPO) of olivine is generally aligned such that the long axis is parallel
to the [100] axis and the short axis is parallel to the [010] axis (Figure 4). Similar SPO is
produced when considering only grains with high or low GOS, suggesting that the recrys-
tallization and tablet grains do not affect the bulk SPO alignment. However, for the band
showing E-type (Figure 4b), the short axis is aligned parallel to [001]. Quantification of the
microstructural properties of these bands shows that olivine monophase bands contain
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(i) larger olivine grains on average, (ii) stronger olivine CPO, and (iii) higher intragrain
misorientation (Figure 5).
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3.2.1. Intragrain Misorientations, Recrystallization, and CPO Strength

The mylonitic microstructure and maps of the intragrain misorientation (Figure 3b,c)
highlight the different grain properties of olivine and opx grains with high/low intragrain
misorientation. To compare these two grain populations, we combined data for all olivine
and opx grains from two EBSD maps (X-Z and X-Y planes shown in Figure 2). The third
plane (Y-Z) was omitted due to lower indexing. We used the averaged GOS value of grains
to differentiate recrystallized and porphyroclast (highly deformed) grains; for this analysis,
porphyroclast grains are defined as grains with GOS ≥ 0.02 rad and recrystallized grains
are defined as grains with GOS < 0.02 rad. Using the GOS threshold, we calculated that 75%
of the olivine grains are recrystallized compared to 26% of the opx grains. Comparing the
CPO strength of the relict vs. recrystallized population for olivine and opx shows diverse
trends (Figure 6a). For olivine, the CPO strengths of the porphyroclasts and recrystallized
grains are similar (M-index = 0.12–0.15); for opx, the CPO strength of the porphyroclasts
(M-index = 0.13) is similar to the CPO strength of olivine; however, opx recrystallized
grains show a transition to significantly weaker CPO (M-index = 0.035) (Figure 6a and
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Figure S1, Supplementary Materials). In Figure 6b, we highlight recrystallization fabrics
in opx and show the CPO of a region with an individual opx porphyroclast and the
adjacent recrystallized areas that define tails of small opx grains in an olivine matrix. The
area-weighted CPO highlights the orientation of the porphyroclast, while the one-point-
per-grain CPO highlights the dispersed CPO of the recrystallized grains.

Minerals 2021, 11, x FOR PEER REVIEW 7 of 19 
 

 

showing E-type (Figure 4b), the short axis is aligned parallel to [001]. Quantification of the 
microstructural properties of these bands shows that olivine monophase bands contain (i) 
larger olivine grains on average, (ii) stronger olivine CPO, and (iii) higher intragrain mis-
orientation (Figure 5). 

 
Figure 4. High resolution (3 μm step size) orientation map used to characterize the different olivine monophase (b,d,f) 
and multiphase bands (a,c,e,g), delineated with white lines. Olivine crystallographic preferred orientations (CPO) of each 
band (area-weighted) are shown through pole figures. Olivine shape preferred orientations (SPO) of each band are shown 
through inverse pole figures for the long and short axes (left and right sides, respectively). The two red polygons delineate 
areas shown in Figure 7. Two white squared patches are due to an unfortunate glitch in scanning. 

 

Figure 4. High resolution (3 µm step size) orientation map used to characterize the different olivine monophase (b,d,f)
and multiphase bands (a,c,e,g), delineated with white lines. Olivine crystallographic preferred orientations (CPO) of each
band (area-weighted) are shown through pole figures. Olivine shape preferred orientations (SPO) of each band are shown
through inverse pole figures for the long and short axes (left and right sides, respectively). The two red polygons delineate
areas shown in Figure 7. Two white squared patches are due to an unfortunate glitch in scanning.

Minerals 2021, 11, x FOR PEER REVIEW 7 of 19 
 

 

showing E-type (Figure 4b), the short axis is aligned parallel to [001]. Quantification of the 
microstructural properties of these bands shows that olivine monophase bands contain (i) 
larger olivine grains on average, (ii) stronger olivine CPO, and (iii) higher intragrain mis-
orientation (Figure 5). 

 
Figure 4. High resolution (3 μm step size) orientation map used to characterize the different olivine monophase (b,d,f) 
and multiphase bands (a,c,e,g), delineated with white lines. Olivine crystallographic preferred orientations (CPO) of each 
band (area-weighted) are shown through pole figures. Olivine shape preferred orientations (SPO) of each band are shown 
through inverse pole figures for the long and short axes (left and right sides, respectively). The two red polygons delineate 
areas shown in Figure 7. Two white squared patches are due to an unfortunate glitch in scanning. 

 

Figure 5. Microstructural properties of olivine from the different bands delineated by white boundaries in Figure 4. Olivine
(a) grain size, (b) texture strength quantified using the M- and J-indices, and (c) intragrain misorientation quantified using
the grain orientation spread (GOS) are plotted against the area fraction of olivine grains.



Minerals 2021, 11, 995 8 of 18

Minerals 2021, 11, x FOR PEER REVIEW 8 of 19 
 

 

Figure 5. Microstructural properties of olivine from the different bands delineated by white boundaries in Figure 4. Olivine 
(a) grain size, (b) texture strength quantified using the M- and J-indices, and (c) intragrain misorientation quantified using 
the grain orientation spread (GOS) are plotted against the area fraction of olivine grains.  

3.3.1. Intragrain Misorientations, Recrystallization, and CPO Strength 
The mylonitic microstructure and maps of the intragrain misorientation (Figure 3b,c) 

highlight the different grain properties of olivine and opx grains with high/low intragrain 
misorientation. To compare these two grain populations, we combined data for all olivine 
and opx grains from two EBSD maps (X-Z and X-Y planes shown in Figure 2). The third 
plane (Y-Z) was omitted due to lower indexing. We used the averaged GOS value of 
grains to differentiate recrystallized and porphyroclast (highly deformed) grains; for this 
analysis, porphyroclast grains are defined as grains with GOS ≥ 0.02 rad and recrystallized 
grains are defined as grains with GOS < 0.02 rad. Using the GOS threshold, we calculated 
that 75% of the olivine grains are recrystallized compared to 26% of the opx grains. Com-
paring the CPO strength of the relict vs. recrystallized population for olivine and opx 
shows diverse trends (Figure 6a). For olivine, the CPO strengths of the porphyroclasts and 
recrystallized grains are similar (M-index = 0.12–0.15); for opx, the CPO strength of the 
porphyroclasts (M-index = 0.13) is similar to the CPO strength of olivine; however, opx 
recrystallized grains show a transition to significantly weaker CPO (M-index = 0.035) (Fig-
ures 6a and S1, Supplementary Materials). In Figure 6b, we highlight recrystallization fab-
rics in opx and show the CPO of a region with an individual opx porphyroclast and the 
adjacent recrystallized areas that define tails of small opx grains in an olivine matrix. The 
area-weighted CPO highlights the orientation of the porphyroclast, while the one-point-
per-grain CPO highlights the dispersed CPO of the recrystallized grains. 

 
Figure 6. (a) Comparison of the crystallographic preferred orientation (CPO) strength for olivine 
and orthopyroxene (opx) porphyroclasts grains (GOS ≥ 0.02 rad) and recrystallized grains (GOS < 
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Figure 6. (a) Comparison of the crystallographic preferred orientation (CPO) strength for olivine
and orthopyroxene (opx) porphyroclasts grains (GOS ≥ 0.02 rad) and recrystallized grains
(GOS < 0.02 rad). While olivine grains show no change in the CPO strength, recrystallized opx
grains show a significant reduction in CPO strength. (b) Opx porphyroclast grain with a characteris-
tic tail structure of recrystallized grains depicted through its intragrain misorientations (blue to red).
Olivine grains are shown in grey. Pole figures of the opx grains are shown as both area-weighted
(highlighting the porphyroclast grain orientation) and one-point-per-grain (highlighting the contribu-
tion of the small recrystallized grains). Notice the dispersion of the recrystallized grains. See Figure
S1 in the Supplementary Materials to see more comparisons between the olivine and opx CPO for
relict and recrystallized grains and the associated EBSD maps for the data presented in panel (a).

3.2.2. Subgrain Boundary Analysis

Analysis of grains with small angles of intragrain misorientation (<10 degrees), defin-
ing subgrain boundaries, can be used to constrain the mechanism/s and kinematics of
deformation [58]. Grains with high internal misorientations (e.g., large grains with warm
colors in Figure 3b,c, for olivine and opx, respectively) presumably represent porphyroclast
(i.e., large grains that were present before the rapid deformation stage). These grains were
picked for subgrain boundary analysis to constrain the dominant slip system and the
deformation geometry experienced by each specific grain (Figures 7 and 8). For olivine,
we expect subgrain boundaries to reflect the (010)[100] slip system in accordance with its
bulk A-type CPO [24]. However, subgrain analyses show more evidence for the (001)[100]
slip system than the (010)[100] slip system [42]. This discrepancy between bulk CPO
and sub-grain boundary in xenoliths from the Wyoming Craton was discussed by Chin
et al. [42], and similar observations have been reported for samples from other locations
and tectonic regimes; in general, these observations are interpreted to reflect complex strain
histories in continental settings that could result in an apparent mismatch between bulk
and subgrain fabric [28,59]. Figure 7 highlights two porphyroclasts with high intragrain
misorientation surrounded by recrystallized grains (i.e., low intra-grain misorientations).
The first grain (Figure 7a–e) with a relatively small misorientation shows that most of
the rotation occurs in the [100] and [010] and bulk orientation consistent with A-type
(i.e., [100] aligned with lineation, [010] aligned quasi-perpendicular to the foliation); the
area containing the surrounding grains displays a clear A-type fabric (Figure 7b). The
second porphyroclast (Figure 7f–j) shows evidence for the (001)[100] slip system, with the
misorientation axis aligned with the crystallographic [010] axis, which is parallel to the
kinematic Y-axis; the surrounding grains exhibit an E-type fabric with the [100] rotated
anti-clockwise to the lineation [56,57,60] and [001] sub-perpendicular to the shear plane
(Figure 7g).
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misorientation and bulk CPO characteristic of A-type fabric (a–e) and E-type fabric (f–j). (a,f) Sections of the orientation
map (highlighted in red in Figure 4). (b,g) Crystallographic preferred orientation (CPO) of olivine (area-weighted) for the
area in (a,f), respectively. (c,h) Intragrain misorientation in the porphyroclast grain (highlighted in white in maps (a,f)). (d,i)
Orientation of the individual porphyroclast where the spread is a trace of the intragrain misorientation. (e,j) Misorientation
axis plotted on the crystal (left side), and kinematics (right side) reference frames for the misorientation of the porphyroclast
grain. The upper section (a–e) is characterized by (010)[100] slip system (consistent with A-type fabric), and the lower
section is characterized by (001)[100] slip system (consistent with E-type fabric).

Opx porphyroclasts are larger than olivine porphyroclasts, significantly less recrystal-
lized, and exhibit large areas with high intragrain misorientation. Due to their large size,
they can also show a significant spread of the intragrain orientations (e.g., Figure 7i), which
can be used for investigating the active slip system/s and the kinematics of deformation.
In addition, opx slip systems are less diverse than olivine, showing evidence for (100)[001]
or (010)[001] [61], which (by consistency) can help in constraining the kinematics of defor-
mation and, thus, also the dominant olivine slip system. The subgrain boundary analysis
of opx in Figure 8 shows seven grains. In the sample reference frame, the misorientation
axes are dominantly aligned near the sample Y-axis, suggesting simple shear kinematics,
and confirm our interpreted kinematic frame. The misorientation axes show evidence
for activation of both the (100)[001] and the (010)[001] slip systems. Similar to results for
olivine, the bulk opx CPO (Figure 2d) suggests that the (100)[001] slip system is dominant,
while subgrain boundary analysis indicates significant activity from both (100)[001] and
(010)[001].
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4. Discussion

Here, we discuss our integrated results on a kimberlite-hosted cratonic mantle lherzo-
lite from the Wyoming Craton, USA within the context of experimentally derived deforma-
tion studies. Microstructural and textural analysis of the rapid deformation event can be
used for understanding processes related to a kimberlite eruption, dynamic stability of the
lithosphere, and strength of cratons. The xenolith has a highly sheared, mylonitic texture
interpreted to have formed under high strain rates—similar to lab conditions [42,46]—
followed by high-temperature annealing and entrainment in the kimberlite [3,40,46,62].
Moreover, this series of events, effectively quenched by the geologically “instantaneous”
kimberlite eruption, allows detailed comparison of textural evolution from the conditions
of the laboratory to the conditions in the mantle.

4.1. Crystallographic Fabric

The symmetry and orientation of olivine CPO with respect to the kinematic reference
frame determined in lab experiments are often used to infer the temperature, pressure,
and chemical conditions of natural deformation [27]. However, the conditions responsible
for these transitions are not well constrained from high-pressure experiments [13,17,25]
Furthermore, the experimentally determined fabric transitions cannot explain, in a straight-
forward manner, the apparently overlapping range of the observed textures in natural
samples, mainly originating from low stress and low strain-rate environments [28,29].
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The bulk olivine CPO in the sample discussed here can be classified as A-type with
some contribution of secondary E-type (or axial D-type fabrics) (Figure 2c). The grain-
boundary analysis of deformed olivine grains also shows the two active fabrics A and E
(Figure 7), although E-type subgrain boundaries are more distinct than A-type subgrain
boundaries (Figure S2b,d, Supplementary Materials). This apparent discrepancy between
the CPO and the SGB was also recognized in other studies on the Wyoming Craton [42]
and at other localities [28,59]. This discrepancy may arise from a change of the thermo-
chemical conditions during deformation [63], transition to grain-size sensitive deformation
mechanism [64], a change in the deformation kinematics [28,65], or difference in the
recovery rate for different slip systems [7,66]. With a change in the deformation conditions
(either with the thermo-chemical conditions or the kinematics of deformation), the subgrain
boundaries will reflect deformation from the latest deformation stage. In contrast, the
bulk orientation of the sample (i.e., CPO) will be dependent on the different stages of
deformation, potentially a pre-existing CPO, and the amount of strain imposed [67–69].
In the sample described here, both the CPO and the subgrain boundary analysis suggest
activation of A-type and E-type. Using the measured water content (548 ppm H/Si, or
the equivalent 33.5 ppm H2O) and estimated stress (80 MPa), we can place the mylonitic
sample on the OH-stress space determined experimentally by Katayama et al. [60]. The
H69-15F sheared xenolith sample is located close to the A-E boundary, consistent with the
observed fabric dominated by A-type with significant evidence for active E-type (Figure 9).Minerals 2021, 11, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 9. Stress versus COH plot showing conditions for olivine A-type and E-type fabric regimes 
[60]. Sample H69-15F is shown as a red star. Points from the literature are shown (see legend) 
delineated by the black (for lab studies) and red (for natural samples) outlines. Water content is 
shown using the Bell et al. [70] calibration (a constant of 3.5 was used when the Paterson [71] 
calibration was originally used). Inset, classification of olivine crystallographic preferred orientation 
types on a plot of stress and water content, after Karato et al. [27]; the red box delineates the 
condition shown on the left side. 

The comparison between the opx fabric and experimental constraints is limited for 
opx since, unlike olivine, there are very limited data on opx fabric development under 
different mechanical-chemical conditions [72,73]. Nonetheless, there is coherence between 
the olivine and opx fabrics and slip systems we observed. For both phases, the Burgers 
vector of slip fits subgrain boundary analysis and the CPO of the [100] (olivine) and [001] 
(opx) axes aligns with shear direction and the bulk CPO, suggesting the typical, A-type, 
(010)[100] for olivine, and the “a on c”, (100)[001] for opx. However, subgrain boundaries 
show equal or even higher activation of the complementary slip system with the same 
Burgers vector but different slip plane-(001)[100] and (010)[001] for olivine and opx, re-
spectively. This suggests that the activation of the two slip systems has a somewhat dif-
ferent expression on CPO and subgrain boundary. More experimental work on the rela-
tions between CPO evolution and subgrain boundaries (especially for opx) is needed. 

4.2. Deformation Mechanisms and Deformation Rates 
The marked differences in CPO strength, grain size, and intragrain misorientation 

between the olivine monophase and multiphase bands (Figures 4 and 5) suggest that the 
presence of the other minerals (opx and garnet) tends to (a) lead to the formation of poly-
phase bands and (b) affects the deformation and recrystallization processes of olivine 
grains. Similar observations of the formation of olivine–olivine + opx banding and the role 
of opx on olivine CPO were reported from laboratory experiments (e.g., [33]). The range 
of olivine recrystallized grain sizes (which were distinguished from the statically recrys-
tallized tablet-shaped grains by their equant shape and smaller size), (30–80 μm) gives a 

Figure 9. Stress versus COH plot showing conditions for olivine A-type and E-type fabric regimes [60].
Sample H69-15F is shown as a red star. Points from the literature are shown (see legend) delineated
by the black (for lab studies) and red (for natural samples) outlines. Water content is shown using the
Bell et al. [70] calibration (a constant of 3.5 was used when the Paterson [71] calibration was originally
used). Inset, classification of olivine crystallographic preferred orientation types on a plot of stress
and water content, after Karato et al. [27]; the red box delineates the condition shown on the left side.

The comparison between the opx fabric and experimental constraints is limited for
opx since, unlike olivine, there are very limited data on opx fabric development under
different mechanical-chemical conditions [72,73]. Nonetheless, there is coherence between
the olivine and opx fabrics and slip systems we observed. For both phases, the Burgers
vector of slip fits subgrain boundary analysis and the CPO of the [100] (olivine) and
[001] (opx) axes aligns with shear direction and the bulk CPO, suggesting the typical,
A-type, (010)[100] for olivine, and the “a on c”, (100)[001] for opx. However, subgrain
boundaries show equal or even higher activation of the complementary slip system with
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the same Burgers vector but different slip plane-(001)[100] and (010)[001] for olivine and
opx, respectively. This suggests that the activation of the two slip systems has a somewhat
different expression on CPO and subgrain boundary. More experimental work on the
relations between CPO evolution and subgrain boundaries (especially for opx) is needed.

4.2. Deformation Mechanisms and Deformation Rates

The marked differences in CPO strength, grain size, and intragrain misorientation
between the olivine monophase and multiphase bands (Figures 4 and 5) suggest that
the presence of the other minerals (opx and garnet) tends to (a) lead to the formation of
polyphase bands and (b) affects the deformation and recrystallization processes of olivine
grains. Similar observations of the formation of olivine–olivine + opx banding and the role
of opx on olivine CPO were reported from laboratory experiments (e.g., [33]). The range of
olivine recrystallized grain sizes (which were distinguished from the statically recrystallized
tablet-shaped grains by their equant shape and smaller size), (30–80 µm) gives a range
of differential stress of 51–107 MPa using the piezometer of Van der Wal et al. [74]. The
recrystallized opx grain size (10–20 µm) gives a differential stress of 58–145 MPa using the
piezometer of Linckens et al. [75]. Thus, the two piezometers estimate similar differential
stresses (Figure 10a; [76]). This analysis provides a minimum stress, since some static grain
growth may have occurred. However, opx grains show no clear evidence for grain growth.
In the flow law calculations below, we use a single stress of 80 MPa.
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Using existing flow laws for wet olivine and opx under the P-T-COH conditions in-
ferred for the shearing of sample H69-15F, we compared the predicted strain rates for the 
porphyroclasts grain size and for the recrystallized grain size using a standard flow law 
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Figure 10. (a) Recrystallized grain size versus stress relations (piezometers) for olivine and opx from Van der Wal et al. [74]
and Linckens et al. [75], respectively. The range of grain size for olivine (30–80 µm) and opx (10–20) are shown as the thicker
green and blue line segments on the piezometers, respectively. (b) Deformation mechanism map schematically showing the
transition from the initial grain-size and stress (grey circle), the deformation mechanism of the porphyroclast microstructure
after the stress conditions had changed (dark blue circle), and the deformation mechanism for the induced recrystallized
grains of the mylonite (light blue circle). Flow law parameters from Hirth and Kohlstedt [21]. Olivine piezometer from
Van der Wal et al. [74]. Lines of percentage represent the percent of dislocation creep compared to the total strain rate of
dislocation creep plus diffusion creep.

A deformation mechanism map was constructed using flow laws for wet olivine [21]
under the deformation conditions of the mylonite: T = 1320 ◦C, P = 4.6 GPa, COH = 548 ppm
H/Si (see Table S1, Supplementary Materials). The grain size of olivine porphyroclasts
is estimated to be at least 1000 µm (relying on lower strain samples from the same dia-
treme; [46]) with an average recrystallized grain size of 50 µm. Assuming that the initial
grain size formed under steady-state conditions (reflecting the stresses near the base of
the lithospheric mantle), the initial stress was <10 MPa. When the rapid deformation
event occurred, stresses increased to ~80 MPa; dislocation creep was active during the
creation of the initial microstructure (i.e., the porphyroclast population) leading to grain
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size reduction by dynamic recrystallization. The deformation mechanism map for these
conditions of H69-15F shows that, after recrystallization, the conditions are close to the
transition between dislocation creep and diffusion creep (Figure 10b). This observation
fits the field-boundary hypothesis that the recrystallized grain size will always be at the
boundary between dislocation and diffusion deformation mechanisms due to the energy
balance between grain size reduction and grain growth [77].

Using existing flow laws for wet olivine and opx under the P-T-COH conditions
inferred for the shearing of sample H69-15F, we compared the predicted strain rates for
the porphyroclasts grain size and for the recrystallized grain size using a standard flow

law [21], e.g.,
.
ε = Aσnd−pCr

OHe
−(E+PV∗)

RT , where
.
ε is the strain rate in units of s−1, A is the

pre-exponential parameter, σ is the stress in MPa, d is grain size in µm, COH is the water
content in H/106 Si, E is the activation energy in J/mol, P is pressure in GPa, V* is the
activation volume in m3/mol, T is the temperature in K, and R is the gas constant with
units of J/K mol. The flow law parameters for olivine from [21] and opx from [78,79]
are listed in Table S1 (Supplementary Materials). Since the dislocation flow law for wet
opx [78] was constructed using experiments at a confining pressure of 0.3 GPa, we included
an activation volume to extrapolate from the pressure in the experiments to the 4.6 GPa
pressure constrained for H69-15F. The influence of water content is included in the A term
of the flow law listed in Table S1 (Supplementary Materials). The opx water content of our
sample (3,504 H/106 Si) is within the range of the value determined for the opx in Zhang
et al.’s [78] experiments (2760–5120 H/106 Si). We calculated trends for a range of activation
volumes (V* = 10, 20, and 30 m3 106/mol). Activation volume has a strong effect on the
predicted strain rates [80], which can be seen in Figure 11; different activation volumes
result in orders of magnitude differences in strain rates. Relying on the microstructure
and, in particular, the observation that the opx porphyroclasts show a significantly lower
recrystallized grain fraction than olivine, we interpreted that the opx porphyroclast grains
were deformed to lower strain [81] and that the coarse-grained opx was stronger than
olivine at the relevant stresses. Therefore, using opx dislocation creep flow laws from
Zhang et al. [78] and the comparison between calculated strain rates of opx and olivine
porphyroclasts (Figure 11a), we recognized that an activation volume of V* > 20 m3 106/mol
provided the best fit to our interpretation of relatively strong opx porphyroclasts.

We next considered the predicted strain rates for recrystallized opx during disloca-
tion creep [78] and diffusion creep (based on experiments by Zhang et al. [79], which
were conducted at comparable pressures to our natural sample, and, thus, require no
extrapolation in pressure). Dislocation creep is predicted to be the dominant deformation
mechanism when the activation volume is V* < ~20 (m3 106/mol) for dislocation creep. In
contrast, diffusion creep is predicted to be the dominant deformation mechanism when
V* > ~20 (m3 106/mol) for dislocation creep (Figure 11c). The weak CPO observed for the
recrystallized opx tails (Figure 6 and Figure S1, and Table 1) suggests that the recrystallized
grains were deformed by grain size sensitive creep (such as diffusion creep), reinforcing
the inference from our analysis, suggesting a high activation energy (V* > 20 m3 106/mol)
for dislocation creep of opx.
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for the range of conditions constrained from analysis of the kimberlitic sample; V* is the activation volume in units of (106 
m3/mol). 
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5. Conclusions and Summary 
We analyzed the microstructure in a highly sheared lherzolite produced during a 

rapid lithospheric deformation event and compared it with microstructures and rheolog-
ical properties produced in experiments under similar stress and strain rate conditions. 
Table 1 summarizes the results of our microstructural analysis and those from analyses of 
experimental samples from the literature.  

(1) Large EBSD maps show monophase bands of olivine and multiphase bands. Mi-
crostructural analysis of olivine reveals weaker CPO strength, smaller grain size, and 
lower intragrain misorientation compared to the olivine in the monophase bands. These 
observations highlight the importance of secondary minerals in the deformation of an ol-
ivine-rich rock and suggest that the rock microstructure evolves to naturally organize 
weaker monophase bands to facilitate deformation. 

(2) Olivine and opx show CPOs that fit the common A-type fabric for olivine indica-
tive of dominant slip on the (010)[100] and slip on (100)[001] for opx. However, the sub-
grain boundary analysis also shows significant activation of olivine E-type, (001)[100], and 
opx (010)[001] slip systems. The dominant A-type and secondary E-type for olivine is con-
sistent with the constrained conditions near the A to E transition determined for experi-
mental samples at moderate water contents [60]. 

(3) Microstructural observations suggest olivine porphyroclasts are more susceptible 
to deformation and recrystallization than opx porphyroclasts. Recrystallized olivine 
grains are larger than recrystallized opx grains, as expected from experimentally estab-
lished piezometers. Both olivine and opx porphyroclasts are predicted to deform by dis-
location creep, consistent with their microstructures. To illustrate consistency between 
microstructural observations and flow laws, the activation volume for dislocation creep 
of wet opx [78] needs to be greater than ~20 m3 106/mol). 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: 
Porphyroclasts vs. recrystallized CPO, Figure S2: Olivine’s sub-grain boundary analysis, Table S1: 
Flow-laws parameters. 
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ing, Y.B., E.J.C. and G.H; original draft preparation, Y.B., E.J.C. and G.H. All authors have read and 
agreed to the published version of the manuscript. 
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conditions (Figure 10a)

van der Wal et al., 1993;
Linckens et al., 2014

1-5 Olivine CPO
fabric

Minerals 2021, 11, x FOR PEER REVIEW 15 of 18 
 

 

Orthopyroxen
e mechanism 

of deformation 




Large porphyroclastic grains with high 
intragrain misorientations suggest dislocation 

creep. Recrystallized grains with low intragrain 
misorientation and dispersed CPO suggest 

diffusion creep. 

Existing wet opx flow laws for 
dislocation creep lack the pressure 

effect on deformation. Our 
observations (left column) can be 

predicted using activation energy of 
V* > 20 (m3 106/mol) (Figure 11). 

Zhang et al., 
2020; Zhang 
et al., 2017 

Viscosity ratio 
Olv/OPx 




High/low recrystallization fraction for olivine 
and opx, respectively, and olivine-rich bands 

with stronger CPO suggest that more strain was 
accommodated by the monophase bands. Tail-
shaped structure of recrystallized opx suggest 
that high strain was accommodated also along 

opx recrystallized grains. 

See cell above. Using high activation 
volume can result in consistency of 

flow laws with the observed 
microstructure-weaker olivine 

porphyroclasts grains while weaker 
olivine + opx recrystallized grains 

(Figure 11c) 

Hirth and 
Kohlstedt, 

2003; Zhang 
et al., 2020; 

Zhang et al., 
2017 

Garnet 
deformation 
and relative 

viscosity 



Garnets have rounded grain morphology with 
no evidence for recrystallization or intragrain 

misorientations suggesting that it was not 
internally deformed. 

No existing flow laws for wet garnet 
(pyrope composition) under high 

pressures. However, Mg-rich pyrope 
was showed to be stronger than 

olivine. 

Karato et al., 
1995; 

Katayama 
and Karato, 

2008 

5. Conclusions and Summary 
We analyzed the microstructure in a highly sheared lherzolite produced during a 

rapid lithospheric deformation event and compared it with microstructures and rheolog-
ical properties produced in experiments under similar stress and strain rate conditions. 
Table 1 summarizes the results of our microstructural analysis and those from analyses of 
experimental samples from the literature.  

(1) Large EBSD maps show monophase bands of olivine and multiphase bands. Mi-
crostructural analysis of olivine reveals weaker CPO strength, smaller grain size, and 
lower intragrain misorientation compared to the olivine in the monophase bands. These 
observations highlight the importance of secondary minerals in the deformation of an ol-
ivine-rich rock and suggest that the rock microstructure evolves to naturally organize 
weaker monophase bands to facilitate deformation. 

(2) Olivine and opx show CPOs that fit the common A-type fabric for olivine indica-
tive of dominant slip on the (010)[100] and slip on (100)[001] for opx. However, the sub-
grain boundary analysis also shows significant activation of olivine E-type, (001)[100], and 
opx (010)[001] slip systems. The dominant A-type and secondary E-type for olivine is con-
sistent with the constrained conditions near the A to E transition determined for experi-
mental samples at moderate water contents [60]. 

(3) Microstructural observations suggest olivine porphyroclasts are more susceptible 
to deformation and recrystallization than opx porphyroclasts. Recrystallized olivine 
grains are larger than recrystallized opx grains, as expected from experimentally estab-
lished piezometers. Both olivine and opx porphyroclasts are predicted to deform by dis-
location creep, consistent with their microstructures. To illustrate consistency between 
microstructural observations and flow laws, the activation volume for dislocation creep 
of wet opx [78] needs to be greater than ~20 m3 106/mol). 
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5. Conclusions and Summary 
We analyzed the microstructure in a highly sheared lherzolite produced during a 

rapid lithospheric deformation event and compared it with microstructures and rheolog-
ical properties produced in experiments under similar stress and strain rate conditions. 
Table 1 summarizes the results of our microstructural analysis and those from analyses of 
experimental samples from the literature.  

(1) Large EBSD maps show monophase bands of olivine and multiphase bands. Mi-
crostructural analysis of olivine reveals weaker CPO strength, smaller grain size, and 
lower intragrain misorientation compared to the olivine in the monophase bands. These 
observations highlight the importance of secondary minerals in the deformation of an ol-
ivine-rich rock and suggest that the rock microstructure evolves to naturally organize 
weaker monophase bands to facilitate deformation. 

(2) Olivine and opx show CPOs that fit the common A-type fabric for olivine indica-
tive of dominant slip on the (010)[100] and slip on (100)[001] for opx. However, the sub-
grain boundary analysis also shows significant activation of olivine E-type, (001)[100], and 
opx (010)[001] slip systems. The dominant A-type and secondary E-type for olivine is con-
sistent with the constrained conditions near the A to E transition determined for experi-
mental samples at moderate water contents [60]. 

(3) Microstructural observations suggest olivine porphyroclasts are more susceptible 
to deformation and recrystallization than opx porphyroclasts. Recrystallized olivine 
grains are larger than recrystallized opx grains, as expected from experimentally estab-
lished piezometers. Both olivine and opx porphyroclasts are predicted to deform by dis-
location creep, consistent with their microstructures. To illustrate consistency between 
microstructural observations and flow laws, the activation volume for dislocation creep 
of wet opx [78] needs to be greater than ~20 m3 106/mol). 
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conditions (Figure 10a)
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5. Conclusions and Summary 
We analyzed the microstructure in a highly sheared lherzolite produced during a 

rapid lithospheric deformation event and compared it with microstructures and rheolog-
ical properties produced in experiments under similar stress and strain rate conditions. 
Table 1 summarizes the results of our microstructural analysis and those from analyses of 
experimental samples from the literature.  

(1) Large EBSD maps show monophase bands of olivine and multiphase bands. Mi-
crostructural analysis of olivine reveals weaker CPO strength, smaller grain size, and 
lower intragrain misorientation compared to the olivine in the monophase bands. These 
observations highlight the importance of secondary minerals in the deformation of an ol-
ivine-rich rock and suggest that the rock microstructure evolves to naturally organize 
weaker monophase bands to facilitate deformation. 

(2) Olivine and opx show CPOs that fit the common A-type fabric for olivine indica-
tive of dominant slip on the (010)[100] and slip on (100)[001] for opx. However, the sub-
grain boundary analysis also shows significant activation of olivine E-type, (001)[100], and 
opx (010)[001] slip systems. The dominant A-type and secondary E-type for olivine is con-
sistent with the constrained conditions near the A to E transition determined for experi-
mental samples at moderate water contents [60]. 

(3) Microstructural observations suggest olivine porphyroclasts are more susceptible 
to deformation and recrystallization than opx porphyroclasts. Recrystallized olivine 
grains are larger than recrystallized opx grains, as expected from experimentally estab-
lished piezometers. Both olivine and opx porphyroclasts are predicted to deform by dis-
location creep, consistent with their microstructures. To illustrate consistency between 
microstructural observations and flow laws, the activation volume for dislocation creep 
of wet opx [78] needs to be greater than ~20 m3 106/mol). 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: 
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5. Conclusions and Summary 
We analyzed the microstructure in a highly sheared lherzolite produced during a 

rapid lithospheric deformation event and compared it with microstructures and rheolog-
ical properties produced in experiments under similar stress and strain rate conditions. 
Table 1 summarizes the results of our microstructural analysis and those from analyses of 
experimental samples from the literature.  

(1) Large EBSD maps show monophase bands of olivine and multiphase bands. Mi-
crostructural analysis of olivine reveals weaker CPO strength, smaller grain size, and 
lower intragrain misorientation compared to the olivine in the monophase bands. These 
observations highlight the importance of secondary minerals in the deformation of an ol-
ivine-rich rock and suggest that the rock microstructure evolves to naturally organize 
weaker monophase bands to facilitate deformation. 

(2) Olivine and opx show CPOs that fit the common A-type fabric for olivine indica-
tive of dominant slip on the (010)[100] and slip on (100)[001] for opx. However, the sub-
grain boundary analysis also shows significant activation of olivine E-type, (001)[100], and 
opx (010)[001] slip systems. The dominant A-type and secondary E-type for olivine is con-
sistent with the constrained conditions near the A to E transition determined for experi-
mental samples at moderate water contents [60]. 

(3) Microstructural observations suggest olivine porphyroclasts are more susceptible 
to deformation and recrystallization than opx porphyroclasts. Recrystallized olivine 
grains are larger than recrystallized opx grains, as expected from experimentally estab-
lished piezometers. Both olivine and opx porphyroclasts are predicted to deform by dis-
location creep, consistent with their microstructures. To illustrate consistency between 
microstructural observations and flow laws, the activation volume for dislocation creep 
of wet opx [78] needs to be greater than ~20 m3 106/mol). 
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transition to a contribution of both
dislocation and diffusion after
recrystallization (Figure 10b).
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5. Conclusions and Summary 
We analyzed the microstructure in a highly sheared lherzolite produced during a 

rapid lithospheric deformation event and compared it with microstructures and rheolog-
ical properties produced in experiments under similar stress and strain rate conditions. 
Table 1 summarizes the results of our microstructural analysis and those from analyses of 
experimental samples from the literature.  

(1) Large EBSD maps show monophase bands of olivine and multiphase bands. Mi-
crostructural analysis of olivine reveals weaker CPO strength, smaller grain size, and 
lower intragrain misorientation compared to the olivine in the monophase bands. These 
observations highlight the importance of secondary minerals in the deformation of an ol-
ivine-rich rock and suggest that the rock microstructure evolves to naturally organize 
weaker monophase bands to facilitate deformation. 

(2) Olivine and opx show CPOs that fit the common A-type fabric for olivine indica-
tive of dominant slip on the (010)[100] and slip on (100)[001] for opx. However, the sub-
grain boundary analysis also shows significant activation of olivine E-type, (001)[100], and 
opx (010)[001] slip systems. The dominant A-type and secondary E-type for olivine is con-
sistent with the constrained conditions near the A to E transition determined for experi-
mental samples at moderate water contents [60]. 

(3) Microstructural observations suggest olivine porphyroclasts are more susceptible 
to deformation and recrystallization than opx porphyroclasts. Recrystallized olivine 
grains are larger than recrystallized opx grains, as expected from experimentally estab-
lished piezometers. Both olivine and opx porphyroclasts are predicted to deform by dis-
location creep, consistent with their microstructures. To illustrate consistency between 
microstructural observations and flow laws, the activation volume for dislocation creep 
of wet opx [78] needs to be greater than ~20 m3 106/mol). 
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sistent with the constrained conditions near the A to E transition determined for experi-
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grains are larger than recrystallized opx grains, as expected from experimentally estab-
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microstructural observations and flow laws, the activation volume for dislocation creep 
of wet opx [78] needs to be greater than ~20 m3 106/mol). 
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5. Conclusions and Summary

We analyzed the microstructure in a highly sheared lherzolite produced during a
rapid lithospheric deformation event and compared it with microstructures and rheolog-
ical properties produced in experiments under similar stress and strain rate conditions.
Table 1 summarizes the results of our microstructural analysis and those from analyses of
experimental samples from the literature.

(1) Large EBSD maps show monophase bands of olivine and multiphase bands. Mi-
crostructural analysis of olivine reveals weaker CPO strength, smaller grain size, and
lower intragrain misorientation compared to the olivine in the monophase bands. These
observations highlight the importance of secondary minerals in the deformation of an
olivine-rich rock and suggest that the rock microstructure evolves to naturally organize
weaker monophase bands to facilitate deformation.

(2) Olivine and opx show CPOs that fit the common A-type fabric for olivine indicative
of dominant slip on the (010)[100] and slip on (100)[001] for opx. However, the subgrain
boundary analysis also shows significant activation of olivine E-type, (001)[100], and opx
(010)[001] slip systems. The dominant A-type and secondary E-type for olivine is consistent
with the constrained conditions near the A to E transition determined for experimental
samples at moderate water contents [60].

(3) Microstructural observations suggest olivine porphyroclasts are more susceptible
to deformation and recrystallization than opx porphyroclasts. Recrystallized olivine grains
are larger than recrystallized opx grains, as expected from experimentally established
piezometers. Both olivine and opx porphyroclasts are predicted to deform by dislocation
creep, consistent with their microstructures. To illustrate consistency between microstruc-
tural observations and flow laws, the activation volume for dislocation creep of wet opx [78]
needs to be greater than ~20 m3 106/mol).
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