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Abstract: The Lovozero peralkaline massif (Kola Peninsula, Russia) is widely known for its unique
mineral diversity, and most of the rare metal minerals are found in pegmatites, which are spatially
associated with poikilitic rocks (approximately 5% of the massif volume). In order to determine the
reasons for this relationship, we have investigated petrography and the chemical composition of
poikilitic rocks as well as the chemical composition of the rock-forming and accessory minerals in
these rocks. The differentiation of magmatic melt during the formation of the rocks of the Lovozero
massif followed the path: lujavrite→ foyaite→ urtite (magmatic stage)→ pegmatite (hydrothermal
stage). Yet, for peralkaline systems, the transition between magmatic melt and hydrothermal solution
is gradual. In the case of the initially high content of volatiles in the melt, the differentiation path
was probably as follows: lujavrite→ foyaite (magmatic stage)→ urtitization of foyaite→ pegmatite
(hydrothermal stage). Poikilitic rocks were formed at the stage of urtitization, and we called them
pre-pegmatites. Indeed, the poikilitic rocks have a metasomatic texture and, in terms of chemical
composition, correspond to magmatic urtite. The reason for the abundance of rare metal minerals
in pegmatites associated with poikilitic rocks is that almost only one nepheline is deposited during
urtitization, whereas during the magmatic crystallization of urtite, rare elements form accessory
minerals in the rock and are less concentrated in the residual solution.

Keywords: Lovozero massif; peralkaline rocks; pegmatites; autometasomatic alteration

1. Introduction

Pegmatites form at the final stage of the magmatic process with the participation of
late magmatic fluids. Most pegmatites are mineralogically simple, essentially very coarse
rocks. Others contain a tremendous concentration of incompatible elements and a highly
varied mineralogy, commonly displaying a concentric zonation (see e.g., [1–4]). As the late
fluid segregation concentrates trace elements, pegmatites are important economic resources
and are mined for Li, Be, the rare earth elements (REE), W, Zr, and a host of other elements
that are rarely concentrated in other environments [5,6]. They are also a major source of
gems.

Pegmatite genesis is a subject of controversy. One school of thought (see, e.g., [7,8])
proposes that they are the crystallization products of residual melts intruding fractures
in country rocks. Such residual melts are relatively rich in volatiles (H2O, F, Cl, etc.).
A different origin has been proposed by other researchers (see, e.g., [1,9,10]). Their in-
terpretation is based on the frequent chaotic structure of the pegmatite veins, in which
recrystallization phenomena are widespread, with resorption and chemical substitution of
earlier-crystallized minerals. In this scenario, pegmatites result from profound transfor-
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mation of felsic rocks under the influence of hydrothermal solutions, rather than by direct
magmatic crystallization.

Peralkaline igneous rocks are not widespread in the earth’s crust [11], but they are of
great interest to researchers because these rocks concentrate rare earth elements (REEs),
high field strength elements (HFSEs, such as Zr, Hf, Nb, Ta, and U), halogens and other
volatiles (F, Cl, S, H2O), and otherwise rare elements, such as Be, Sn, and Zn [12,13]. In
the process of crystallization of peralkaline rocks, it is believed that a gradual transition
from magmatic melt to hydrothermal solution occurs [14–17]. The reason for such gradual
transition is the high solubility of water in a peralkaline silicate melt. Water dissolves in a
silicate melt both in molecular form and in the form of OH-groups, which are formed as a
result of this reaction [18–20]:

Si-O-Si + H2O→ Si-OH + OH-Si

An increase in the content of alkaline elements (Na, K) in the melt increases the
solubility of water because the following reactions occur [19,21]:

Si-O-M + H2O→ Si-OH + OH-M

M-O-M + H2O→ 2OH-M

where M is a metal, e.g., Na.
At the same time, the H2O/OH ratio increases with an increase in the total water

content [18,22]. The evolution of a peralkaline melt goes in the direction of sodium enrich-
ment [14,23,24]; therefore, more and more water can dissolve in it. Thus, there is a gradual
transition from a magmatic silicate melt, in which the main component is SiO4, to a hy-
drothermal solution, where the main component is water. Therefore, for peralkaline rocks,
it is impossible to clearly distinguish between pegmatites and hydrothermal veins [25], and
to describe the processes of differentiation in peralkaline systems, researchers sometimes
use mixed terms, such as melt–solution [14], melt/fluid [26] or fluid/melt [17]. A highly
evolved melt–solution saturated with Na and incompatible elements can: (1) form peg-
matites and hydrothermal veins; (2) induce intense fenitization of the surrounding rocks;
(3) remain in the crystallizing rock and cause extensive autometasomatic alterations. In
this article, we suggest an additional path for the above-mentioned melt–solution. We
believe that a highly evolved melt–solution can (4) change its composition as a result of
autometasomatic alterations and then form pegmatites and hydrothermal veins.

The object of our research was the Lovozero peralkaline massif (Kola Peninsula,
Russia). It is widely known for its unique mineral diversity, as the massif is a type locality
for 106 minerals, and the total number of minerals known there is 393 species (https://www.
mindat.org/loc-2697.html, accessed on 6 September 2021). The maximal mineral diversity
is typical for pegmatites and hydrothermal veins [25]. There are more than 1000 pegmatites
in the Lovozero massif [25,27,28]. There are both simple pegmatites, which are coarse-
grained analogs of the host rocks, and extremely complex ones, containing a wide variety
of rare minerals. For example, 58 minerals were found in the Yubileinaya pegmatite, which
is the type locality for 13 of them; 63 minerals were found in the Sirenevaya pegmatite; and
46 minerals were found in pegmatite (no. 47 in accordance with Semenov’s [28] numbering)
on Mount Lepkhe-Nel’m [25].

In the Lovozero massif, pegmatites containing a wide variety of rare-metal (Li, Be,
Ti, Zr, Nb, Ta, REE) mineralizations are found in two main settings. Such pegmatites
are found (1) in urtite of the Layered complex or (2) spatially associated with the rocks
of the so-called poikilitic complex [27,28]. Even though poikilitic rocks in the Lovozero
massif are not widespread (5% of the massif volume), most of the rare metal pegmatites are
confined to these rocks. Besides, pegmatites associated with rocks of the poikilitic complex
are characterized by the greatest variety of lithium, beryllium, and rare-earth minerals.
The main distinguishing feature of poikilitic rocks is the presence of very large crystals of
orthoclase with numerous inclusions of feldspathoids. They usually form isolated lenses
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or sheet-like bodies and are a prospecting criterium for rare-metal pegmatites in field
investigations.

Vlasov et al. [27] stated that rocks of the poikilitic complex represent a pegmatoid
stage in evolution of the Lovozero massif and were formed as a result of crystallization of
a highly evolved melt enriched in volatile components and rare elements. According to
Bussen and Sakharov [29], Gerasimovsky [30], Arzamastsev [31], the rocks of the poikilitic
complex are the earliest rocks of the massif. These researchers suggested that the poikilitic
complex formed as a separate magmatic phase and was preserved as xenoliths among
younger rocks, which make up the bulk volume of the massif.

In this article, we suggest a possible mechanism of the formation of the poikilitic
complex rocks and the potential reasons for their spatial association with pegmatites
enriched in rare metal minerals. We support the conclusions of Vlasov et al. [27] and
propose to consider the studied rocks as pre-pegmatites. In our opinion, the poikilitic rocks
of the Lovozero massif are evidence of a unique feature of the peralkaline systems, namely,
the gradual transition from magmatic melt to hydrothermal solution [14,15].

Poikilitic rocks are known not only in the Lovozero massif, but also in other per-
alkaline massifs of the world. In the Khibiny massif (Russia), a similar rock is called
rischorrite [32,33], and it is located at the contact of nepheline syenite (foyaite), which
composes the bulk of the massif, and foidolite, which composes an annular intrusion (the
so-called Main Ring). It is important to note that most of the pegmatites of the Khibiny
massif are located at the contact of rischorrite and foyaite [34]. In the Ilímaussaq massif
(Greenland), rocks consisting mainly of feldspar with inclusions of sodalite are called
naujaite. This rock is part of the layered roof series and is associated with the foyaite and
pulaskite [35,36]. Conformable pegmatite layers are particularly well developed in the nau-
jaite [17,35]. In the Mont Saint Hilaire massif (Canada), sodalite-rich foid syenite, consisting
of poikilitic feldspar with inclusions of sodalite and nepheline, occurs as centimeter- to
meter-sized inclusions in fine-grained porphyritic foid syenites and nepheline sienite [37].
Sodalite-rich foid syenite in the Mont Saint Hilaire massif is a host mineral character-
istic to pegmatites (e.g., natrolite, villiaumite, astrophyllite) and is spatially related to
pegmatites [38].

2. Geological Setting and Previous Works

The Lovozero peralkaline massif is located on the Kola Peninsula (Russia) (Figure 1a) and
covers an area of 650 km2. This layered laccolith-type pluton was emplaced at 360–370 Ma [39–41]
into Archean granite gneiss covered by Devonian volcaniclastic rocks [42]. A large number
of studies are devoted to geology, petrology (e.g., [27,29,30,43–46]), as well as mineralogy
of this massif (e.g., [25,28,47–52]).

The Lovozero massif consists of two main units (Figure 1b): Layered and Eudialyte
complexes. The Layered complex makes up 77% of the massif volume [30], has a thickness
of more than 1700 m, and consists of many layers (or rhythms). The dip angles of the layers
are 5–350 to the center of the massif. The idealized rhythm is a sequence of rocks (top to
bottom): lujavrite–foyaite–urtite. Lujavrite is a trachytoid (i.e., with subparallel feldspar
laths) meso- or melanocratic nepheline syenite; foyaite is a massive, less often weakly
trachytoid, leucocratic nepheline syenite; urtite is an almost monomineral nepheline rock
of massive texture. The mineral and modal compositions and textures of different rocks of
the Layered complex are summarized in Table 1. The transition between rocks within the
rhythm is gradual, and contacts between rhythms are sharp. Pegmatites are associated with
urtite. Pegmatites form lenses at the contacts of rhythms, while the underlying lujavrite is
almost completely unchanged, and the overlying urtite contains numerous apophyses of
pegmatite. The thicknesses of each of the three types of rocks (lujavrite, foyaite, or urtite)
correlates with the thickness of the entire rhythm. Such rhythms are found only in the
upper zone of the Layered complex (Figure 1c). The middle part of this complex consists of
lujavrite with foyaite lenses, and the lower part consists of lujavrite–foyaite rhythms with
urtite lenses.
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Figure 1. (a) Location of the Lovozero massif within the Kola Peninsula (red square); (b) geological scheme of the Lovozero
massif (adapted from [29]); and (c) schematic cross-section of the Eudialyte and Layered complexes.

The Eudialyte complex is located in the upper part of the Lovozero massif (Figure 1b,c)
and occupies 18% of its volume [30]. The thickness of this complex is from 100 (in the east)
to 800 m (in the north-west). The main rock of the Eudialyte complex is lujavrite enriched
in eudialyte-group minerals (EGM), the so-called eudialyte lujavrite. Among eudialyte
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lujavrite, lenses and layers of foyaite, as well as fine-grained and porphyritic nepheline
syenites (Table 1), are irregularly located.

Table 1. Summary of the petrography of the Layered and Eudialyte complexes.

Complex Rock Rock-Forming Minerals
(Average Content, Modal %)

Characteristic Accessory
Minerals 1 Texture

% in
Complex
Volume

[30]

Layered
complex

Lujavrite

Euhedral microcline perthite (45),
euhedral to anhedral nepheline

+ secondary natrolite (20),
euhedral aegirine (25), anhedral

magnesio-arfvedsonite (5)

EGM 2, lamprophyllite, sodalite,
loparite-(Ce),

barytolamprophyllite, sphalerite,
fluorapatite, lorenzenite

Trachytoid;
coarse- to
medium-
grained

53

Foyaite

Euhedral to subhedral microcline
perthite (50), euhedral to anhedral

nepheline + secondary natrolite (35),
anhedral or poikilitic aegirine (7)

Magnesio-arfvedsonite, EGM,
sodalite, lamprophyllite,

sphalerite,
loparite-(Ce), murmanite,

lomonosovite

Massif to weakly
trachytoid; coarse- to

medium-grained
42

Urtite

Euhedral to anhedral nepheline +
secondary natrolite (70), euhedral to
subhedral microcline perthite (12),

anhedral sodalite (7), poikilitic
aegirine (6)

Loparite-(Ce), fluorapatite, EGM,
magnesio-arfvedsonite, titanite,

murmanite, sphalerite

Massif;
coarse- to

medium-grained
5

Eudialyte
complex

Eudialyte
lujavrite

Euhedral microcline (36),
euhedral to subhedral EGM (25),

euhedral aegirine (20), euhedral to
anhedral nepheline + secondary

natrolite (15), anhedral
magnesio-arfvedsonite (5)

Sodalite, loparite-(Ce),
lamprophyllite,

barytolamprophyllite, sphalerite

Trachytoid; coarse- to
medium-grained 80

Foyaite

Euhedral to subhedral
microclineperthite (55), euhedral to
subhedral nepheline + secondary

natrolite (35), anhedral or poikilitic
aegirine (7)

Magnesio-arfvedsonite,
fluorapatite, sodalite,

lovozerite-group minerals, EGM,
murmanite, lomonosovite

Massif to weakly
trachytoid;
coarse- to

medium-grained

10

Porphyritic/fine-
grained

nepheline
syenites

Fine-grained mass: euhedral albite
(25), anhedral microcline (25),

anhedral nepheline (20), euhedral
aegirine (20), anhedral or poikilitic

magnesio-arfvedsonite (5)
Phenocrysts: nepheline (0–20%),

microcline perthite (0–35%)

EGM, lovozerite-group minerals,
sodalite, murmanite,

lamprophyllite

Porphyritic/fine-
grained 10

1 ranked in order of decreasing importance; 2 eudialyte-group minerals.

A large number of xenoliths of Devonian volcaniclastic rocks [30,42], both unaltered
and intensely metasomatized (fenitized), are found among the rocks of the Layered and
Eudialyte complexes. Unaltered xenoliths are composed of olivine basalt, basalt tuff, tuffite,
and sandstone. Alkaline lamprophyre dikes up to 5 m thick are most common in the
northwest and south of the Lovozero massif.

Poikilitic complex (or complex of poikilitic syenites) is a collective name for a group
of rocks diverse in mineral and modal composition [28–30,53]. The rocks of this complex
occupy approximately 5% of the massif volume; they form lenses, sheet-like or irregularly
shaped bodies with sizes of 10 km × 0.5 km to 50 cm × 30 cm, which are located in both
the Layered and Eudialyte complexes (Figure 1b). The main features of the rocks of the
poikilitic complex are the presence of large (up to 15 cm in length) crystals of feldspar with
numerous inclusions of feldspathoids (sodalite, nepheline, cancrinite, vishnevite), as well
as metasomatic texture. The amount of poikilitic crystals of feldspar varies from single
grains to 90% of the rock volume. In the poikilitic complex, the following main groups of
rocks are recognized [29,30]:

1. Uneven-grained nepheline syenite (poikilitic feldspar is rare, the main foid is nepheline)—
the name of this rock reflects that the size of the grains of the rock-forming nepheline
varies greatly (from 50 µm to 2 cm across);
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2. Poikilitic foid syenite (a large number of poikilitic feldspar crystals; the main foid can
be different, e.g., vishnevite, cancrinite, sodalite).

For brevity’s sake, in the following text, we will use the term poikilitic rocks instead
of rocks of the poikilitic complex as a general name for these two types of rocks.

According to Bussen and Sakharov [29], the boundaries between uneven-grained
nepheline syenite and poikilitic foid syenite are gradual. These rocks can either be found
together in the volume of one body or form separate independent bodies.

The contacts of the poikilitic rocks with surrounded rocks of the Layered or Eudialyte
complex are diverse. The contact of uneven-grained nepheline syenite with lujavrite is
sharp and the contact with foyaite is either sharp or gradual. At the contact of poikilitic
foid syenite with lujavrite, there is a transition zone consisting of a large (up to 10 cm
in length) microcline crystals (without poikilitic inclusions) and monomineral aegirine
segregations. This zone is enriched in EGM, lorenzenite, murmanite, lamprophyllite, and
rinkite-(Ce). Lujavrite lacks a trachytoid texture near the contact (in a zone up to 0.5 m
wide) with poikilitic rocks.

Pegmatites are found both at the contact of poikilitic rocks with surrounded rocks
(Figure 2a,b) and within bodies of poikilitic rocks (Figure 2c). The transition between
poikilitic rocks and pegmatites is gradual. Table 2 lists the rare metal minerals (for exam-
ple see Figure 2d,e) characteristic to pegmatites spatially associated with poikilitic rocks
according to Pekov [25] and Semenov [28].

Table 2. List of rare metal minerals from pegmatites spatially related to poikilitic rocks [25,28].

Mineral Formula 1

Belovite-(Ce) NaCeSr3(PO4)3F
Bertrandite Be4Si2O7(OH)2

Beryllite Be3(SiO4)(OH)2·H2O
Bornemanite Na6(Na�)Ba2Ti2Nb2(Si2O7)4(PO4)2O4(OH)2F2
Chkalovite Na2BeSi2O6

Epididymite (Figure 2d) Na2Be2Si6O15·H2O
Karnasurtite-(Ce) CeTiAlSi2O7(OH)4·3H2O

Kupletskite K2NaMn2+
7Ti2(Si4O12)2O2(OH)4F

Lemmleinite-Ba Na4K4Ba2+xTi8(Si4O12)4(OH,O)8·8H2O
Lemmleinite-K Na4K8Ti8(Si4O12)4(OH,O)8·8H2O

Lepkhenelmite-Zn Ba2Zn(Ti,Nb)4(Si4O12)2(O,OH)4·7H2O
Leucophanite NaCaBeSi2O6F

Lintisite Na3LiTi2O2(SiO3)4·2H2O
Lorenzenite Na2Ti2O3(Si2O6)

Manganoneptunite KNa2LiMn2+
2Ti2Si8O24

Monazite-(Ce) Ce(PO4)
Mosandrite-(Ce) (Ca3REE)[(H2O)2Ca0.5�0.5]Ti(Si2O7)2(OH)2(H2O)

Neptunite KNa2LiFe2+
2Ti2Si8O24

Polylithionite KLi2AlSi4O10F2
Rhabdophane-(Ce) Ce(PO4)·H2O

Sazhinite-(Ce) Na3CeSi6O15·2H2O
Steenstrupine-(Ce) Na14Ce6Mn2+

2Fe3+
2Zr(PO4)7Si12O36(OH)2·3H2O

Tainiolite KLiMg2Si4O10F2
Tsepinite-Na (Na,H3O,K,Sr,Ba,�)2(Ti,Nb)2(Si4O12)(OH,O)2·3H2O
Tsepinite-Sr (Sr,Ba,K)(Ti,Nb)2(Si4O12)(OH,O)2·3H2O

Tundrite-(Ce) Na2Ce2TiO2(SiO4)(CO3)2
Vinogradovite Na4Ti4(Si2O6)2[(Si,Al)4O10]O4·(H2O,Na,K)3
Vuonnemite Na6Na2Nb2Na3Ti(Si2O7)2(PO4)2O2(OF)
Vitusite-(Ce) Na3Ce(PO4)2

1 according to the IMA (international mineralogical association) list; �—vacancy.
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3. Materials and Methods

We studied poikilitic rocks, the bodies of which are located in the Eudialyte complex
of the Lovozero massif. Samples for the study were collected in two areas (Figure 1):
Alluive Mountain (drill cores, sampling profile 1 in Figure 1) and Sengischorr Mountain
(outcrops, sampling area 2 in Figure 1). Figure 3a shows a schematic cross-section of
sampling profile 1 (see Figure 1), well locations, and sampling intervals. On the Sengischorr
Mountain, samples were taken from six outcrops. One such outcrop and sampling points
are shown in Figure 3b.
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Figure 3. (a) Schematic cross section along sampling profile 1 [54]. Only those wells from which samples were used in this
article are shown. The lenses of the poikilitic rocks are located near the foyaite or at the same level. (b) Outcrop (LV-377)
of poikilitic rocks within sampling area 2. Poikilitic rocks form a lens-like body (outlined by a white dashed line) among
eudialyte lujavrite.

The 36 thin polished sections were analyzed at the Geological Institute of the Kola
Science Center of the Russian Academy of Sciences (GI KSC RAS, Apatity, Russia) using a
scanning electron microscope LEO-1450 (Carl Zeiss Microscopy, Oberkochen, Germany)
with the energy-dispersive system Quantax 200 to obtain BSE (back-scattered electron)
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images and pre-analyze all detected minerals. The chemical composition of minerals was
analyzed with the Cameca MS-46 electron microprobe (Cameca, Gennevilliers, France)
operating in the WDS-mode at 22 kV with a beam diameter of 10 µm, beam current of
20–40 nA, and counting times of 20 s (for a peak) and 2–10 s (for background before
and after the peak), with 5–10 counts for every element in each point. The analytical
precision (reproducibility) of mineral analyses was 0.2–0.05 wt% (2 standard deviations)
for the major element and approximately 0.01 wt% for impurities. The standards used, the
detection limits, and the analytical accuracy values are given in Supplementary Table S1.
The systematic errors were within the random errors.

Diagnostics of feldspathoids, as well as the study the structural state of the potassium
feldspar, were carried out using X-ray diffraction (XRD). XRD measurements were taken
with a DRON-2 diffractometer (Burevestnik, Saint-Peterburg, Russia) at the GI KSC RAS.
The operating parameters were as follows: CuKα radiation, 20 mA, 30 kV. XRD data were
identified using the RRUFF Project database [55].

In situ laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS)
analyses of Li in amphiboles were performed at the Institute of Geology Karelian Research
Centre Russian Academy of Sciences (Petrozavodsk, Russia) using a mass spectrometer
X-Series 2 (Thermo Fisher Scientific, Waltham, MA, USA) equipped with a 266 nm Nd-YAG
laser (UP-266 Macro). NIST 640 was used as a secondary standard. The laser beam diameter
at the sample surface was approximately 70 µm.

Major elements in rocks were determined by a wet chemical analysis at the GI KSC
RAS. The accuracy limits of the wet chemical analysis are given in Supplementary Table S1.
Statistical analyses were carried out using the STATISTICA 13 [56]. For the statistics,
resulting values of the analyses below the limit of accuracy (see Supplementary Table S1)
were considered ten times lower than the limit.

Factor analysis was used to detect patterns of changes in the chemical composition of
rocks and minerals. It is a statistical method used to describe variability among observed,
correlated variables in terms of a lower number of unobserved variables called factors [57].
This method allows us to describe an object comprehensively and, at the same time,
compactly.

Mineral abbreviations mentioned in this article are shown in Table 3.

Table 3. Mineral abbreviations used in figures and text.

Symbol Mineral Name Formula 1

Ab Albite Na(AlSi3O8)

Aeg Aegirine NaFeSi2O6

Aeg-Au Aegirine-augite (Ca,Na)(Fe3+,Mg,Fe2+)Si2O6

Ap Fluorapatite Ca5(PO4)3F

Arf Arfvedsonite NaNa2(Fe2+
4Fe3+)Si8O22(OH)2

Bdy Baddeleyite ZrO2

Di Diopside CaMgSi2O6

EGM Eudialyte-group minerals

N15M16M23M3M4Z3[Si24O73]O′
4X2; N = Na, Ca, K, Sr, REE, Ba, Mn, H3O+;

M1 = Ca, Mn, REE, Na, Sr, Fe; M2 = Fe, Mn, Na, Zr, Ta, Ti, K, Ba, H3O+; M3,
4 = Si, Nb, Ti, W, Na; Z =Zr, Ti, Nb; O’=O, OH−, H2O; X = H2O, Cl−, F−, OH−,

CO3
2−, SO4

2− [58]

F-Ktp Ferri-fluoro-katophorite Na(NaCa)(Mg4Fe3+)(Si7Al)O22F2

Ilm Ilmenite Fe2+Ti4+O3

Ktp Ferri-katophorite Na(NaCa)(Mg4Fe3+)(Si7Al)O22(OH)2

Lmp Lamprophyllite (SrNa)Ti2Na3Ti(Si2O7)2O2(OH)2
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Table 3. Cont.

Symbol Mineral Name Formula 1

Lop Loparite-(Ce) (Na,Ce,Sr)(Ce,Th)(Ti,Nb)2O6

Lvn Låvenite (Na,Ca)4(Mn2+,Fe2+)2(Zr,Ti,Nb)2(Si2O7)2(O,F)4

Mag Magnetite Fe2+Fe3+
2O4

Mc Microcline K(AlSi3O8)

Marf Magnesio-arfvedsonite NaNa2(Mg4Fe3+)Si8O22(OH)2

Nph Nepheline Na3K(Al4Si4O16)

Ntr Natrolite Na2(Si3Al2)O10·2H2O

Or Orthoclase K(AlSi3O8)

Pcl Pyrochlore-group minerals A2-mB2X6-wY1-n; A = Na, Ca, Sr, Pb, Sn, Sb, Y, � ;
B = Ta, Nb, Ti, Sb, W; X = O; Y = �, H2O, OH−, O, F [59]

Phl Phlogopite KMg3(AlSi3O10)(OH)2

Pkl Parakeldyshite Na2ZrSi2O7

Po Pyrrhotite Fe7S8

Rct Richterite Na(NaCa)Mg5Si8O22(OH)2

Rnk Rinkite-(Ce) (Ca3REE)Na(NaCa)Ti(Si2O7)2(OF)F2

Sdl Sodalite Na4(Si3Al3)O12Cl

Sph Sphalerite ZnS

Tau Tausonite SrTiO3

Ttn Titanite CaTi(SiO4)O

Ulv Ulvöspinel Fe2+
2TiO4

Vish Vishnevite Na8(Al6Si6)O24(SO4)·2H2O

Wlr Wöhlerite Na2Ca4Zr(Nb,Ti)(Si2O7)2(O,F)4

Zrn Zircon Zr(SiO4)
1 according to the IMA (international mineralogical association) list, except for eudialyte- and pyrochlore-group minerals; �—vacancy.

4. Results
4.1. Petrography

Uneven-grained nepheline syenite and poikilitic foid syenite are leucocratic coarse-
grained massive rocks with a metasomatic texture. These rocks are connected by gradual
transitions but differ in the intensity of metasomatic alterations. Rock-forming minerals
are alkaline feldspars (microcline, orthoclase), albite, feldspathoids (vishnevite, sodalite,
nepheline), phlogopite, sodium–calcium and sodium amphiboles, clinopyroxenes (diop-
side, aegirine–augite, aegirine). Accessory minerals are titanite, fluorapatite, loparite-(Ce),
EGM, lamprophyllite, ilmenite, magnetite, parakeldyshite, zircon, baddeleyite, tausonite,
pyrrhotite, sphalerite.

Based on petrographic observations, a sequence of metasomatic events could be deter-
mined. In uneven-grained nepheline syenite, the intensity of metasomatism is relatively
low. This rock contains numerous relics of microcline, which were replaced by albite along
the grain edges and along fractures (Figure 4a). Albitization was followed by intense
nephelinization. Indeed, relics of microcline and albite are often present in the fine-grained
mass of nepheline. We assume that large crystals (up to 3 cm across, Figure 4b) of nepheline
are formed as a result of recrystallization (or coarsening [60]) of small grains of this mineral.
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Figure 4. Back-scattered electron (BSE) images (a,c) and a photo in transmitted light (b) showing the textural relations and
mineral paragenesis in uneven-grained nepheline syenite. (a) Resorption of microcline by albite and nepheline. Segregation
consisting of magnesio-arfvedsonite, aegirine, ilmenite, titanite, and fluorapatite is located among nepheline. On the
left, there is a fragment of a large nepheline crystal (Sample LV-156-66). (b) Characteristic texture with large euhedral
nepheline crystals and resorbed microcline laths (Sample LV-157-54). (c) Characteristic association of mafic minerals.
Magnesio-arfvedsonite is replaced by aegirine (Sample LV-156-66).

Mafic minerals form polymineral segregations in the fine-grained nepheline mass
(Figure 4a,c). The main mafic minerals are clinopyroxenes and amphiboles, which are
usually arranged in an orderly manner: calcium end-members (e.g., diopside) are first
surrounded by a rim of a calcium–sodium mineral (e.g., aegirine–augite) and outside, there
is a rim of a sodium end-member (e.g., aegirine, Figure 5a). Other examples are as follows
(from core to rim): magnesio-arfvedsonite–aegirine (Figures 4a and 5b), diopside–ferri-
katophorite–aegirine, diopside–richterite–aegirine. In spatial association with clinopy-
roxenes and amphiboles, there are ilmenite grains (sometimes with magnetite lamellae)
surrounded by a titanite rim (Figure 5b), wedge-shaped crystals of titanite, rounded



Minerals 2021, 11, 974 12 of 33

fluorapatite and magnetite grains, cube crystals of loparite-(Ce) and pyrochlore group
minerals, zircon grains with small inclusions of baddeleyite. Moreover, small crystals or
rounded grains of loparite-(Ce), zircon, and pyrochlore-group minerals are often found
within ilmenite grains (Figure 5c). Phlogopite forms lamellar crystals with numerous
inclusions of nepheline, titanite, ilmenite, fluorapatite, loparite-(Ce) and is surrounded by
a ferri-katophorite rim (Figure 5d). Parakeldyshite forms rounded grains with numerous
inclusions of loparite-(Ce) and is surrounded by an EGM rim (Figure 5e).
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(Figure 4a), and feldspar is recrystallized with the formation of small crystals of orthoclase 

Figure 5. BSE images showing the textural relations and mineral paragenesis in uneven-grained nepheline syenite: (a) symplectite
intergrowths of nepheline and magnesio-arfvedsonite are surrounded by aegirine rims, and ilmenite is replaced by titanite
(Sample LV-156-118); (b) inclusions of loparite-(Ce) and zircon in ilmenite (Sample LV-157-83); (c) phlogopite contains inclusions
of ilmenite, fluorapatite, and titanite and is surrounded by a ferri-katophorite rim (Sample LV-157-83); (d) relict diopside
surrounded by rims of aegirines of different composition (Aeg1 = Quad0Jd7Aeg93; Aeg2 = Quad0Jd5Aeg95; Sample LV-156-77);
(e) parakeldyshite grains with inclusions of loparite-(Ce), surrounded by an EGM rim (Sample LV-156-108); (f) recrystallization
of feldspar. Microcline is intensively resorbed by nepheline, and orthoclase laths are crystallized (Sample LV-372).
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In uneven-grained nepheline syenite, nepheline is replaced by vishnevite (Figure 4a),
and feldspar is recrystallized with the formation of small crystals of orthoclase (Figures 4a
and 5f). Some orthoclase crystals contain single poikilitic inclusions of nepheline and/or
vishnevite. However, the amount of vishnevite in this rock is small, and poikilitic orthoclase
is rare.

Poikilitic foid syenite is composed of large poikilitic orthoclase crystals with vish-
nevite inclusions (Figure 6a). In this rock, not only nepheline (Figure 6b) but also orthoclase
(Figure 6c) is intensively replaced by vishnevite. Poikilitic foid syenite was potentially
formed as a result of further development of orthoclasization and vishnevitization pro-
cesses, the first signs of which were observed in uneven-grained nepheline syenite. The
association of mafic minerals in poikilitic foid syenite is similar to that in uneven-grained
nepheline syenites. Tabular crystals of phlogopite contain titanite inclusions and are sur-
rounded by a rim of small crystals of aegirine (Figure 6d,f). Diopside grains are intensively
resorbed by ferri-kataphorite, richterite, and aegirine (Figure 6e). Titanite forms irregu-
lar grains, wedge-shaped crystals, and rims around magnetite and ilmenite (Figure 6f).
Magnetite contains ilmenite or ulvöspinel lamellae. Fluorapatite, zircon, tausonite, rinkite-
(Ce), wöhlerite, låvenite, EGM, pyrrhotite, and sphalerite are characteristic for accessory
minerals.

Thus, in the process of the formation of poikilitic rocks, there are two main stages:
albitization + nephelinization (as a result, uneven-grained nepheline syenite was formed)
and orthoclasization + vishnevitization (at this stage, poikilitic foid syenite was formed).

4.2. Contact between Poikilitic Rocks and Eudialyte Lujavrite

We studied the contact between poikilitic foid syenite and eudialyte lujavrite using
samples from profile LV-377 (see Figure 3b). The following zones were distinguished:

• −20–0 cm from contact: Pegmatite-like zone consisting of large crystals of microcline
and monomineral lenses of aegirine.

• 0–40 cm from contact (Figure 7a,b): Leucocratic lujavrite. The microcline is recrystal-
lized with the formation of large (up to 3 cm across) rectangular crystals. At the same
time, non-recrystallized microcline laths and a trachytoid texture typical of lujavrite
are preserved. The rocks are intensively natrolyzed.

• 40–60 cm from contact (Figure 7c,d): Sodalite-enriched eudialyte lujavrite.
• >60 cm from contact: Eudialyte lujavrite.

4.3. Rock Chemistry

The chemical compositions of uneven-grained nepheline syenite and poikilitic foid
syenite vary widely (Supplementary Table S2). According to the results of factor analysis
(Figure 8), uneven-grained nepheline syenite is relatively enriched in Si and K, as well as
in Zr, Ti, Mn, Fe3+, Li, while poikilitic syenite is enriched in Na and Al, as well as in Ca, Sr,
P, and volatiles (S, Cl, H2O).

Using factor analysis, we compared the chemical compositions of the poikilitic rocks
with those of the main rocks of the massif [54]. First, it should be noted that the com-
positions of lujavrite and foyaite from the Eudialyte complex and similar rocks from the
Layered complex are similar. Lujavrite is enriched in ferrous and ferric iron, calcium, mag-
nesium (included in compositions of rock-forming Na-clinopyroxenes and Na-amphiboles),
titanium, fluorine (included in the composition of lamprophyllite), zirconium, manganese,
and chlorine (included in the composition of EGM). With the transition from lujavrite to
foyaite, the content of above-mentioned elements decreases and the amount of potassium
(i.e., feldspar) increases. The main rock-forming mineral of the Layered complex urtite
is nepheline, and the characterizing accessory minerals are various silicophosphates and
phosphates, mainly fluorapatite [61]. Therefore, urtite is characterized by enrichment in
Al, Na, Ca, and P. There is no urtite in the Eudialyte complex (Table 2), but its chemical
composition corresponds to poikilitic rocks. The difference between urtite and poikilitic
rocks is that the latter contain more sulfur and strontium.
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Figure 6. Photograph in transmitted light (a) and BSE images (b–f) showing the textural relations and mineral paragenesis
in poikilitic foid syenite: (a) large poikilitic orthoclase crystals with inclusions of vishnevite is the characteristic texture
of poikilitic foid syenite (Sample LV-381); (b) fragment of a large grain of orthoclase with inclusions of vishnevite and
nepheline, nepheline is replaced by vishnevite (Sample LV-378-2), (c) replacement of orthoclase with natrolite and vishnevite
(Sample LV-377-7); (d) platy crystal of phlogopite with inclusions of titanite (Sample LV-378-2); (e) relicts of diopside
resorbed by ferri-katophorite and aegirine (Sample LV-377-8); (f) aegirine rim around phlogopite plates and titanite rim
surrounding magnetite grain with ilmenite lamellae (Sample LV-378-2).
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Figure 7. Photographs in transmitted light (a,c) and BSE images (b,d) showing the textural relations and mineral paragenesis
in lujavrite near the contact with poikilitic rocks. (a) Leucocratic lujavrite (20 cm from contact with poikilitic foid syenite,
sample LV-377-3). Both large rectangular microcline crystals (supposedly, the result of recrystallization) and microcline laths
are present. (b) Detail of Figure 7a (red rectangle). Intensive natrolitization of the rock is observed. (c) Eudialyte lujavrite
enriched in sodalite (40 cm from contact with poikilitic foid syenite, sample LV-377-2). The sodalite content is 35 modal%.
(d) Detail of Figure 7c (red rectangle). Sodalite is intensively replaced by natrolite.

In Figure 9, the points corresponding to the chemical compositions of the samples from
the LV-377 profile are separately highlighted (see Figures 3b and 7). Closer to the contact
with poikilitic rocks, the content of Ca, Mg, Fe, Ti, Zr, Mn, F, and Cl (main components of
mafic minerals) in lujavrite decreases, while the concentration of potassium (i.e., feldspar)
increases.

4.4. Mineral Chemistry of Poikilitic Rocks
4.4.1. Alkali Feldspars

The composition of relict microcline grains varies from Or98Ab2 to Or74Ab24For2
(where Or—orthoclase, Ab—albite, For—ferriorthoclase KFe3+Si3O8). The composition
of orthoclase varies more widely because the perthite content in them is quite different.
The composition of homogeneous (without perthite) crystals is Or24–58Ab71–41For0–2. If the
proportion of perthites is 3–15 vol%, then the feldspar composition is Or58–67Ab42–33For0–2.
An increase in the perthite volume (up to 38 vol%) leads to a decrease in Na content in the
matrix (up to Or98Ab2). Sometimes, within the same grain, there are separated areas of
homogeneous and perthite-bearing potassium feldspar. Representative chemical analyses
of alkali feldspars are in Supplementary Table S3.
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4.4.2. Nepheline

In the igneous rocks of the Lovozero (and Khibiny) massifs, nepheline is represented
by two morphological types [62,63]. Nepheline-I occurs as euhedral crystals with numerous
small inclusions of aegirine and microcline, and nepheline-II forms anhedral grains without
inclusions. Nepheline-II is enriched in iron, which, as it was found in [54], is included in
nepheline crystal structure according to the following scheme:

�B + (Si4+ + Fe3+)T � K+
B +2Al3+

T

(�—vacancy), if the composition of nepheline is expressed by the formula A4B4T8O16.
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Only nepheline-II (without inclusions) was found in poikilitic rocks. Representa-
tive chemical analyses are presented in Supplementary Table S4. Trivalent iron (up to
0.14 Fe3+ pfu) enters in nepheline from these rocks according to the above-mentioned sub-
stitution scheme, because there is a negative correlation between (Si + Fe3+) apfu and Al pfu
(Figure 10a) as well as a positive correlation Al pfu vs. K pfu (Figure 10b). This substitution
does not allow for using the nepheline composition for temperature determination [64].
Differences in the composition of nepheline from uneven-grained nepheline syenite and
poikilitic foid syenite were not found.

4.4.3. Vishnevite

Representative chemical analyses of vishnevite are given in Supplementary Table S5.
The sums of oxides in all chemical analyses of vishnevite are very low (mean 92.5 wt%).
This could be due to the presence of water or a CO3

2− group. According to Semenov [28],
vishnevite from the Lovozero massif does not contain carbonate groups. Although we
did not make direct measurements of CO2 in the studied samples, the calculation of the
charge balance showed a lack of positive charges and not negative ones (associated with
the presence of carbonate groups). Supposedly, the lack of the sum in the composition
of vishnevite corresponds to the water content, and not only in the form of H2O but also
in the form of OH-groups. OH-groups could be included in vishnevite according to the
scheme Na+ + O2− → (�, H2O)0 + (OH)−, i.e., vishnevite in poikilitic rocks is hydrated.
Indeed, the studied samples are characterized by a low content of sodium (mean 7.52 apfu)
as well as potassium (mean 0.11 apfu) and calcium (mean 0.02 apfu). The Al/Si ratio in
vishnevite from uneven-grained nepheline syenite is lower (mean 0.89) than the one from
poikilitic foid syenite (mean 0.94).
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4.4.4. Amphiboles

Representative chemical analyses of amphiboles are shown in Supplementary Table S6.
The amphibole-group mineral formulae were calculated based on O + OH + F = 24 atoms
per formula unit and OH = 2 – 2Ti. The formula calculation was performed following
the IMA 2012 recommendations [65] using the Excel spreadsheet of Locock [66]. This
calculation resulted in slightly underoccupied C-cites and over-occupied A-sites (for the
general formula AB2C5T8O22W2), which may be explained by significant Li content [67].
Indeed, the lithium content in amphiboles reaches 0.12 apfu (Table S6).

Unlike other rocks of the Eudialyte complex, where amphiboles are represented only
by sodium end-members (magnesio-arfvedsonite and, less often, arfvedsonite), a wide va-
riety of amphiboles was found in poikilitic rocks. Magnesio-arfvedsonite, usually forming
symplectite intergrowths with nepheline, is typical of uneven-grained nepheline syenite
(Figures 4a and 5a). Poikilitic foid syenite typically contain sodium–calcium amphiboles,
such as ferri-katophorite, ferri-fluoro-katophorite, and richterite. Indeed, amphiboles
from poikilitic rocks are characterized by higher concentrations of aluminum and calcium
compared with amphiboles from other rocks of the Eudialyte complex (Figure 11a,b). In
addition to lithium, titanium (max 0.30 apfu in poikilitic foid syenite) and zirconium (max
0.02 apfu in uneven-grained nepheline syenite) are typical impurities in amphiboles.
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4.4.5. Clinopyroxenes

The compositions of clinopyroxenes in the Mg–(Fe2++Mn)–Na system are shown in
Figure 12. Representative microprobe analyses of clinopyroxenes are available in Sup-
plementary Table S7. The relict clinopyroxene grains are enriched in magnesium and
calcium and correspond in composition to diopside or augite. In addition, there are relict
grains of aegirine–augite (64–78 mol% Quad, 17–31 mol% aegirine, 1.5–6 mol% jadeite).
The compositions of clinopyroxenes forming rims around resorbed relics of Ca-Mg-rich
clinopyroxenes and also around amphiboles correspond to aegirine–augite and aegirine
(17–69 mol% Quad, 29–78 mol% aegirine, 2–5 mol% jadeite). Typical impurities in clinopy-
roxenes are titanium (median 0.04 apfu in relicts; median 0.06 apfu in rims) and zirconium
(median 0.01 apfu in relicts as and as in rims). No differences in the chemical composition
of clinopyroxenes from uneven-grained nepheline syenite and poikilitic foid syenite were
found.
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4.4.6. Other Minerals

Typical accessory minerals of poikilitic rocks are phlogopite, fluorapatite, titanite,
ilmenite, and magnetite. Representative chemical analyses of phlogopite are presented in
Supplementary Table S8. Phlogopite is enriched in titanium, and the titanium concentration



Minerals 2021, 11, 974 21 of 33

in phlogopite from uneven-grained nepheline syenite is higher (up to 0.24 apfu) than in
phlogopite from poikilitic foid syenite (up to 0.19 apfu).

Representative chemical analyses of fluorapatite are shown in Supplementary Table S9.
Fluorapatite is enriched in strontium (up to 1.31 apfu) and REE (up to 0.10 Ce pfu, 0.05 La
pfu), and the Si content does not exceed 0.09 apfu. The main substitution scheme in fluorap-
atite is 2(Ca,Sr)2+ � Na+ + REE3+. In fluorapatite from uneven-grained nepheline syenite,
this reaction is shifted to the right, while fluorapatite from poikilitic foid syenite, on the
contrary, contains more calcium and strontium (Figure 13a).

Ilmenite usually forms homogeneous grains, but in uneven-grained nepheline syenite,
it sometimes contains magnetite lamellae, while in poikilitic foid syenite, on the contrary,
ilmenite lamellae are found in magnetite. Homogeneous ilmenite grains are enriched in
manganese (up to 0.41 Mn pfu in ilmenite from uneven-grained nepheline syenite, Figure 13b).
Representative chemical analyses for ilmenite are presented in Supplementary Table S10.
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Magnetite forms homogeneous grains, lamellae in ilmenite (in uneven-grained nepheline
syenite), and grains with ilmenite lamellae (in poikilitic foid syenite). In homogeneous
grains, the titanium content is maximal and reaches 0.24 apfu (e.g., a homogeneous mag-
netite grain in Figure 5d). Representative chemical analyses of magnetite, both homoge-
neous and with ilmenite lamellae, are shown in Supplementary Table S11.

Representative chemical analyses for titanite are shown in Supplementary Table S12.
Titanite contains a large number of elements, such as Nb, Fe, Na, and REE, and several
exchange mechanisms allowing different cations to enter the structure have been proposed.
The most important chemical substitutions responsible for the chemical variations in titanite
are illustrated in Figure 14a,b:

2Ca2+ � Na+ + REE3+; 2Ti4+ � Nb5+ + (Al, Fe3+); Ti4+ � Zr4+

Titanite from poikilitic foid syenite is enriched in calcium and elements that replace
titanium (Nb, Zr, Al, Fe3+). In titanite from uneven-grained nepheline syenite, on the
contrary, the titanium content is maximum, and the calcium content is minimum.
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5. Discussion

The rocks of the poikilitic complex we studied are formally divided into two groups:
uneven-grained nepheline syenite and poikilitic foid syenite. These two groups of rocks
are connected by gradual transitions, have a metasomatic texture and a similar mineral
(but not modal) composition.

Uneven-grained nepheline syenite formed at the first stage of metasomatic alteration.
This rock contains numerous relics of microcline laths, which are intensively replaced by
albite and nepheline (Figure 4a). Foyaite is a rock enriched in feldspar (microcline) in both
Eudialyte and Layered complexes of the Lovozero massif [29,30,54]). In the cross section
along line 1 (Figures 1b and 3a), it can be seen that in the Eudialyte complex, poikilitic rocks
are located either among the foyaite or at the same depth. In uneven-grained nepheline
syenites, the content of microcline relics reaches 40% of the rock volume; the laths of the
relict microcline are located chaotically. All this suggests that the protolith was a massive
leucocratic feldspar rock, namely, foyaite.

To determine which elements were added to or lost from the rock during the transfor-
mation of foyaite into uneven-grained nepheline syenite, we used the method of Grant [68],
which involves a pairwise graphical comparison of the compositions of altered and unal-
tered rocks. Immobile elements should define a line (isocon) passing through the origin, the
slope of which represents the ratio of the masses of the altered to the fresh rock. A slope of 1
indicates that there has been no mass change, whereas higher or lower slopes imply a gain
or loss of mass (or loss or gain of volume). Figure 15a shows an isocon diagram for a pair of
foyaite (unaltered rock) and uneven-grained nepheline syenite (altered rock). To construct
this diagram, we used the mean rock compositions from Supplementary Table S2. The
line passing closest to the greatest number of elements has a slope of 1, indicating that this
alteration occurred without a change in the mass of the rock (Figure 15a). Conclusions that
can be drawn from this isocon diagram are that Na2O, Al2O3, CaO, MgO, P2O5, REE2O3,
TiO2, and F, S, CO2 were added to the rock during metasomatic alteration, while K2O,
ZrO2, Li2O, MnO, Cl, and H2O were removed.

As mass was conserved during alteration (i.e., no correction needs to be applied to the
data), we can investigate the relative importance of metasomatic alteration in controlling the
composition of rocks by comparing element abundances directly (Supplementary Table S2,
Figure 15b,c). With the metasomatic replacement of foyaite, an increase in the contents of
Na2O and Al2O3 and a decrease in the content of K2O occur. This is likely manifested in
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the replacement of microcline by albite and/or nepheline (Figure 4a), in accordance with
possible reactions:

KAlSi3O8 (microcline) + Na+ → NaAlSi3O8 (albite) + K+;

4KAlSi3O8 (microcline) + 9Na+ + 8Al3+ + 8O2 → 3Na3KAl4Si4O16 (nepheline) + K+;

5KAlSi3O8 (microcline) + 10Na+ + 8Al3+ + 8O2 →

3Na3KAl4Si4O16 (nepheline) + NaAlSi3O8 (albite) + 2K+.

Because, in addition to the loss of potassium, a decrease in the SiO2 content is also
observed, the replacement of the microcline with nepheline can also occur in accordance
with the reaction:

2KAlSi3O8 (microcline) + 3Na+ + 2Al3+ + 2O2 →

Na3KAl4Si4O16 (nepheline) + 2SiO2 + K+.

When microcline is replaced with nepheline and/or albite, a significant amount
of potassium is released. Some of the potassium is removed from the rock, and some,
supposedly, is included in the composition of potassium-enriched minerals (phlogopite,
amphiboles, orthoclase), which crystallize in the metasomatic process simultaneously with
nepheline. We propose a metasomatic origin for these minerals because (1) phlogopite
occurs only in poikilitic rocks [28]; (2) magnesio-arfvedsonite from poikilitic rocks contains
more magnesium, calcium, aluminum, and fluorine than magnesio-arfvedsonite from
foyaite [54]. Potassium is also part of orthoclase, which forms only small laths at the initial
stage of metasomatic replacement of foyaite (Figure 5f) and then appears as large poikilitic
crystals.

Furthermore, with metasomatic replacement of foyaite, a significant addition of TiO2
is observed. Titanium is a part of ilmenite, ulvöspinel-rich magnetite, and titanite. The
addition of magnesium and titanium is the reason for the crystallization of Ti-enriched
phlogopite with thin plates of ilmenite or titanite located along the cleavage. Moreover, as
a result of the addition of magnesium, calcium, and titanium, Quad pyroxenes (diopside
and augite) and Ca-enriched amphiboles (ferri-katophorite, richterite) crystallized. The
sequence of crystallization of pyroxenes and amphiboles from Ca end-members to Ca–Na
end-members and Na end-members potentially occurred due to the fact that at the initial
stage of metasomatism, almost all of the added sodium was used on crystallization of
nepheline, and the calcium addition was very significant (Figure 15b,c). Sodium-rich
clinopyroxenes and amphiboles formed later, with the appearance of excess sodium. As a
result of the addition of P, Ca, Sr, F, and REE, SrREE-rich fluorapatite crystallized, as did
loparite-(Ce), pyrochlore group minerals, and rinkite-(Ce).

Supposedly, the loss of lithium (its content decreases by 48%), manganese (by 42%), as
well as water (in general, the content decreases by 46%) and a part of silicon, is associated
with the resorption of amphiboles from foyaite. The relict NaSi-enriched amphiboles of
the foyaite were probably unstable during metasomatism and were completely resorbed.
Indeed, at the initial stages of nephelinization, the activity of silica and the sodium content
decrease. This is evidenced by both the sequence of crystallization of pyroxenes and
amphiboles (Ca → Ca–Na → Na end-members) and the pattern in the arrangement of
titanium minerals (ilmenite is surrounded by a titanite rim).

The decrease in the zirconium content could be associated with the resorption of
alkaline zirconosilicates, mainly minerals from the eudialyte and lovozerite groups, which
are characterizing to unaltered foyaite [27,28,51,54]. Part of the zirconium is released, and
part is localized first in the form of baddeleyite or zircon and then in the composition of
parakeldyshite and minerals of the eudialyte group enriched in calcium and strontium [54].
The sequence of crystallization of zirconium minerals also indicates a low activity of silica
and the absence of excess sodium at the initial stage of nephelinization.
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With the metasomatic replacement of foyaite, the sulfur content increases most signifi-
cantly (by 65%). Sulfur is localized in the composition of sulfides, as well as in vishnevite,
which replaces nepheline (Figure 4a) and feldspar in accordance with the reactions:

3Na3KAl4Si4O16 (nepheline)+ 2SO4
2− + 2H2O + 7Na+ →

2Na8Al6Si6O24(SO4)·2H2O (vishnevite) + 3K+;

2KAlSi3O8 (microcline) + 8Na+ + 4Al3+ + 4O2 + SO4
2− + 2H2O→

Na8Al6Si6O24(SO4)·2H2O (vishnevite) + 2K+.
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Often, microcline and nepheline are replaced by an aggregate of vishnevite and
natrolite (Figure 6c) according to reactions such as:

3KAlSi3O8 (microcline) + 10Na+ + 5Al3+ + O2 + SO4
2− + 4H2O→

Na8Al6Si6O24(SO4)·2H2O (vishnevite) + Na2(Si3Al2)O10·2H2O (natrolite) + 3K+.

Progress in these reactions led to the formation of complete pseudomorphs of vish-
nevite over nepheline. At the same time, potassium—released in the reactions microcline→
nepheline, microcline→ vishnevite, and nepheline→ vishnevite—was part of orthoclase.
As a boundary between the first (formation of uneven-grained nepheline syenite) and the
second (formation of poikilitic foid syenite) stages of metasomatism, we conventionally
consider the appearance of orthoclase with single poikilitic inclusions of vishnevite and
nepheline.

In order to assess which elements were added or removed from the rock at the second
stage of metasomatism, we also used the method of Grant [67]. We compared the mean
compositions of the uneven-grained nepheline syenite (protolith) and poikilitic foid syenite
(Figure 16). The line passing closest to the greatest number of elements has a slope of
1, indicating that this alteration occurred without any change in the mass of the rock
(Figure 16a). It can be seen that the results are the same as when comparing the uneven-
grained nepheline syenite–foyaite pair. Sodium oxide, Al2O3, CaO, MgO, P2O5, REE2O3,
and F, S, CO2 were added to the rock during metasomatic alteration, K2O, ZrO2, Li2O,
MnO, SiO2, and Fe2O3 were removed.

There is an important difference in the behavior of chlorine, water, titanium, and iron.
At the first stage of metasomatic alteration, chlorine and water are lost from the rock, and
at the second, on the contrary, they are added. As mentioned above, the probable cause of
the loss of chlorine and water at the first stage of metasomatism is the complete resorption
of amphiboles and EGM. The ionic radius of fluorine (1.33 Å) is very close to the ionic
radii of oxygen and hydroxyl (1.40 and 1.37 Å, respectively; [69]). Fluorine can readily
substitute for O on the vertices of aluminate or silicate tetrahedra, which promotes its
solubility in the silicate melt [70,71], whereas incorporation of Cl (1.82 Å) is restricted to
interstitial or network-modifier sites, and this limits their solubility in the melt. Therefore,
fluorine is predominantly distributed in the silicate melt and chlorine in the fluid [72].
In alkaline systems, the transition between silicate melts and hydrothermal solution is
gradual. Considering this fact and the behavior of halogens, we can draw the following
conclusion. At the first stage of metasomatism, the foyaite was exposed to a fluid-saturated
melt (or melt-solution?) and at the second, to a hydrothermal aqueous solution.

Intensive replacement of ilmenite and Ti-rich magnetite with titanite, phlogopite, and
aegirine is the reason for the loss of titanium and iron at the second stage of metasomatism.

Thus, poikilitic rocks were formed during metasomatic alteration of foyaite as a result
of the gain of Na2O, Al2O3, CaO, MgO, SrO, P2O5, REE2O3, and volatiles. In the Lovozero
massif, this set of elements is characteristic for urtite, i.e., an almost monomineral nepheline
rock enriched in SrREE-fluorapatite and other phosphates, as well as loparite-(Ce) [30].
Therefore, the process of formation of poikilitic rocks can be called urtitization of foyaite.

As shown by field investigations and as can be seen in the cross section (Figure
3a), there is no urtite (or other monomineral feldspatoid rocks) near the contact with
the poikilitic rocks. Poikilitic rocks are located either among foyaite or among eudialyte
lujavrite. We have not established any signs of metasomatic influence from the lujavrite;
on the contrary, the surrounded lujavrite exhibits signs of metasomatic alterations at the
contact with poikilitic rocks (Figure 7).

In our previous works, we established that the differentiation of the peralkaline melt
during the formation of the rocks of the Lovozero massif proceeded in the following path:
lujavrite→ foyaite→ urtite. In this sequence, the concentrations of sodium, high field
strength elements (HFSE), and volatiles increase (Figure 9). With the formation of the
rhythm of the Layered complex, a portion of the peralkaline melt evolved from top to
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bottom. Furthermore, the residual melt could be separated and subsequently crystallized in
the form of sheet-like bodies and lenses, as it is observed in the middle part of the Layered
complex. Similarly, foyaite lenses in the Eudialyte complex were formed by the segregation
of a residual, highly evolved melt [54].
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In evolution of peralkaline magmas, the transition from magmatic melt (minerals
crystallize from a silicate melt) to hydrothermal solution (minerals crystallize from an
aqueous solution) occurs without critical events. Late magmatic hydrothermal solution did
not separate during crystallization (for example, by migration of the solution externally
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to the crystallizing rock) but remained in the rock and caused extensive autometasomatic
changes in previously crystallized minerals. This solution, as shown by experimental
studies [73], can be “ . . . strongly enriched in dissolved solids (SiO2 + Al2O3 + Na2O, in
range 40–50 wt%)”. In the sequence lujavrite→ foyaite→ urtite, the hydrothermal stage
could have occurred after the crystallization of urtite. Indeed, in urtite of the Layered
complex, almost all nepheline (and feldspar) is replaced by natrolite with very small
pyrite inclusions. However, if the initial melt was significantly enriched in volatiles, the
hydrothermal stage could begin after the formation of foyaite. It is known that the Eudialyte
complex was formed later than the Layered one [29,30] from peralkaline melts, initially
rich in volatiles and HFSE.

We propose the following two paths of differentiation of the peralkaline melt depend-
ing on the initial content of volatile components:

(1) Low concentration of volatiles: lujavrite→ foyaite→ urtite→ natrolitization
m a g m a t i c s t a g e hydrothermal stage;

(2) High concentration of volatiles: lujavrite→ foyaite→ urtitization→ natrolitization
magmatic stage h y d r o t h e r m a l s t a g e.

Based on the previous arguments, we can conclude that poikilitic rocks arose as
a result of autometasomatic alteration of foyaite and call this process autometasomatic
urtitization.

According to Khomyakov [15], pegmatites in the Layered complex are associated
precisely with urtite. This author notes that pegmatites with rare metal mineralization
are confined to HFSE- and REE-enriched urtite. Pegmatites form lenses at the contacts
of rhythms, while the underlying lujavrite is almost completely unchanged, and the
overlying urtite contain numerous apophyses of pegmatite. Khomyakov [15] points out
that pegmatites “ . . . commonly replace the horizons of such rocks with the formation
of pegmatoid beds 0.2–2.5 m thick, which have been traced, with breaks, throughout the
entire massif”.

Pegmatites in the Layered complex are the end of the evolutionary path lujavrite→
foyaite→ urtite→ (pegmatite) (Figure 17a). Yubileinaya pegmatite is shown in Figure 17b
as an example of pegmatite formed with such a sequence. Similarly, the formation of
pegmatites associated with poikilitic rocks occurs according to the scheme lujavrite →
foyaite→ urtitized foyaite→ (pegmatite) (Figure 17c). Sirenevaya pegmatite is shown in
Figure 17d as an example of pegmatite formed in such a sequence.

The process of urtitization is essential in the concentration of rare elements, because
during the crystallization of urtite (but not during urtitization) a large amount of these
elements form accessory minerals in the rock itself, such as loparite-(Ce), lueshite, minerals
of the eudialyte and lovozerite groups, fluorapatite and stronadelphite, lomonosovite,
and murmanite. In the process of urtitization, mainly nepheline is precipitated, and the
residual solution is significantly enriched in rare and trace elements (REE, Zr, Ti, P, Be). In
addition, the dissolution of foyaite minerals presumably leads to additional enrichment of
the residual hydrothermal solution with potassium, lithium, and manganese. Thus, K2O,
ZrO2, Li2O, MnO, SiO2, and Fe2O3, which are released during the metasomatic alteration
of foyaite, are part of the minerals of pegmatites spatially associated with poikilitic rocks.

Table 2 provides a list of minerals most typical of pegmatites associated with poikilitic
rocks. Indeed, these pegmatites contain a wide variety of titanosilicates of lithium, potas-
sium, and manganese (e.g., lintisite, kupletskite, neptunite), silicates of lithium and potas-
sium (e.g., tainiolite, polylithionite), phosphates and silicophosphates (e.g., belovite-(Ce)
and steenstrupine-(Ce)), REE-rich minerals (e.g., sazhinite-(Ce)) and beryllium (beryllite,
bertrandite).
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It is difficult to assess the PT conditions for the formation of poikilitic rocks because
the rocks are not in equilibrium. It is reasonable to assume that the upper temperature limit
is the temperature of protolith (foyaite) crystallization. According to [54], the foyaite of the
Eudialyte complex crystallized at a temperature of about 550 ◦C. Metasomatic reactions
took place during further cooling after the foyaite crystallization; hence, the poikilitic
rocks crystallized at temperatures below 550 ◦C. The Lovozero massif is considered, based
on geological data, to be a subvolcanic complex [29], and the maximum total pressure
should not exceed 1.5 kbar [14]. The abundance of sulfate-bearing feldspathoids and
absence of primary pyrrhotite at poikilitic rock indicate oxidizing conditions above the
NNO (nickel–nickel oxide) buffer [74].

Poikilitic rocks are important for studying the composition and evolution of fluids
associated with peralkaline rocks. It is known that alkaline massifs, including Lovozero,
are abnormally saturated with molecular hydrogen together with other hydrocarbons
(HCs) of putative abiotic origin [75], but the reasons for the appearance of these gases
are debatable [76]. During the formation of poikilitic rocks, numerous mineral reactions
occur with the participation of elements of variable valence (e.g., the replacement of
magnesio-arfvedsonite with aegirine). Such reactions have been found to be responsible
for the generation of molecular hydrogen [77]. Therefore, further detailed studies of the
mineralogy of poikilitic rocks are very important.

As stated in the Introduction, poikilitic rocks are widespread in other peralkaline
massifs of the world. Khibiny massif consists dominantly of foyaite (about 70% of the
outcrop area) and foidolite (8% of the outcrop area) that intruded into the foyaite massif
along the Main Ring fault [32,78,79]. Poikilitic nepheline syenite, rischorrite (consist of
poikilitic alkali feldspar with nepheline inclusions), commonly occurs between the rocks of
the Main Ring and the foyaite. The researchers believe that rischorrite was formed under
the metasomatic influence of foidolite intrusion on the surrounded foyaite [79,80]. Thus,
the way of formation of rischorrite in the Khibiny massif is very similar to the manner
of formation of the poikilitic rocks in the Lovozero massif. The difference is that in the
Lovozero massif, poikilitic rocks were formed as a result of autometasomatic alteration of
foyaite, and in the Khibiny massif, such rocks were of contact metasomatic origin.

The naujaite (rock consisting of poikilitic alkali feldspar with sodalite inclusions)
of the Ilímaussaq massif has been found to be of magmatic origin. This massif formed
from three melt batches, successively crystallizing the augite syenite, a peralkaline granite,
and various nepheline syenites (roof series) [81]. The roof series crystallized from the
top downwards, forming the succession of pulaskite (nepheline-bearing alkali feldspar
syenite), foyaite, sodalite foyaite, and naujaite. The contacts of these rocks grade into each
other, but blocks of the uppermost rocks were loosened from the temporary roof of the
magma chamber and engulfed by the underlying crystallizing rocks [82].

The formation of a poikilitic texture in peralkaline rocks probably occurs both during
(auto)metasomatism and during magmatic crystallization. However, such a texture appears
at a late stage of magmatic differentiation, when a gradual transition from magmatic melt
to hydrothermal solution occurs.

6. Conclusions

Poikilitic rocks in the Lovozero massif were formed as a result of autometasomatic
alteration (urtitization) of foyaite. There are two stages in this process: nephelinization
+ albitization and vishnevitization + orthoclasization. At the first stage, uneven-grained
nepheline syenite is formed, and at the second stage, poikilitic syenite is crystallized.

During urtitization, Na2O, Al2O3, CaO, MgO, P2O5, REE2O3, and F, S, CO2 are added
and K2O, ZrO2, Li2O, MnO, SiO2, and Fe2O3 are removed.

The reason for the spatial association of pegmatites and poikilitic rocks is that peg-
matites are the final stage of differentiation of the peralkaline melt in path: lujavrite→
foyaite→ urtite (or urtitization of foyaite with formation of poikilitic rocks)→ pegmatite.
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The reason for the abundance of rare elements in pegmatites associated with poikilitic
rocks is that almost only one nepheline is deposited during urtitization, whereas during
the magmatic crystallization of urtite, rare and trace elements form accessory minerals in
the rock and are less concentrated in the residual solution.

Thus, the formation of poikilitic rocks is the pre-pegmatite stage of the peralkaline
process, and its significant role is the additional concentration of trace elements (rare metals)
in the solution, from which pegmatite veins are later formed.
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