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Abstract: Arsenic contamination of the environment is a serious problem threatening the health of
millions of people exposed to arsenic (As) via drinking water and crops grown in contaminated areas.
The remediation of As-contaminated soil and water bodies needs to be sustainable, low-cost and
feasible to apply in the most affected low-to-middle income countries, like India and Bangladesh.
Phytoremediation is an aesthetically appreciable and successful approach that can be used for As
decontamination with use of the best approach(es) and the most promising plant(s). However,
phytoremediation lacks the required speed and sometimes the stress caused by As could diminish
plants’ potential for remediation. To tackle these demerits, we need augment plants’ potential with
appropriate technological methods including microbial and nanoparticles applications and genetic
modification of plants to alleviate the As stress and enhance As accumulation in phytoremediator
plants. The present review discusses the As phytoremediation prospects of soil and water bodies and
the usefulness of various plant systems in terms of high biomass, high As accumulation, bioenergy
potential, and economic utility. The potential and prospects of assisted phytoremediation approaches
are also presented.

Keywords: arsenic; hyperaccumulator; nanoparticles; microorganisms; phytoremediation;
Pteris vittata

1. Introduction

Arsenic (As) contamination of the soil and water is a serious problem in several parts of
the world, especially in South and Southeast Asian countries. It is an issue of concern owing
to the toxic impacts of As on plants and humans and due to the span of the affected areas
being very large [1]. The contamination of As has been caused mainly by biogeochemical
processes in countries in South and Southeast Asia and by industrial and agricultural
processes in European and North American countries [2–4]. The severely affected countries
of South and Southeast Asia are renowned for intensive rice cultivation along with the
dense population [5]. Thus, if even a single well or hand pump is contaminated with As in
an area, a large number of people are affected. Further, rice cultivation is performed for
two seasons or even three seasons in a year with the use of groundwater plus rainwater for
irrigation. Therefore, when the groundwater in the area has As contamination, its use for
irrigation adds a huge amount of As to the soil every year [6,7]. Another important point
to consider is the fact that rice is the best-known accumulator of As among crop plants [8].
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The availability, solubility and toxicity of different forms of As depend on the pH,
ionic conditions, phosphorous and other elemental contents in the environment, whereas
differences in uptake rates contribute to the degree of cellular exposure to arsenic. A
majority of As released into the environment is inorganic and is accumulated by binding to
organic soil matter. In an aerobic environment, mostly the arsenate [As(V)] form predomi-
nates, whereas the arsenite [As(III)] form is predominant in anaerobic conditions. A higher
As(III) contamination in paddy fields due to water logged conditions and the presence of a
potential As(III) accumulator plant, rice, are both of serious concern [9,10].

The problem of As contamination is the need for use of sustainable and low-cost
solutions for the remediation of groundwater and soil [5,11]. There are several physical
and chemical methods for the treatment of contaminated water and soil [12]. The natural
microbial or plant-based approaches are known as bioremediation and phytoremediation,
respectively. These methods are dependent on natural resources (minerals, water and
solar energy) and therefore cost less and do not add any xenobiotics [13]. However, both
methods have merits and limitations. The treatment of huge amounts of water/soil under
in situ conditions by physico-chemical methods would be extremely costly [14], while
the use of plants for this purpose would make the process very slow. In this regard, any
method should have feasibility for application at the site itself, low-cost and be sustainable.
Therefore, future research endeavors will require an optimum integration of physico-
chemical and biological methods for effective sustainable remediation of contaminated
areas.

Plants enhance soil fertility and enrich microorganisms of the soil during the course of
remediation. In addition, the application of economically useful plants in phytoremediation
makes it feasible for farmers to adopt it [15]. Plants with a faster growth rate, high biomass,
and high shoot As accumulation are desirable for phytoremediation [16]. However, it has
been difficult to find all three qualities in one plant. The plants with high As accumulation
in shoots and a short life cycle have been found to have low biomass, while there are
other plants which have high biomass but accumulate As with low efficiency [17]. Further,
some high biomass economically useful plants suffer from As toxicity and cannot grow at
their full potential. To overcome such difficulties, microbial association as a sustainable
strategy has been utilized to enhance the growth and biomass of plants and to enhance
their As accumulation efficiency [18,19]. Currently, the application of nanoparticles has
become an acceptable approach for the reclamation of polluted ecosystems [20–22]. The
concept of nano-phytoremediation technology has been emerging for the removal of
contaminants from soil/water, which involves the application of both nanotechnology and
phytoremediation [23–26]. However, the main challenge in using nanoparticles for the
remediation of pollutants is the lack of an adequate number of reports proving its efficacy.

2. Phytoremediation: A Sustainable Approach

There are various approaches of As phytoremediation that can be utilized judiciously
for remediation of contaminated sites. Various approaches are summarized in Figure 1 and
are discussed below. Recent studies demonstrating the potential of various approaches
have been presented in Table 1.
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Figure 1. Various approaches to arsenic phytoremediation: use of hyperaccumulator plants or native high biomass and
bioenergy plants; intercropping of arsenic accumulator plant with a crop plant for reduced arsenic toxicity to crop plant;
microbe-or nanoparticle-assisted arsenic phytoremediation and the use of genetic engineering approaches to enhance
phytoremediation potential of plants.

Table 1. A summary of recent studies on various phytoremediation approaches.

Plants Arsenic Stress Results Ref.

Arsenic Hyperaccumulator Plants

Landolita punctata As(V) (0.5–3.0 mg/L )

Plants showed As hyperaccumulation
(>1000 mg/kg As) at or more than 1 mg/L
As; however, higher than 1 mg/L As levels

were toxic

[27]

Pteris vittata
As (average 8885 mg/kg) and
thallium (3.91 to 178 mg/kg)

contaminated mining area

Pteris vittata accumulated around
7215–11,110 mg/kg As, and 6.47–111 mg/kg

of thallium
[28]

High Biomass Producing Plants

Calatropis prosera Arsenic given in hydroponic
and soil

C. procera reduced As concentration by 45%
and 58% in hydroponics and by 30% and 36%

in soil, after 15 and 30 days, respectively.
[29]

Portulaca oleracea
As (154 mg/kg and 193 mg/kg
at site-I and site-II); other metals
(Cd, Pb, Cu) were also present

At site I, As accumulation in stem was
around 94.5 mg/kg, whereas at site II, it was

73.6 mg/kg
[30]

Plants with Economic Utiliity

Helianthus annus Farmland soil containing As
(84.85 mg/kg)

The mean As level 49.04 mg/kg in the
above-ground parts. Average seed yield

(45.90 kg/m2) and oil production (34.65%)
[31]

Hydrilla verticillata As(V) (15–375 µg/L) Total As accumulation was 197.2 µg/g dry
weight when As(V) was 375 µg/L [32]
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Table 1. Cont.

Plants Arsenic Stress Results Ref.

Microbe-Assisted Arsenic Remediation

Arundo donax + consortia of two
strains of Stenotrophomonas

maltophilia and one strains of
Agrobacterium sp.

As(III) (2–20 mg/L)
In the presence of bacterial consortium,

11.37 mg/kg As was volatilized by
transpiration

[33]

Alfalfa + Ensifer sp. M14 Soil As(III) (10 mg/kg)
As concentration in leaves of inoculated

plants was 11% higher than those cultivated
without microorganisms.

[34]

Nano-Phytoremediation Approaches

Eucalyptus leaf extract mediated
synthesis iron oxide NPs Arsenic Arsenic adsorption capacity was found to be

39.84 mg/g [35]

Isatis cappadocica + glutathione
modified superparamagnetic iron

oxide NPs {nFe3O4@GSH}
Soil As (1000 µM)

nFe3O4@GSH treatment increased growth of
plants and As tolerance by reducing As

accumulation in plants
[36]

Genetic Engineering Approaches

Arabidopsis thaliana transformed
with bacterial As transporter
(ArsB) targeted to vacuolar

membrane

As(III) (5 µM)
Transgenic plants showed higher As

accumulation in shoots compared to wild
type plants

[37]

Nicotiana tabaccum transformed
with PvPht1;3 from P. vittata

As(V) (20 µM)
Soil As (9.66 mg/kg)

Arsenic accumulation in shoot tissues of
transgenic tobacco increased in both

hydroponic and soil experiments
[38]

2.1. Selection of Plants for Arsenic Phytoremediation
2.1.1. Arsenic Hyperaccumulators

Hyperaccumulator plants can accumulate metal in their shoots beyond a certain
threshold limit, which is 1000 mg/kg for As [39]. Further, the bioaccumulation factor (BF;
indicative of soil to plant metal transfer) and translocation factor (TF; indicative of root
to shoot metal transfer) are also considered while categorizing a plant as a hyperaccu-
mulator [40]. Both BF and TF should be more than one (>1) for an As hyperaccumulator
plant. Hyperaccumulation of As has been observed mostly in fern plants of the Pteris genus
like P. vittata [40], P. longifolia [41], P. quadriaurita, P. cretica, P. ryiunkensis [42], etc. and
Pityrogramma calomelanos [43]. One of the plants from the Brassicaceae family, Isatis cappado-
cica, shows As hyperaccumulation [44]. P. vittata has worldwide distribution from North
America to Europe and Asia and can grow in a wide range of environmental conditions
ranging from temperate to tropical [45].

Arsenic can make up to about 2% of the biomass of P. vittata [40]. P. vittata is a perennial
plant and, therefore, plantation of a field does not need replantation, and harvesting and
collection of fronds is needed at regular intervals. Several studies have focused on the use of
P. vittata for the remediation of As-contaminated soil in laboratory, pot and field studies [46].
Liao et al. [47] found that from soil containing 64 mg/kg As, P. vittata removed 7.8% of
the As in seven months. P. vittata plants showed higher As accumulation when grown
in soil with added phosphate rock than in soil without phosphate rock amendment [48].
Phosphorus addition in the form of phosphate rock induces mobilization of As to some
extent that, in turn, helps to induce As removal by Pteris plants [49,50].

In a pilot-scale study [51], P. vittata was used to minimize As concentration from
drinking water through a continuous phytofiltration system. During the 3 month experi-
mental period, up to 1900 L/day water with an initial As concentration of 10.2 µg/L was
remediated and was found to contain As concentrations as low as 2 µg/L. The fronds of
P. vittata accumulated 66–407 mg/kg As [51]. Groundwater remediation has also been
demonstrated with the use of P. vittata [52]. The authors tested the efficiency of one to
four Pteris plants per container of 30 L and with variable nitrogen and phosphorus supply



Minerals 2021, 11, 936 5 of 16

to remediate groundwater containing 130 µg/L As. The As concentration was reduced
to less than 10 µg/L in 3 weeks with 4 plants while in 4–6 weeks with 1–2 plants. When
fully grown plants with a high root density were reused, one plant per container gave
good results. In a recent study, P. vittata was used in a hydroponic system without any
mechanical aeration. The method used was simple in that the plants were grown with
rhizomes over the water surface and nutrients were given in a low amount for achieving
root proliferation (500 mm root length in four months). From a variable initial water As
concentration of 50 µg/L, 500 µg/L, and 1000 µg/L, Pteris plants could bring down the
concentration to 10 to 0.1 µg/L in 1–5 days, 4–6 days and 8–10 days, respectively [53]. The
results suggest the potential of P. vittata for phytoremediation purposes; however, the use
of P. vittata has been mostly in hydroponics limited to pilot-scale studies. Extension of the
approach to field conditions will necessarily require higher biomass development of large
scale hydroponic systems, large amounts of water for treatment, and maintenance with
optimum nutrient supply and regular cleaning.

2.1.2. High Biomass Plants for Arsenic Cleanup

The remediation of a site in a short time warrants the need of high biomass plants with
moderate to high As accumulation and a short life cycle enabling harvesting followed by
the use of the field for subsequent cropping of the same or other appropriate plants. This
would enable cultivation of phytoremediator crops in a contaminated field throughout the
year in changing weather conditions. Some of the high biomass plants with good potential
for As accumulation include Jatropha curcas [54], shrub willow (Salix spp.), sunflower
(Helianthus annuus) [55] and Indian mustard (Brassica juncea) [56]. In a small field study,
sunflower plants were exposed to different As levels in three soil types (sandy, loamy, and
clayey) and As accumulation was found to vary from 270 mg/kg to 408 mg/kg in roots,
13 mg/kg to 28 mg/kg in stem and 35 mg/kg to 68 mg/kg in leaves in different soil [57].
The application of Salix in phytoremediation has been demonstrated [58]. Invasive plants
like Parthenium hysterophorus can also be successfully used in remediation strategies as they
can grow and cover an area at rapid rates in a wide range of environments and accumulate
metals in high amounts [59]. Favas et al. [60] found Callitriche lusitanica to be a potential
As accumulator with As concentrations reaching up to 2346 mg/kg DW. Other potential
accumulators in higher plants have been identified in lab and field studies, e.g., Isatis
cappadocica [44], Sesuvium portulacastrum [61], and Eclipta alba [62]. Sesuvium is a halophytic
plant with a high tolerance not only to salt but also to a number of metals and showed As
accumulation 155 µg/g dw upon exposure to 1000 µM As(V) in 30 d [61].

The contaminated water bodies may be remediated with the help of high biomass
aquatic plants like Ceratophyllum demersum [63], Hydrilla verticillata [64], Lemna gibba [65],
Lemna minor [66], Azolla caroliniana [67], Pistia stratiotes [68], Salvinia natans [69] and Eichhor-
nia crassipes [70]. Lemna gibba has been demonstrated to accumulate As up to 1022 mg/kg
dry biomass in 21 d from contaminated surface water containing 41.37–47 µg/L As. The
biomass accumulation and As removal potential of L. gibba were found to be as high as
73.6 t/ha/y and 752 kg As/ha/y, respectively [65]. In another study, E. crassipes was found
to accumulate about 498 mg As/kg dry weight from a solution of 0.5 mg/L As in 10 d
with a reduction of initial As concentration by 83% [71]. H. verticillata plants were found
to remove up to 72% of As from 8 L As (1500 ug/L) medium in 45 d with the maximum
As concentration of 388 µg/g dry weight [72]. These plants show fast growth and high
biomass accumulation, can be easily harvested and can reestablish themselves. Aquatic
plants also need very little input for growth and have high tolerance to waste water. The
use of water fern, Mircanthemum umbrosum, in As and Cd remediation was studied by
Islam et al. [73]. The use of emergent aquatic plants like Cyperus vaginatus and Vetiveria
zizanioides has also been demonstrated in phytoremediation studies [74]. With the use of a
high biomass moderate As accumulator, the effective removal of As per year can be higher
than that achieved with a low biomass hyperaccumulator. For example, the calculation of



Minerals 2021, 11, 936 6 of 16

yearly As removal by Sesuvium was found to be as high as 1955 g As/ha/yr at 500 µM As,
which was higher than the calculated As removal by Pteris (525–1470 g As/ha/yr) [61].

2.1.3. Plants with Bioenergy Potential and Economic Utility

Besides plant biomass, the economic value of the plant system such as high value
metabolites, biofuel generation, compost formation, etc. is now considered as one of the
prime criteria for selecting plants for phytoremediation. With such an approach, farmers
can move from normal cropping patterns to phytoremediator plants [17,75]. Plant-based
waste material can also be successfully reutilized in remediation projects. This approach
not only handles the problem of plant waste utilization at one end but also remediates
the contaminated site on the other. Rice husk, mustard husk, coconut coir waste, crop
straw, etc. are some of the examples of materials derived from plant materials that can
act as biosorbents and remediators of As and can sustain soil fertility and reduce As
accumulation in crop plants [76]. The potential of aquatic plants can also be used with
judicious controlled and proper management of generated biomass with biodiesel, biogas,
biochar, or compost preparation [77,78]. Biochar has emerged as one of the most potential
plant based materials that have a number of functional groups (hydroxyl, carboxyl, etc.),
making it an excellent binder of metals and therefore its application in soil reduces As
stress to crop plants. Further, the use of biochar has also been demonstrated in water
filtration [79]. Zhu et al. [80] designed a biochar plus periphyton-based system for the
removal of As from the wastewater. The first phase of the column contained biochar
that removed up to 60% of As(III) from wastewater (containing 2 mg/L As(III); flow rate
1 mL/min) while subsequent a periphyton bioreactor enhanced As removal efficiency up
to 90–95%.

2.2. Promising Approaches for Augmenting Arsenic Remediation by Plants
2.2.1. Microbe-Assisted Arsenic Phytoremediation

Even with the selection of an appropriate hyperaccumulator plant or a high biomass
economically useful plant depending on the features of the site for As phytoremedia-
tion, it is desirable to further augment plants’ remediation potential and growth so as
to make remediation more lucrative and feasible. Plant associated microbiota and their
synergetic interaction can be an effective strategy and is referred to as phytobial remedia-
tion [81]. There are successful examples of microbe-assisted enhanced phytoremediation
efficiency for As [82,83]. There are certain crucial considerations like root colonization,
survival, growth and competition with other pathogenic microbes and stimulation of plant
growth. Microbial communities through their mutualistic association, either as free living,
root symbiont or endophyte [84,85], produce certain metabolites which augment plant
growth, alleviate stress and participate in As remediation [82,86]. Plant growth is promoted
through the production of plant growth hormones and nutrient absorption is improved
by siderophores [87–90]. In a study on isolation of As-resistant plant growth promoting
microbes (PGPMs), Microbacterium sp. strain SZ1 from As-bearing gold ores was shown
to be useful for phytobial remediation as the bacterial genome had the necessary genes
responsible for siderophore production [91]. From a contaminated site in Spain, Moens
et al. [92] reported reduced As toxicity on plant growth with concomitant lower As accumu-
lation in rice plants by inoculating Ochrobactrum tritici As5 to the plant’s rhizosphere. The
As-resistant bacteria (Pseudomonas gessardii and Brevundimonas intermedia) and As-resistant
fungi (Fimetariella rabenhortii and Hormonem aviticola) isolated from the Puchuncaví valley
in Chile exhibited higher plant growth-promoting properties and good As remediation
properties in soil cultivated with wheat [93].

In an interesting three year field study, Yang et al. [94] demonstrated that rhizobacteria
(Pseudomonas vancouverensis strain m318) mediated As(III) to As(V) conversion, and efficient
As phytoextraction. Treatment with rhizobacteria enhanced fern biomass, As accumulation,
and As removal (<10 mg kg−1) in the soil, suggesting that in a span of three cycles of
fern growth, a clean field could be achieved. Awasthi et al. [86] studied the prospects of
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using a consortium of rhizobacteria (Pseudomonas putida) and alga (Chlorella vulgaris) for
ameliorating As toxicity through measurements of growth and As uptake. An estimated
79–82% drop in As accumulation in rice was shown, suggesting the usefulness of the
approach. Using isolates from the mangrove rhizosphere of Sundarban, Mallick et al. [95]
applied two As-resistant halophilic bacteria, Kocuria flava AB402 and Bacillus vietnamensis
AB403, for growth promotion and As remediation. Both bacteria showed up to a 52%
reduction in As accumulation in the roots and shoots of rice seedlings.

Arbuscular mycorrhiza (AM), belonging to symbiotic fungi, have the remarkable fea-
ture of positively influencing plant growth and stress tolerance [96]. Plant-AM association
has been studied and several reports have demonstrated AM application for alleviating
heavy metal contamination [97,98] via mechanisms, which include converting inorganic
As to less toxic forms and enhancing plant biomass [99,100], increased uptake of metals
through metal transporters and activation of genes related to signaling and detoxification
pathways [101,102]. AM has been shown to have good potential for reclamation of aban-
doned fly-ash containing heavy metals such as As, lead, cadmium and mercury [103]. In a
study with the application of Glomus mosseae BEG167, Xu et al. [104] found higher phospho-
rous (P) accumulation and reduced As in Medicago truncatula grown in soils supplemented
with As (10–200 mg/kg). AM-mediated As toxicity alleviation has also been demonstrated
in tomato [105], ryegrass and clover [106].

2.2.2. Intercropping and Co-Cultivation Methods

Intercropping is a common agricultural practice in which two different crops are
grown together to improve soil conditions for plant growth, improved nutrient availability
and soil enzyme activity [107]. The intercropping of As hyperaccumulator P. vittata with As
sensitive and non-accumulator plants has been tested in order to reduce As contamination
of the field and to mitigate As stress on the other plants. The intercropping of P. vittata
and Panax notoginseng, two economically useful plants, was studied by Lin et al. [108]. It
was observed that As concentrations in the rhizosphere of Panax plants were reduced. The
intercropping of P. vittata with Morus alba was also found to reduce As levels in Morus alba
plants due to significant As removal by Pteris plants [109]. The intercropping of P. vittata
with maize (Zea mays) plants has also been studied [110] and the two plants were grown
in both coordinate and malposed intercropping. It was found that level of Fe-hydroxides-
associated As were lower in soil layers (10–20 cm and 20–30 cm) while As accumulation in P.
vittata was higher in malposed intercropping than in coordinate intercropping. The rate of
As removal was 2.4-fold higher in malposed than in coordinate intercropping. Maize grains
showed lower As concentration in grains, within the suggested maximum contaminant
limit, during malposed intercropping [110].

The roots of different intercropped plants may concentrate in different zones from the
top layer to a few centimeters’ deep. Correspondingly, As distribution also varies sharply
in different layers of soil by a few centimeters (0–40 cm) [111]. Therefore, intercropping
of Pteris with other cash crops/economically important crops can give interesting results.
However, it has been considered as the best approach to remediate and use the field
for economic gain at the same time [109,112,113]. If the harvesting of P. vittata can be
managed in a timely manner along with management of fallen leaves and shoot tissues
(not to be used) of intercropped cash crops, this strategy can effectively remediate the
As-contaminated sites along with economic gains to the landowner [110]. Ye et al. [114]
studied co-cultivation of P. vittata with rice and found that As removal by Pteris reduced
the As level in rice with a significant decline in DMA content.

The combination or sequential use of aquatic plants has been found to enhance As
removal from a medium in a given time frame as compared to that of a single plant. The
successive application of three aquatic plants, Lemna, Hydrilla, and Ceratophyllum, for As
removal was tested. The medium used contained 2500 µg/L As, and plants were used
in succession for a total of 21 days with 7 days allocated for each plant. The study found
reported the maximum As removal (27% in 21 d) when Hydrilla-Cerotophyllum-Lemna
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succession was used [115]. In a combination approach used by Srivastava et al. [116],
the combination of Ceratophyllum demersum and Lemna minor achieved the maximum As
removal (4365 µg) in 30 d from an As supplemented medium (2500 µg/L).

2.2.3. Nanotechnological Approaches to Enhance Phytoremediation

Nano-phytoremediation is an emerging strategy that has shown the potential to
enhance plants’ ability to grow in a polluted stressful environment and accumulate As
in plant tissues. Fabrication of effective and eco-friendly nanoparticles for successful
application in managing widespread contamination of hazardous metalloids has received
much attention [117]. Nanoparticles (NPs) may increase the plant’s stress tolerance to
increase phytoremediation as well as help in the alleviation of toxicity [118,119]. Nano-
phytoremediation can effectively remediate the polluted soils/water using those plants
that possess high efficiency for NPs/metal uptake [26,120,121], and can be used as an
alternative solution for As phytoremediation (Figure 2).
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Application of nanoparticles for the management of contaminated agricultural lands
and improvement of plant growth and developments has shown significant prospects [26].
In this context, it was shown that nanostructured silicon dioxide can act as a potential agent
that can improve the phytoremediation process to attain the desired outcomes [24,122].
Similarly, the NPs of aluminum oxide (nAl2O3) can be used in phytoremediation as they
did not exert any toxicity consequences in Arabidopsis thaliana up to 4000 mg/L [123].

It was noted that the nanoscale zero-valent iron was widely used to facilitate the
phytoremediation process [124]. It was found that the use of salicylic acid-based NPs
enhances As remediation by Isatis cappadocica [125] while the use of nano-Zn improved As
stabilization by Helianthus annuus [126]. A review summarized that the composites of nano
titanium (Ti) such as Zr-TiO2 and TiO2-αFe2O3Ce-Ti oxide are frequently used to treat
As-contaminated water [127]. The application of TiO2, Si NPs and Au NPs has been found
to counteract the toxic effects of different metals in Zea mays [128], Glycine max [129] and
Oryza sativa [130], respectively. The application of fullerene nanoparticles could stimulate
the phytoavailability of soil contaminants [124].
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The application of NPs not only enhances the phytoremediation capability of As,
but also reduces the bioaccumulation of As in crops. Recent research showed that the
application of 1000 mg/L nano-TiO2 reduced As accumulation in rice by 40–90% [131], and
in Vigna radiata nano-TiO2 reduced As phytotoxicity at the rate of 4000 mg/L [132]. The
amendment of ZnO increased the growth of rice seedlings, reduced accumulation of As
in roots and shoots, and saw a rise in phytochelatin level [133]. Noteworthy advances in
nano-phytoremediation could form a basis for the development of non-toxic, cost-effective,
and environmentally sustainable technologies for phytoremediation of As from various
environmental matrices.

2.2.4. Genetic Engineering for Improving Arsenic Phytoremediation

The potential mitigation strategies for reducing the As burden involve As efflux and
its sequestration in intracellular compartment [134]. Strategies for developing genetically
engineered plants for As phytoremediation encompass increased uptake of As by roots, en-
hanced translocation of As from root to shoot including xylem loading, arsenate reduction,
vacuolar sequestration and enhanced tolerance to As [135,136].

As(V) and As(III) uptake and transport are mediated by phosphate transporters (PHTs)
and members of membrane intrinsic proteins (MIPs), respectively [137,138]. Thus, for
designing a phytoremediation strategy, a high biomass crop can be genetically engineered
by overexpression of the candidate MIP genes, particularly NIP3;1, NIP7;1, PIPs, Lsi2 and
PvTIP4;1, which could increase As uptake and translocation and lead to enhanced As
accumulation in genetically engineered plants. P. vittata showed increased As(V) uptake
due to the increased expression of PvPHT1;3 (a phosphate transporter) and higher affinity
for As(V) over phosphate [139,140]. In P. vittata, As(III) is primarily sequestered into the
vacuole by PvACR3 (Arsenic Compound Resistant 3), an arsenite effluxer localized the
in plasma membrane of gametophyte, and its homolog is absent in angiosperm [141].
Interestingly, over-expression of PvACR3 in Arabidopsis enhances As translocation in
shoots [142], which could be a potential strategy for developing As-hyperaccumulating
plants. A. thaliana was converted into an As hyperaccumulator by heterologous expression
of PvACR3 in athac1 (arsenate reductase) mutant [143], and the same strategy could be
tested in fast growing high biomass crop plants for efficient phytoextraction.

To mitigate As-induced stress to plants so as to enhance their As accumulation, redox
transformation of As(V) and As(III), and further methylation of organic As species, can be
targeted. The pioneering research on the development of a transgenic Arabidopsis plant for
As phytoremediation involved stacking two bacterial genes by overexpression of arsenate
reductase (arsC) in shoots and constitutive expression of γ-glutamylcysteinesynthetase
(γ-ECS), which resulted in enhanced tolerance and higher As accumulation in the double
transgenic plant [144]. Arsenate reductase (AtACR2) knock down lines of Arabidopsis
resulted in enhanced translocation of As from roots to shoots [145].

However, transgenic lines generated with heterologous expression of Arabidosp-
sis AtACR2 in tobacco were more tolerant to As, but accumulated reduced As level in
shoots [146], which suggested that the identification of the ACR2 gene from high biomass
crop plants is a potential candidate, and its knock down/knock out by a gene editing
approach can be a promising tool for developing genetically engineered plants for phy-
toremediation. Recently, two novel arsenate reductases (PvHAC1 and PvHAC2) from
P. vittata were isolated, where PvHAC1 was expressed in the rhizomes, while PvHAC2 was
expressed in the fronds and played a crucial role in As hyperaccumulation [147]. Therefore,
heterologous expression of the phosphate transporter (PvPHT1;3) and arsenate reductase
(PvHAC1/2) in a high biomass crop plant can be utilized as a potential strategy for efficient
phytoextraction of As. In a recent report regarding As stress, RNA-seq analysis of P. vit-
tata identified three upregulated genes viz. glyceradehyde 3-phosphate dehydrogenase
(PvGAPC1), organic cation transporter 4 (PvOCT4), glutathione S-transferase (PvGSTF1)
and RNAi demonstrated that the identified genes are essential for As tolerance. PvGAPC1
converts As(V) to 1-arseno-3-phosphoglyerate (1-As-3-PG), PvOCT4 transports 1-As-3-PG



Minerals 2021, 11, 936 10 of 16

into the vesicle and PvGSTF1 acts as arsenate reductase, which sequestered (AsIII) into
vesicles and moved it long distances for storage [148]. These genes can be utilized in
genetically modified plants for phytoremediation after proper and thorough investigation
of the pathways involved.

3. Conclusions and Future Directions

Arsenic contamination in the ecosystem has created serious environmental concerns
due to the toxicity and carcinogenicity of this metalloid. In light of this, research and
development efforts have been made for As remediation from soil and water sources
through sustainable biostrategies which are environmentally friendly and easy to adopt in
contaminated sites. The available options include ‘phytoremediation’ involving exploita-
tion of plant species with high As-hyperaccumulating efficiency and a good biomass and
bioprospecting potential. Based on the mechanistic view of As uptake, metabolism and
transport and identification of novel candidate genes, biotechnological methods have been
refined to genetically manipulate plants for enhancing the efficiency of phytoremediation
and reducing the As load in crop plants. The application of plant growth promoting
microorganisms and nanoparticles has immense potential for managing As contamina-
tion in plants and in the ecosystem. Extensive studies should be conducted to realize
the prospects of microbe-/nano-assisted phytoremediation for the decontamination of As
polluted soils/water. However, various approaches of phytoremediation have some merits
and limitations (Table 2) and, therefore, future research must be focused on integration of
different methods, suitably at a site so as to enhance the phytoremediation potential and
speed up the process in addition to providing economic benefits to the landowner.

Table 2. Merits and limitations of various phytoremediation approaches.

Merits Limitations

Arsenic Hyperaccumulator Plants

Owing to As hyperaccumulation, large amount of As is
concentrated in above-ground harvestable tissues

The biomass of hyperaccumulator plants is generally low and
hence, total As removed in one cycle/harvest is low

Hyperaccumulator plants do not need much care and additional
inputs for sustaining their growth

The habitat of hyperaccumulator plants may be limited and
their application may not be practiced in all environment

High Biomass Producing Plants

High biomass of plants allows large As removal in a single crop For sustained growth of high biomass plants, additional
nutrient (fertilizer) inputs and efforts may be required.

Native high biomass plants may be chosen to avoid habitat
related issues

Native plants may be preferable feed for native wild/pet
animals and may therefore pose risk

Plants with Economic Utiliity

Plants with economic utility like oil-seed plants which restrict
As accumulation in oil would allow farmers to dedicate fields

for phytoremediation

For such plants also, animal consumption of leaves and shoot
portion of plants must be avoided

Plants may find applications for bioenergy, biofuel and
biochar preparation

The research on practical utility and problems is limited;
volatile nature of some As species may be of concern

Microbe-Assisted Arsenic Remediation

Arsenic tolerant and plant growth promoting microorganisms
may enhace plants potential for As removal per crop cycle

Microbial supplementation might interfere with natural
microbiome of plants and soil and thus, it still needs research

Nano-Phytoremediation Approaches

NPs mediated plant growth improvement and increased As
bioavilability would enhance As removal per crop cycle The accumualtion of NPs may intself cause toxicity to plants

Genetic Engineering Approaches

Genetic modification of plants as per the need would allow the
generation of high biomass superhyperaccumulators of

economic utilizability and would allow
speedy phytoremediation

The issues related to approval and public acceptance of
genetically modified plants are of concern
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