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Abstract: Interactions between particles and bubbles have been cornerstone for the successful
applications of froth flotation to the beneficiations of minerals or coal. Particle-bubble interactions
are highly physio-chemical processes on the basis of surface science and hydrodynamics. Though
these two aspects are deeply interwoven, we focus on the discussions of the effects of turbulence
on the interactions between particles and bubbles, i.e., collision, attachment and detachment. It
has to be mentioned this effect is not working in one direction and can affect flotation performance
in a complicated way. Only when turbulence effects are well understood, flotation processes can
be optimised by suitably changing equipment structure or operating parameters. The aim of this
paper is to review the most recent progresses in this aspect and to identify the future development in
successfully considering turbulence effects on flotation processes.

Keywords: flotation; turbulence effects; bubble-particle collision; attachment; detachment

1. Introduction

Froth flotation is an important operation for the recovery of valuable minerals in
the mining industry. The essence of flotation processes lies in the interactions between
particles and bubbles, which can be categorized into three successive sub-processes which
are bubble-particle collision, attachment and detachment [1,2]. These three sub-processes
determine the overall performance of flotation processes for treating a particular ore. There
are limitations of flotation operation in treating particles of different sizes [3,4]. This size
limitation can be varied for different type of ores and flotation works well for particles
of base metal ores in the range 20 to 150 µm in diameter [5]. Recovery of fine and coarse
particles declines progressively and underlying reasons are different depending particle
size [6].

Fine particles with small inertia will more likely follow streamline and therefore have
lower chance of colliding with a bubble [7,8]. Though this is not a problem for coarse
particle flotation, coarse particles with higher inertia would more likely detach with mod-
est disturbances from surrounding liquid motion [9]. Therefore, studying interactions
between particles and bubbles are fundamental to improve flotation performance. It is
unavoidable that fine particles are produced in the grinding processes for the beneficiation
of minerals [10]. Moreover, it is desirable to treat coarse particles using flotation for the
early rejection of gangue as large amount of energy can be saved in the comminution pro-
cesses [11]. It is highly necessary for studying particle-bubble interactions under the effects
of turbulent flows as they are limiting factors in determining flotation performance [12,13].

Studies have been directed towards expanding size limit [14,15] and manipulating
particle-bubble capture [16]. Studying particle-bubble interactions in turbulence is key to
expand size limit and improve flotation performance. We have done a systematic endeavor
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to understand the effects of turbulence, especially on particle-bubble collision and particle
detachment. Critical literature reviews on separate sub-processes have been presented on
particle-bubble collisions [17,18], attachment [19–21] and detachment [22]. It is desirable to
combine these three sub-processes together and consider the effects of turbulence on the
flotation process as a whole. The effects of turbulence on the particle-bubble interactions in
general is considered to be a stochastic process [23]. It can be attributed to the dynamic
interactions between particles or bubbles with the turbulent eddies in flotation environment.
On one side, hydrodynamics in flotation machines need to be characterized [24], and on
the other side, how turbulence control sub-processes in flotation machines should be
examined [13]. In this way, hydrodynamics in flotation machines can be optimized to
improve flotation performance [24]. Though some classical work in old days have been
cited, we aim to collect literature in this century.

This work is intended to explore the effects of turbulence on the particle-bubble
interactions. Especially most recent numerical and experimental work from our group will
be summarized in regarding to the effects of turbulent on particle-bubble collision and the
detachment of particles from the surfaces of bubbles. Emphasis will be directed towards in
depth analysis of the turbulence effects on the whole flotation process.

2. Particle-Bubble Collision, Attachment and Detachment
2.1. Effects of Turbulence on Collision

Due to the limitations of current experimental techniques for studying particle-bubble
collisions in turbulent flows, to the best of authors’ knowledge, there is no experimen-
tal work reported on the collisions between particles and bubbles in turbulent flotation
processes. Simplified experiments were designed to study particle-bubble collision effi-
ciency where single bubbles rose in the quiescent slurry [25,26]. Single bubble flotation
experiments were designed to study. Particles were considered to stay attached to bubbles
upon collision and collision efficiency could be represented by particle collection efficiency.
Particle-bubble collision was directly observed using a high-speed camera [27–30]. Colli-
sions were represented by direct observations of the falling particles around a positioned
bubble. It should be mentioned that these experimental studies did not consider the effects
of turbulence on particle-bubble collisions.

Most work on particle-bubble collisions in flotation processes are theoretical analyses
or numerical simulations. Various models were developed to calculate particle-bubble
collision efficiency and a comprehensive summary can be found in [23,31]. It has to be
mentioned that various simplifications and assumptions were made in particle-bubble
collision models. Most models assumed particles settled and bubbles rose in a quiescent
environment. When a particle encounters a bubble, the particle was considered to follow
the streamlines of fluid around the bubble, which was assumed as potential flow or Stokes
flow. Most particle-bubble collision models did not account for the effect of turbulent flows.
Nevertheless, the effects of turbulence could surpass gravity effects on particle-bubble
collisions [32].Nguyen et al. [23] adopted a stochastic modelling approach to consider the
effects of turbulence on particle-bubble collision interactions. The stochastic particle-bubble
collisions were accounted by correlating motions of particles and bubbles in turbulent flows.
They were grouped into either strong correlation or non-correlation. The turbulent collision
models by Saffman and Turner [33] and Abrahamson [34] were used to describe turbulent
collisions with strong and negligible correlation, respectively. This provides an approach
to account for the effects of turbulence on particle-bubble collisions. Nevertheless, mineral
particles and bubbles respond to the same turbulent flow in a different way [35]. More
discussions should be concentrating on clarifying size effects of turbulent flow structures
on particles and bubbles. This is highly dependent on the turbulent characteristics and
turbulence intensity in flotation machines. Moreover, the effects of distributions of particles
and bubbles on the particle-bubble collisions were not discussed in previous studies.

Most recent studies used computational fluid dynamics (CFD) to study the effect of
turbulence on collision efficiency in flotation [36–38]. A single bubble was considered either
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rise at constant velocity or stationary. The Reynolds averaged Navier–Stokes (RANS) model
was used to simulate turbulence. Note that this model cannot simulate small turbulent
flow structures in the scale of bubbles or particles. To study the effect of turbulence on
the collisions between particles, a direct numerical simulation (DNS) model was built in
our group [39,40]. Collisions between a group of particles and bubbles were studied in a
forced homogeneous isotropic turbulence (HIT) as is shown in Figure 1. The turbulence
intensity of this background flow was modulated in terms of turbulent energy dissipation
rate. Due to most collision models were developed for quiescent liquid, collisions between
particles and bubbles in quiescent liquid were simulated and compared to the predictions
calculated using widely accept collision models [40]. Results showed collision efficiency
as a function of particle diameter and bubble diameter. The collision efficiency between
particles and bubbles decreased with increasing bubble diameter and increased with
increasing particle diameter, which was in accordance with the general trends of model
predictions. In the study of particle-bubble collisions in HIT turbulence, the effects of
preferential concentration of particles and bubbles on collision were studied. The collision
kernel was found to increase with turbulent dissipation rate as is shown in Figure 2. This
was due to the increase of increasing radial relative velocity in more turbulent flows. The
effects of preferential concentrations on the particle-bubble collision kernel were ineffective
compared to the effects of radial relative velocity.
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Figure 1. Particles (green dots) and bubbles (blue dots) in a homogeneous isotropic turbulence
characterized by 3D vorticity field [40].

Particles and bubbles were considered to be point particles in the above simulations.
This will not hold for higher turbulent flows where bubbles and particles will be larger than
small turbulent structures. The model was further improved by replacing point-particle
model with particle-resolved simulations [41,42]. The dynamic collision kernels and
kinematic collision kernels increased with turbulent dissipation rate. This observation was
identical to our previous simulations using point-particle method. It has to be mentioned
that these simulations considered turbulence as homogeneous and isotropic, whereas
in real flotation machines, turbulence can be much more complicated. Direct numerical
simulations of real flotation machines have not been achieved yet. Moreover, particle-
resolved DNS consumes enormous computational cost. Though it can fully represent
interactions between turbulent structures and dispersed particles or bubbles, the simulation
domain is only dozens of millimetres which is anything but close to real flotation machines.
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2.2. Effects of Turbulence on Attachment

Particle-bubble attachment is characterised by three elementary steps and they are
thinning of intervening liquid film to a critical thickness, rupture of critical film and
formation of a stable wetting perimeter with the expansion of three-phase contact [20].
Induction time was defined as the time required for above whole process to occur [43],
whereas, Albijanic et al. [19] considered induction time as the time of thinning intervening
liquid film to a critical thickness. Though there is disagreement on the definition of
induction time, it is widely accepted that particle-bubble attachment occurs only when
contact time is longer than the induction time. Major parameters affecting particle-bubble
attachment are solution chemistry and surfactants, surface chemistry of minerals, and
surface forces [44]. The effects of turbulence on attachment process are overlooked or
rarely discussed.

The classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, combining van der
Waals attraction and the electrostatic double layer, has been widely used to describe surface
forces between particles. When considering the interaction forces between a particle and a
bubble, the hydrophobic force is the major driving force for particle-bubble attachment [45].
The extended DLVO theory (XDLVO) was used to interpret the particle-bubble interactions
for the calculation of the flotation probabilities [46]. In flotation processes, high intensity
conditioning can be used to treat pulp in improve flotation efficiency [47]. The mechanism
of coating removal due to high shear flow has been well studied. It was reported that
high intensity conditioning could remove the clay coatings and the oxidation layers on
mineral surfaces, promoting the adsorption of the collector [47–49]. The SEM-EDS analysis
confirmed that the impact flow could remove the coating covering the coal surface and
improve the separation performance of coal from gangue [50]. Intensive turbulence could
remove coatings on the particle surface and enhance the adsorption of collector, therefore
hydrophobicity and floatability could be substantially improved, which is beneficial to
following flotation operations [50]. This could be explained that turbulence is used to
increase particle’s hydrophobicity, which would enhance thinning of the intervening film
in attaching process. Different techniques have been developed to measure the forces
and the thin liquid film drainage in the process of particle-bubble attachment [44]. But
it has to be mentioned that these measurements rarely consider the effects of turbulence.
Only Zhang et al. [51] considered the effects of approaching velocity on the thin liquid
film drainage. It was found that the approaching velocity played a significant role in the
hydrodynamic pressure and fluid flow within the draining film. In real flotation processes,
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the effects of turbulence on approaching velocity of a particle or a bubble could work in a
more complicated way.

The effects of turbulence on particle-bubble attachment could be illustrated from an-
other perspective. Existing studies consider the fluid motionless surrounding an attaching
particle-bubble couplet. In real cases, surrounding fluids are highly turbulent and could
bring attaching particle-bubble couplet apart by high-frequency fluctuations. This results
in shorter contact time, which is insufficient for attachment to occur. Unfortunately, these
situations cannot be considered in existing experimental techniques. Thus, future work in
this area should aim to combine together the effects of surface chemistry and turbulence.

2.3. Effects of Turbulence on Detachment

A comprehensive literature review on the detachment of a particle from the surface
of a bubble can be found in [22], where previous studies on the bubble-particle aggregate
stability have been critically analysed. The effects of turbulence on the detachment of
a particle from the surface of a bubble can be analysed in two perspectives, i.e., force
and energy. Schulze [52,53] considered that rotating turbulent eddies interacted with the
bubble-particle aggregate in a way that a particle would rotate on the surface of a bubble
when the bubble-particle aggregate was trapped in a rotating eddy. The particle would
detach when the centrifugal force originated from particle’s centrifugal movement is higher
than attaching force. Mao and Yoon [54] considered this process from energy perspective
and kinetic energy required for detachment to occur was provided by turbulent eddies.
There are discrepancies in the sources of turbulent kinetic energy from turbulent structures
of different scales [55]. It is noted that exponential distribution function (Table 1) was used
in these models to describe particle detachment probability. Researchers seem to accept
this without further interrogation and the rationale behind this still remains obscure.

Table 1. Exponential distribution function to describe particle detachment probability.

Model Equation Model Type Comments

Schulze (1993) [56] Pd = exp
{

1− 6σsin2(θ/2)
dp2(g∆ρ + ρPbm) − dPσcos2(θ/2)

}
Force balance Particle rotation

Hui (2001) [57] Pd = exp
(
− σ(1 − cos θ)dB

1/3

14.8dp2∆ρε2/3

)
Force balance Bubble oscillation

Nguyen and Schulze
(2004) [58]

Pd = exp
(

1− 3σ(1 − cos θA)
4Rp2(g + bm)∆ρ

)
, ∆θ ≤ θR

Pd = exp
(

1− 3σ sin θR sin(∆θ)
4Rp2(g + bm)∆ρ

)
, ∆θ ≥ θR

Force balance Particle rotation

Nguyen and Schulze
(2004) [58]

Pd = exp
(

1− 3σ(1 − cos θA) sin(∆θ/2)
0.26πρl Rp

√
εν

)
, ∆θ ≤ θR

Pd = exp
(

1− σ sin θR sin(∆θ) sin(∆θ/2)
0.13πρl Rp

√
εν

)
, ∆θ ≥ θR

Force balance Shear force

Goel and Jameson
(2012) [9] Pd = exp

(
1− 6σsin2(θ/2)

3.75dp2ρpε2/3/dB1/3

)
Force balance Particle rotation

Jameson et al. (2007) [59] Pd = exp
(

1− 2.34σ6/5(1 − cos θ)
dp2∆ρε4/5ρl

1/5

)
, ∆θ ≤ θR

Pd = exp
(

1− 1.17σ6/5 sin θR sin(∆θ)
dp2∆ρε4/5ρl

1/5

)
, ∆θ ≥ θR

Empirical
formula

Energy dissipation rate
is required

Yoon and Mao (1996) [60] Pd = exp
(
− σπRp2(1 − cos θ)2 + E1

ρgRB
2θ0

3 πRp2 sin2 θ

)
Energy supply Steady case

Sherrell (2004) [61] Pd = exp
(
− σπRp2(1 − cos θ)2

1
2 (mp + mb)(Rimpω)

2

)
Energy supply Limited to stirred tank

Nguyen and Schulze
(2004) [58]

Pd = exp
(

1− 3σ(1 − cos θ)2 × C
2RP∆ρ(∆V)2

)
C = 1

4 ln 2L/RP/ sin(θ/2)
eγcos2(θ/4) +

13 + 16 cos(θ/2) + 7 cos θ
64cos4(θ/4)

Energy supply General shear flow

Do (2010) [62] Pd = exp
(
− σπRp2(1 − cos θ)2

1
2 mp((dp + db)

√
ε/ν)

2

)
Energy supply General shear flow

Wang (2014) [55] Pd = exp
(
− 8σπRp2(1 − cos θ)2

cρl ε2/3dp11/3

)
Energy supply Isotropic turbulence

These models are hypothetical in accounting the effects of turbulence on the particle
detachment. To unveil the turbulence effects, we developed a series of experiments to
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characterize turbulence and capture detachment process simultaneously. As the movement
of a particle-bubble aggregate is random and chaotic in turbulence, it is difficult to capture
a freely detaching process using a high-speed camera. We simplified this problem by
positioning a solid object and used PIV to characterize turbulence bubble detachment from
a cylinder [63] and a sphere [64], as is shown in Figure 3. The flow was very unsteady
around the bubble–particle aggregate and discrete wavelet transform (DWT) was used
to analyse the contributions of turbulent structures of different scales. The detachment
appeared to be a dynamic process. On one hand, instantaneous turbulent velocity field
changed dynamically around the detaching couplet. On the other hand, the property of
a particle-bubble aggregate changed in the turbulent field. This was characterised by the
length of three phase contact [65] and changing dynamic contact angle [66]. The endeavour
to find a critical flow information seemed to be in vain as history effect could come into
play in the detaching process. It is considered that a particle-bubble couplet experiences
disturbances from surrounding turbulent fluid, causing a retraction of three phase contact
line. This means less attaching force in stabilization the couplet. The particle can detach
from the bubble surface with minor contributions from an instantaneous velocity field
which turns into the straw that broke the camel’s back.
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To view the detachment of a freely moving particle-bubble aggregate in a turbulent
flow, an experimental apparatus as depicted schematically in Figure 4 was designed, where
the movement of aggregates were confined in a wall cavity. Large eddy simulation (LES)
was used to simulate turbulent flow fields and turbulence was shown inhomogeneous
inside the cavity [67]. For the first time, the hypothesis of particle’s centrifugal movement
proposed by Schulze [68] was experimentally observed. By tracking the movement of a
particle, the rotational speed could reach as high as 200 cycles per second in the rotating
vortex, as is shown in Figure 5. A number of different detachment mechanisms were
identified, including inertial detachment due to the rapid changes in bubble movement, or
because of the oscillations of the bubble’s surface [35]. When a bubble was loaded with
more than one particle, behaviour of attached particles could become more complicated [35].
It seems impossible to model precisely the series of events that take place in the detachment
process, as the particle-bubble detachment in the turbulent field is a stochastic process.
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3. Discussions and Recommendations for Further Work

Though studies of turbulence affecting particle-attachment have been lacking, the roles
of turbulence on particle-bubble collision and detachment have been widely accepted. In-
creasing turbulence intensity is beneficial to particle-bubble collision and causing attached
particles to detach from bubbles. This counter acting effect means different approaches
in modulating hydrodynamics for fine and coarse particles. For fine particles, different
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methods, such as shockwave by passing a mixture of pulp and air through a chock at
high speed [71] and vortex generator [72,73], were used to strengthen turbulence for the
flotation of fine particles. When floating coarse particles, a fluidized bed flotation cell
was used to generate a relatively gentle flow environment [5,71]. In traditional flotation
machines, packing medium was installed in the upper part of a flotation column to in-
crease flotation performance [74–76]. By changing the internal configurations, the flotation
column was separated into two parts, where the lower part is turbulent intensive which is
beneficial to particle-bubble collision and the upper part has mild flow condition which
is favourable to stabilizing attached particles. With good understandings of the effects of
turbulence on particle-bubble interactions, flotation processes could be designed based on
the energy distribution [77]. By optimizing cell hydrodynamics, flotation efficiency could
be improved [78], and the interactions between liquid-solid, gas-liquid and gas-solid could
be intensified [12].

Turbulence is an important parameter in flotation, not only by changing interactions
between particles and bubbles, but also it has many other functions. Turbulence can affect
the adsorption of surfactants, determine bubble breakage and coalescence, bubble size
distribution and suspend particles. The effects of turbulence on flotation is generally
represented by turbulent dissipation rate. Measuring turbulence in a bubble-particle-
liquid three phase flotation system represents the utmost challenge for quantifying the
effects of turbulence on flotation [79]. Moreover, the accuracy of turbulent dissipation
rate is largely determined by measurements resolution [80,81]. These factors lead to
difficulties in measuring turbulence around interacting particles and bubbles. Without
accurate measurements of turbulence in flotation processes, the effects of turbulence on
particle-bubble interactions cannot be explicitly determined. Researchers have studied
the effects of turbulence on flotation performance as a whole by modulating energy input
into the flotation cell [82–85]. Considering the difficulties of measuring turbulence in
a three-phase flow system, CFD modelling have been served as a versatile method for
studying the effects of turbulence on flotation processes [86]. It should be mentioned
that most CFD studies considered the effects of turbulence on particle-bubble interactions
by incorporating existing collision, attachment and detachment models. Whereas, these
models do not fully represent the effects of turbulence on particle-bubble interactions.
This dilemma could be solved if interactions between particles, bubbles and turbulent
flows could be directly simulated. However, computational cost would be unaffordable
and current CFD simulations could provide valuable information on modifications of
internal configurations. As is shown in Figure 6, net attachment rates could be plotted
across a stirred flotation cell [87]. This was calculated by assuming single particle size with
turbulence information obtained from CFD simulations.

The developments of models of flotation kinetics (particle-bubble collision, attachment
and detachment), could improve understandings of flotation processes. When combined
with CFD simulations, flotation rate constant and recovery of particles could be predicted.
Attention should be paid to the explanation of results, as models of flotation kinetics could
not fully reflect the effects of turbulence, and simulated turbulent fields are not truly three
phase turbulent flows in flotation machines. Moreover, these models do not consider
the effects of particle shape, size and surface compositions, etc. Meanwhile, interactions
between particles and bubbles are stochastic in nature in flotation processes with turbulent
flows. It follows that there can be no simple model to consider the effects of turbulence on
interactions between particles and bubbles. These factors altogether make the simulation
of flotation of a real mineral intractable. Machine learning was used to with automated
mineralogy data to predict single-particle flotation kinetics [88,89]. This is a versatile tool
for the optimization of flotation processes. This does not mean that researches of flotation
kinetics could be overlooked, which could provide deeper understanding on the physics
of particle-bubble collision, attachment and detachment. With these techniques working
together, mineral resources could be beneficiated in a more efficient and effective way.
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4. Conclusions

This work has reviewed most recent progress in the study of particle-bubble in-
teractions in turbulent flows. The effects of turbulence on particle-bubble collision and
detachment have been widely studied. On the contrary, the effects of turbulence on particle-
bubble attachment have been overlooked and is not clearly understood at this stage. This
is due to the limitations of existing experimental techniques in measuring attachment
process and surrounding liquid flows simultaneously. Increasing turbulence is benefi-
cial to particle-bubble collision, but detrimental to stabilizing particle-bubble aggregates.
Modulating hydrodynamics in flotation machines is dependent on the particle size, where
turbulence is favoured for the flotation of fine particle and depressed for the flotation of
coarse particles. Turbulence inside flotation machines should be optimized to improve
flotation performance by maximizing particle-bubble collision and attachment and mini-
mizing particle detachment concurrently. Interactions between particles and bubbles in
turbulent flows are stochastic in nature and statistical models with empirical factors can be
used to represent the effects of turbulence on flotation.
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