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Abstract: The present study investigates changes occurring in the material composition and prop-
erties of the South Yakutian carbonate soils during cryogenesis. The nature of the transformations
of certain limestone varieties composing the surfaces of rock massifs was determined using scan-
ning electron microscopy, 3D X-ray tomography, as well as lithological–mineralogical and optical–
petrographic studies, over a 10-year period. The areas in carbonate rock massifs with increased
clay content, pyritisation, dolomitisation, and baritisation, as well as zones of calcite and dolomite
junction, were found to be least resistant to the effects of processes associated with water phase
transitions, i.e., freezing and thawing. The mineral proportion of limestone on the surface of soil
massifs chemically processed over a 10-year period reached 5–7% of the volume of the weathered
rocks. In the process of transformation, not only the composition of the rocks changed, but also
the nature of the structural bonds that significantly influence their mechanical strength properties.
The number of cracks for weathered soil samples increased by 9–16%; their opening increased by
13–18%. For rocks initially having uniaxial compression strength in the range of 33–46 MPa, this
strength was reduced by 19–27%. Laboratory experiments on 1000-fold cyclic freezing and thawing
of carbonate rock samples (which corresponds to an 8–10-year period of weathering on the surface
of a mountain outcrop under the natural conditions of South Yakutia) demonstrate the similarity
of these changes with those observed in samples taken from the sides of open pits 10 years ago. In
general, soils are influenced by a wide range of environmental factors under natural conditions. The
significant influence of alternating temperatures on the changes in the composition and structure of
limestones in South Yakutia is characterised in detail.

Keywords: limestone; cryogenesis; matter alteration; South Yakutia

1. Introduction

Soils undergo various transformations under the influence of processes associated
with freezing and thawing water phase transitions, resulting in changes in their proper-
ties [1–6]. The combination of these processes is referred to as cryogenesis [7]. To date,
the main regularities of such changes have been established for most soil types having
rigid structural bonds of crystallisation or cementation type (such soils defined as rocky
according to the classification system adopted in the Russian Federation are characterised
by a uniaxial compression strength of at least 5 MPa [8]) under laboratory conditions. As a
rule, these studies are based on determining the physical and strength characteristics of
soil samples after repeated cycles of freezing and thawing [1,9–17]. Very little work has
been carried out to describe the mechanisms (physico-chemical, mineralogical, structural,
including the nature of water migration and ice formation) and material transformations
that occur during phase transitions of water, i.e., freezing and thawing. Nevertheless,
the establishment of soil transformation features during cryogenesis at the micro-scale
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is of particular value for explaining the specific engineering and geological properties
of soils having structural relationships dependent on their cyclic freezing–thawing. For
example, optical–petrographic studies were carried out on the host rocks of some coal
deposits of Yakutia to explain the overestimation of strength characteristics of the rocks of
individual quarry benches during mining operations. Analytical studies of samples from
boreholes identified the development zones of ankeritisation processes, to which the local
strengthening of the soil massif turned out to be confined [18,19].

Therefore, in order to determine the features of cryogenically driven alteration of the
rocky soils of South Yakutia, as well as to augment the factual material base, a compre-
hensive laboratory study of certain carbonate rock varieties in the region was carried out.
South Yakutia was chosen as a testing ground due to the lack of specific studies of soil
cryogenesis in the region. The high density of potential factors determining the intensity of
rock weathering [11,20,21] allows the results of laboratory work and field observations to
be compared in the future.

2. Materials and Methods

The study area is located in the Western Yangi mountain range, which rises above
the Aldan plateau and is composed of Archean gneisses and granites (Figure 1a,c). This
massif comprises laccoliths of post-Jurassic rocks formed by erosion and denudation,
represented by syenite–porphyry. The absolute elevation of the highest point in the area
(Gora Evota) is 1603 m. The southern part of the study area comprising part of the Chulman
plateau is composed of Cambrian carbonate, as well as terrigenous sedimentary sandstones,
aleurolites and argillites of the Jurassic and Lower Cretaceous periods. Here the absolute
elevations do not exceed 1300–1400 m.

The severe climate of the region is classified as sharply continental. According to
data acquired from the meteorological station located 60 km from Gora Evota, the average
annual air temperature is minus 10 ◦C, while the average monthly minima and maxima are
minus 39 ◦C and plus 23 ◦C, respectively. Thus, the maximum amplitude of air temperature
fluctuations exceeds 80 degrees, while their daily amplitude can reach 40 degrees. The
number of temperature transitions through 0 ◦C per year on the surface of the studied
soil massifs exceeds 100 cycles (according to the results of the authors’ observations in
2018–2019). Although the thickness of the snow cover in the region does not exceed half a
metre on average, it is distributed unevenly due to the activity of the wind. As a result,
up to 3 m of snow can accumulate on leeward slopes. A stable snow cover persists from
September to early June, with some snowfields disappearing only by the end of summer or
even continuing into the following year.

The harsh climate affects the soil-forming process, which is characterised by the
suppression of chemical and biochemical forms of weathering and, conversely, by the high
intensity of physical weathering. For this reason, coarse–skeletal tundra–taiga podzolised
soils are well represented in the study area.

Permafrost in the study area has both continuous and mostly continuous distribution
according to the absolute elevation (Figure 1b). The boundary between these types of
distribution roughly coincides with the upper border of the mountain taiga, i.e., at an
absolute elevation of 1100–1200 m. At elevations of 1500 m, it reaches a thickness of 500 m
at a rock temperature of –7 to –8 ◦C at a zero fluctuation depth. Further down the slopes, the
thickness of the frozen strata decreases to several tens of metres. The thickness of seasonal
thawing in the area ranges from 0.3 to 3 m. The effect of cryogenesis on carbonate massifs
was assessed using soil samples taken from boreholes drilled in 2020. These samples were
compared with those obtained from the walls of mines having a known opening date (at
least 10 years ago) (Figure 2a,b). Borehole samples were correlated with the sections of
corresponding walls of ditches, trenches and quarries. In other words, “fresh” rock samples
obtained from boreholes were compared with “weathered” samples. The “fresh” samples
were additionally subjected to multiple cycles of alternating freezing and thawing under
laboratory conditions (1000 cycles) and compared with those taken from mine walls.
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brian marine sediments; 8—dense cemented Jurassic continental sediments; 9—maximum perma-
frost thickness values, m (in the numerator) and typical seasonal thawing thickness limits, m (in the 
denominator); 10—isotherms at the bottom of the layer with annual zero-point oscillations (15–20 
m for watersheds); 11—highway. (c) Fragment of the geological map of the study area (map pre-
pared by the A.P. Karpinsky All-Russian Geological Research Institute within the framework of the 
State Assignment of the Federal Agency for Subsoil Use dated 26 December 2019 No. 
049-00017-20-04): 1—boundaries of the study area; 2—Jurassic system, undivided; 3—Jurassic sys-
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section; 6—wend; 7—Riphean; 8—upper archaea; 9—lower archaea; 10—felsic intrusive rocks, 
Mesozoic; 11—felsic intrusive rocks, Palaeozoic; 12—faults on dry land. For testing, cubic samples 
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the size is regulated by the interstate standard of the Russian Federation. 

Experiments on the cyclic freezing and thawing of samples under laboratory condi-
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Figure 1. Overview map of the study area: (a) location of the study area; (b) geocryological scheme
of the research area (according to V.R. Alekseev, 1963 [22]). The yellow outline marks the bound-
aries of the study area. Types of permafrost rocks by the degree of discontinuity: 1—continuous
(100%); 2—mostly continuous (95–98%); 3—intermittent (70–80%); 4—intermittent (50%); 5—insular
(25–30%). Types of permafrost in composition: 6—massive; 7—dense cemented Cambrian marine
sediments; 8—dense cemented Jurassic continental sediments; 9—maximum permafrost thickness
values, m (in the numerator) and typical seasonal thawing thickness limits, m (in the denominator);
10—isotherms at the bottom of the layer with annual zero-point oscillations (15–20 m for watersheds);
11—highway. (c) Fragment of the geological map of the study area (map prepared by the A.P. Karpin-
sky All-Russian Geological Research Institute within the framework of the State Assignment of the
Federal Agency for Subsoil Use dated 26 December 2019 No. 049-00017-20-04): 1—boundaries of
the study area; 2—Jurassic system, undivided; 3—Jurassic system, lower section; 4—Ordovician
system, Cambrian–Ordovician; 5—Cambrian system, lower section; 6—wend; 7—Riphean; 8—upper
archaea; 9—lower archaea; 10—felsic intrusive rocks, Mesozoic; 11—felsic intrusive rocks, Palaeozoic;
12—faults on dry land. For testing, cubic samples with dimensions of 4.0 cm × 4.0 cm × 4.0 cm were
prepared from the selected material (Figure 2c); the size is regulated by the interstate standard of the
Russian Federation.

Experiments on the cyclic freezing and thawing of samples under laboratory con-
ditions included the selection of reference samples, as well as studies of their material
composition and structure in predetermined and labelled areas. The samples were then
subjected to alternate freezing and thawing. Following the completion of the test cycle, the
same studies were carried out using the same sample areas.

Freezing conditions for samples was minus 20 ◦C in a freezer with the temperature
maintained to an accuracy of up to 2 ◦C. The holding time of the samples in the freezer
at which the temperature was stabilised in the cube-shaped sample was determined
experimentally prior to the start of the experiments by installing thermistors. Thus, the
freezing time of the samples was at least 8 h. The samples were thawed at a temperature
of between +18 and +20 ◦C for at least 10 h. The soils were subjected to 1000 cycles of
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alternate freezing and thawing. The method used for the cyclic freezing and thawing of
soils is described in detail in [11,21].
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sampling points, 2—carbonate massif, 3—soil and vegetation layer; (b) general view of the wall of the mine from the base of
which the soil sample was taken; (c) prepared cube-shaped specimen with cut-off top.

In general, analytical works included the following:

(1) Lithological–mineralogical and optical–petrographic studies, which were carried out
to obtain the data on soil composition and structural features. The studies were
carried out using a Nikon SMZ 645 binocular microscope (Nikon, Tokyo, Japan) and
an Olympus BX51 polarising microscope (Olympus Corporation, Tokyo, Japan);

(2) Scanning electron microscopy (SEM) carried out on a JSM 6390LV microscope (JEOL,
Japan) with a resolution of up to 3 nm and a maximum magnification of up to
300,000 times in order to study the surface microrelief of minerals composing the soil
samples, as well as to assess micro-fracturing and microporosity;

(3) 3D X-ray tomography performed to obtain three-dimensional data on changes in
structural and textural characteristics and porosity-fracturing of samples. The set of
numerical data with fracture opening sizes obtained during the measurement was
visualised in the form of a sample fracture map and a histogram of fracture size
(opening) distribution (Figure 3);

(4) Chemical analyses of minerals carried out using an INCA ENERGY 350 and INCA
WAVE 500 energy- and wavelength-dispersive spectrometers (“OXFORD INSTRU-
MENTS”, Abingdon, UK);

(5) Determination of physical and mechanical properties—density and uniaxial compres-
sive strength.

The properties of the following soil varieties were analysed: dolomitic limestone, and
organogenic limestone with dolomite.
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3. Results
3.1. Dolomitic Limestone

The following features of the chemical composition of minerals (according to elec-
tron microprobe analysis data) are characteristic of the limestone samples obtained from
boreholes (Table 1). Typically, three zones were distinguished in the studied soils, namely
pure limestones, dolomitised limestones and silicified limestones. The former were also
characterised by the presence of silica (up to 2.03%) and alumina (up to 0.60%), as well as a
low magnesium (MgO up to 0.91%) and iron (up to 0.41%) content. In rare dolomitisation
zones, iron oxides were present in small amounts (up to 0.90%). In silicification zones, the
silica content noticeably increased (up to 10.91%) along with the appearance of elements
such as Al, K, Na, S and Cl. In addition, the rock contained quartz veinlets and barite
inclusions. Silicification zones are typically accompanied by baritisation zones reflecting
the impact of metasomatic processes on the rock.

Table 1. Chemical composition of minerals (according to electron microprobe analyses) of dolomitic
limestone samples taken from the borehole core, wt. %.

Oxide Calcite Silicified Calcite Calcite Calcite

CaO 51.85 50.25 53.63 51.74
MgO 0.71 1.04 0.91 1.00
SiO2 1.45 10.91 0.76 4.38

Al2O3 0.40 1.16 0.43 0.51
FeO 0.41 0.00 0.17 0.66
MnO 0.00 0.00 0.00 0.00
K2O 0.19 0.71 0.00 0.00

Na2O 0.00 1.40 0.00 0.71
SO3 0.00 1.07 0.00 0.00
Cl 0.00 0.47 0.00 0.00

In terms of chemical composition, the limestones from outcrops were distinguished
from the borehole samples by signs of weak phosphatisation (indicator elements—P, F),
sulfatisation (S) and chloridisation (Cl) (Table 2). At the same time, areas with more intense
phosphatisation, sulfidisation (pyrite and chalcopyrite) and leucoxenisation and, in some
cases, with carbonaceous matter, were observed in the limestone samples from the outcrop
surfaces located within the border of the river valley, i.e., in a more humid environment.
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Table 2. Chemical composition of minerals (according to electron microprobe analyses) of dolomitic limestone samples
taken from the surface of the mine walls, wt. %.

Oxide Leucoxenisation
Zone

Leucoxenisation
Zone Calcite Quartz Calcite Calcite Ankerite Ankerite Quartz Calcite

CaO 3.34 2.66 52.74 0.90 54.16 54.92 33.40 35.18 0.73 53.92
MgO 0.26 0.27 0.16 0.00 0.54 0.47 12.90 14.91 0.27 0.63
SiO2 4.94 3.83 1.41 98.87 0.44 0.21 0.46 0.00 97.92 0.58
TiO2 76.53 80.31 0.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Al2O3 2.58 2.23 0.48 0.19 0.17 0.00 0.00 0.00 0.54 0.34
FeO 11.88 10.41 0.25 0.00 0.17 0.20 5.07 1.79 0.21 0.21
MnO 0.16 0.26 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00
K2O 0.30 0.00 0.23 0.00 0.09 0.00 0.07 0.00 0.28 0.00

Na2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18

The study of electron microscopic images of weathered limestones allows the following
probable results of the impact of periodic cyclic freezing–thawing to be identified (Figure 4):

(1) The presence of extended fracture zones. In particular, the images with a high
magnification (2.5–10 thousand times) show intermittent fractured areas where the
continuity of the rock has been violated. Some fractured zones are impregnated with
clayey matter (possibly due to the migration of clayey particles through channels in
the rock). Finally, an important feature is the presence of intermittent microcracks of
considerable length and variable width with separate bulges. For limestone samples,
the most noticeable of these consist of an increase in the extent of fracturing, starting
from the range of 46–69 microns (Table 3).

(2) Increased calcite microporosity. The high-resolution images clearly show the presence
of numerous micropores 1–2 microns in size in calcite. Some large calcite grains have
a pitted shape resulting from leaching.

(3) Deformation of the recrystallisation and metasomatic zones. Such zones are boreholes
distinguished in SEM images by their large size in contrast to the major micro-grained
part of the rock. These zones are rimmed by channels and cracks. The recrystallisation
zones contain secondary calcite crystals up to 75 microns in size. Normally these zones
are adjacent to the dolomitisation zones, although the development of these processes
may not be simultaneous. The processes of leaching and corrosion of primary calcite
crystals are very efficient.

(4) The presence of zones with carbonaceous matter, probably confined to large pores
and cracks.

Table 3. Results of crack measurement and calculation in dolomitic limestone samples according to 3D X-ray tomography.

Crack Size, µm Borehole Core Samples Outcrop Surface Samples

Number of Fracture
Crossings

Proportion of Cracks of a
Particular Dimension
Relative to Their Total

Number, %

Number of Fracture
Crossings

Proportion of Cracks of a
Particular Dimension
Relative to Their Total

Number, %

<23.1 0 0.00 1 0.00
23–46 1 0.70 0 0.00
46–69 0 0.00 2597 75.60
69–92 62 43.10 454 13.20

92–116 28 19.40 353 10.30
116–139 26 18.10 25 0.70
139–162 19 13.20 4 0.10
162–185 7 4.90 0 0.00
185–208 1 0.70 0 0.00

Sum 144 100.00 3434 100.00
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3.2. Dolomitised Organogenic Limestone

According to electron microscopy data (Figure 5), organogenic dolomitised limestones
sampled from boreholes were characterised by the irregular by volume spotty distribution
of dolomitisation zones; uneven fracturing and porosity; the presence of silicification zones
confined to dolomite areas; and the weak development of pyritisation and albitisation
processes (along cracks). Weathered samples differed from borehole samples in terms of
the intensive development of pyritisation, silicification and cavity formation processes.
Pyrite formed separate large crystals up to around 0.5 mm in size, as well as filling the
extended veinlet zones (probably replacing organic matter).

Caverns in calcite were generally filled with microgranular aggregates of spherical
pyrite grains less than 1 µm in size. It is possible that dolomite may have formed over
several stages, since large disseminations up to 200 microns in size were present along
with microgranular aggregations. The processes of micropore formation in calcite were
also developed.

The calcite was broken by microcracks into small blocks having uneven surfaces.
The experimental results on cyclic freezing and thawing under laboratory conditions
(1000 cycles) indicated the similarity of dolomitised organogenic limestone with the samples
taken from outcrops. This was manifested, for example, in the character of structural calcite
changes expressed by deformed, highly porous, fractured crystals with sculptured surface.

According to the chemical analysis data (electron microprobe analysis), “weathered”
samples showed partial manganisation of dolomite zones, while manganese was absent
in dolomite in the “fresh” samples. The presence of sulfatisation, phosphatisation and
pyritisation zones, as well as clayey areas (with Al) (Tables 4 and 5), was also observed.

Table 4. Chemical composition of minerals of organogenic dolomitic limestone samples taken from the borehole core, wt. %.

Oxide Dolomite Clayey Zone Silification Zone Calcite Dolomite Calcite Feldspar Zone

CaO 31.52 18.66 34.05 54.43 30.78 54.69 25.05
MgO 16.78 0.00 17.59 0.91 18.34 0.81 3.30
SiO2 0.00 15.22 24.83 0.29 0.00 0.00 33.76
TiO2 1.12 62.50 0.74 0.00 0.23 0.00 11.74

Al2O3 2.56 0.00 2.72 0.27 2.51 0.28 2.03
FeO 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K2O 0.00 0.00 0.00 0.00 0.00 0.00 4.74

Na2O 31.52 18.66 34.05 54.43 30.78 54.69 25.05

Table 5. Chemical composition of minerals of organogenic dolomitic limestone samples taken from the surface of a rock
outcrop, wt. %.

Oxide
Silification and

Baritisation
Zone

Silification and
Baritisation

Zone

Silification and
Baritisation

Zone

Silification and
Baritisation

Zone
Dolomite Calcite Calcite

CaO 45.89 53.90 45.56 13.14 32.49 54.75 32.83
MgO 1.61 0.57 4.70 2.02 16.61 1.03 16.63
SiO2 20.38 5.05 10.44 70.18 0.10 0.00 0.98

Al2O3 1.69 0.36 2.56 1.58 0.00 0.00 0.00
FeO 1.45 0.12 3.39 1.46 2.50 0.00 2.05
MnO 0.12 0.00 0.13 0.00 0.08 0.00 0.00
K2O 0.85 0.00 1.08 0.62 0.00 0.00 0.00

Na2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P2O5 0.00 0.00 0.00 0.00 0.21 0.00 0.00
SO3 0.00 0.00 3.39 0.00 0.00 0.00 0.00
BaO 0.00 0.00 6.36 0.00 0.00 0.00 0.00
SrO 0.00 0.00 0.40 0.00 0.00 0.00 0.00
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Figure 5. Scanning electron microscopic images and tomograms of organogenic limestone samples: (a) spotted distribution
of dolomitisation zones (grey in the image) in “fresh” limestone samples from a borehole; (b) a sample of weathered limestone
with a pyritisation zone (light); (c) sample of weathered limestone with pyrite in a cavity; (d) as previous, structural details;
(e) sample of weathered limestone with micropores in calcite; (f) as previous, structural details; (g) silicified dolomite with
pyrite in a weathered limestone sample; (h) junction of the silicification zone and calcite (light) in a weathered limestone
sample; (i) development of dolomitisation zones (gray) in weathered limestone sample; (j) the deformation of a calcite
crystal in a sample taken from mime outcrop; (k,l) deformation of a calcite crystal in limestone samples subjected to
1000 cycles of freezing and thawing under laboratory conditions; (m) sections of tomograms of organogenic limestone
samples (sample size 4.0 cm × 4.0 cm × 4.0 cm): (1)—tomogram of the “fresh” sample, (2)—tomogram of the same sample
after 1000 cycles of freezing and thawing under laboratory conditions, (3)—tomogram of a weathered sample taken from
the outcrop surface.
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Thus, areas with organogenic substances and calcite–dolomite junctions were shown
to be subject to intense effects of weathering processes.

The determination of the strength properties of limestones turned out to be quite
informative in terms of establishing changes in their structural bonds during cryogenesis.
The limestone samples taken from the borehole had a uniaxial compressive strength of
33–46 MPa and a density of 2.66–2.71 g/cm3. At the same time, the strength of samples
taken from the walls of the quarry was in the range of 24–36 MPa; here, the density
decreased to 2.53–2.63 g/cm3. A decrease in physical and mechanical properties was also
noted during repeated freezing and thawing of soils (1000 cycles) in the laboratory; here,
the ultimate strength of samples taken from boreholes decreased to values of 30–40 MPa.
Moreover, for some samples, when subjected to more than 700 thermal shock cycles, a
violation of their integrity was observed (Figures 6 and 7).
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4. Discussion

Research has shown that recrystallisation and metasomatism are the main natural pro-
cesses of trans-formation of the mineral composition of primary limestone. These processes
lead to the appearance of areas with larger secondary calcite crystals and metasomatic
minerals such as dolomite, barite, pyrite, etc. Such areas are less resistant to external
influences—in particular to cryogenesis—due to the formation of voids between calcite
crystals, channels and other defects, which become available sites for the development
of ice crystals in them. The growth of the latter causes a break in the continuity of the
rock. That is, the process of formation of recrystallized and metasomatically transformed
calcite itself is a certain effect on the primary rock. The result of this action is a certain
deformation of the structure, due to which the areas of more intense recrystallization
become less resistant to various other external influences.

According to the structural analysis, the sufficiently high resistance dolomitic lime-
stones to processes of cyclic freezing and thawing might be assumed. At the same time,
possible areas and zones in which these processes can have a significant impact are charac-
terised by increased clay content, as well as pyritisation, dolomitisation and baritisation.

The limestone moistening regime plays a significant in the intensity of cryogenesis.
This may explain the fact that, in comparison with samples taken from the surface of the
mountain outcrop, the strength indicators of limestone samples obtained under laboratory
conditions are somewhat lower for the same time period of “weathering”. The modelling
of “weathering” carried out under laboratory conditions took place without additional
or periodic moistening. Evidently, the change in the chemical composition of primary
limestones can be explained in terms of the intense movement of aqueous solutions in the
upper parts of the studied carbonate massif, along with the appearance in their composition
of phosphates, sulfates, chlorides, manganese and alumina.

Thus, in order to predict changes in the properties of soils during cryogenesis, it is
important to solve the issue of developing a methodology for the laboratory testing of soils.
The technique should take into account many factors that determine the intensity of weath-
ering of soil massifs. With regard to South Yakutia, very little purposeful identification
of such factors and their features has been carried out. Those individual works that have
been carried out are fragmented and fail to take into account the complexity of the subject.

5. Conclusions

The comparison of investigated varieties of carbonate soils sampled from mine sur-
faces with “fresh” samples subjected to periodic cyclic freezing and thawing under labora-
tory conditions demonstrates the similarity of the changes occurring in them. However,
the severity and intensity of transformations in soils subjected to temperature effects under
laboratory conditions are significantly lower. It is evident that soils are influenced by a
wider range of environmental factors under natural conditions. Since previous works
studying the specific conditions in South Yakutia are rather fragmentary and limited to
short-term observations, it was necessary to identify such factors and their features. Thus,
the significant influence of alternating temperatures on changes in the composition and
structure of South Yakutian soils have been comprehensively described.
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