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Abstract: Laser-induced breakdown spectroscopy (LIBS) is a simple and straightforward technique
of atomic emission spectroscopy that can provide multi-element detection and quantification in any
material, in-situ and in real time because all elements emit in the 200–900 nm spectral range of the
LIBS optical emission. This study evaluated two practical applications of LIBS—validation of labels
assigned to garnets in museum collections and discrimination of LCT (lithium-cesium-tantalum)
and NYF (niobium, yttrium and fluorine) pegmatites based on garnet geochemical fingerprinting,
both of which could be implemented on site in a museum or field setting with a handheld LIBS
analyzer. Major element compositions were determined using electron microprobe analysis for a
suite of 208 garnets from 24 countries to determine garnet type. Both commercial laboratory and
handheld analyzers were then used to acquire LIBS broadband spectra that were chemometrically
processed by partial least squares discriminant analysis (PLSDA) and linear support vector machine
classification (SVM). High attribution success rates (>98%) were obtained using PLSDA and SVM
for the handheld data suggesting that LIBS could be used in a museum setting to assign garnet type
quickly and accurately. LIBS also identifies changes in garnet composition associated with increasing
mineral and chemical complexity of LCT and NYF pegmatites.

Keywords: garnet; laser-induced breakdown spectroscopy; LIBS; electron microprobe analysis;
geochemical fingerprinting; chemometrics; PCA; PLSDA; SVM

1. Introduction
1.1. Laser-Induced Breakdown Spectroscopy (LIBS)

LIBS is a specific application of atomic emission spectroscopy that affords rapid,
multi-element analysis of material in any physical state—gas, liquid, or solid [1]—and
has particular attributes that make it a useful and highly versatile technique for the real-
time, in-situ analysis of geological materials in both the laboratory and the field. LIBS
instrumentation is both simple and robust and LIBS is simultaneously sensitive to all
elements, the broadband spectrum measured from the plasma emission records the full
chemical composition of a sample above each element’s limit of detection, which is a
unique geochemical fingerprint [2] of the material analyzed. Commercial LIBS technology
has recently progressed from bespoke and commercial laboratory systems to handheld
analyzers for field use. This new capability offers the possibility for using LIBS as a
survey tool for distinguishing different geological materials through rapid compositional
analysis outside the laboratory under ambient environmental conditions with little to no
sample preparation.
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Since its first application to geological materials in the early 1990s, LIBS has become an
ever more popular tool for geochemical analysis across a broad spectrum of the geosciences.
In LIBS, a high-intensity pulsed laser beam is focused onto the surface of a sample to
create a high-temperature plasma as the consequence of the multi-stage breakdown process
that occurs when laser energy couples to a material. Typically, a sub-milligram amount
of the sample being analyzed is first ablated, vaporized, subsequently dissociated in the
high-temperature plasma into a collection of free electrons plus weakly ionized molecular,
atomic, and ionic species. Species recombination and de-excitation occurs as the plasma
cools down, with light emitted at discrete wavelengths when energy is released as photons
and electrons return to low-energy levels. Because many electron orbital transitions occur
for most elements, a LIBS emission intensity spectrum consists of multiple peaks for the
majority of elements and, for most geological materials, normally contains tens to hundreds
of spectral lines. A broadband LIBS spectrum records the full elemental composition of
a sample, since every element in the periodic table has one or more emission lines in the
ultraviolet, visible, and near infrared spectral region between 200–900 nm. LIBS analysis
has been used in four distinct ways: (i) as an elemental detector, (ii) for quantitative
chemical analysis, (iii) for microscale elemental mapping, and (iv) qualitatively to rapidly
distinguish between samples of similar character through chemometric analysis, e.g., via
spectral matching against a pre-assembled library.

1.2. Garnet

Garnet is an important and widespread rock-forming mineral that occurs worldwide
in four geological contexts: (i) as a primary component in the Earth’s upper mantle and
lower crust, (ii) as a common constituent in crustal metamorphic rocks, (iii) as an accessory
mineral in sedimentary rocks and detrital sediments, and (iv) as a rare constituent in
igneous rocks [3,4]. As the geologic setting typically determines the particular type of
garnet(s) that form, compositional analysis has been widely used to determine the prove-
nance of detrital garnet present in clastic sediments derived from the erosion of continental
crust [5–8] and in the exploration for diamond-bearing kimberlites [9–12]. It also has
potential in exploration for mineralized skarns [13–15]. Garnet has a host of industrial
uses and is a common gem mineral. Therefore, garnet is frequently found in museum
mineral collections.

2. Applications Investigated

This study evaluated two practical applications of the LIBS—the validation of labels
assigned to garnets in museum collections and the discrimination of LCT and NYF granitic
pegmatites based on garnet geochemical fingerprinting.

2.1. Specimen Labeling Issue in Museum Collections

Specimen labels in museum collections enable curators and researchers to quickly
access vital information about particular objects of interest. For mineral collections, species
names and the locality are the most important information that should be recorded on
all specimen labels. This information allows scientists, curators and collectors to connect
the specimen to its geological context and provenance and make inferences about the
minerals’ origins. Much of the scientific value of the specimen is lost if the species name
and locality information is incorrect or absent. However, such information can frequently
be lacking. For example, the National Mineral Collection at the Smithsonian Institution
lists about 3500 specimens of natural garnet in its database, of which 111 are listed simply
as garnet with no species designation. It is estimated that at least 90% of the nearly
3500 garnet specimens in the collection have never been chemically analyzed to verify their
label description. We have also learned from the mineral collections manager of the Yale
Peabody Museum of Natural History that half of museum’s collection of >800 garnets have
no compositional information, and the certainty of the labeled specimens is not known (S.
Nicolescu, personal communication).



Minerals 2021, 11, 705 3 of 27

A variety of factors can lead to the mislabeling of mineral species names in museum col-
lections including: (i) visual misidentification, (ii) reclassification and redefinition of species
resulting in changes in nomenclature, (iii) qualitative or incomplete chemical analyses of
the specimen, and (iv) unvalidated species identification acquired from sources outside
of the museum and passed on to current museum collections by previous researchers,
collectors, and mineral dealers. Using analytical techniques to correct misidentified or
mislabeled mineral specimens helps to maintain the scientific integrity of the specimen and
the collection as a whole. The first question examined in this study was: Can a handheld
LIBS instrument be efficacious in the determination of garnet type for the validation or
correction of museum specimen labels?

2.2. Pegmatite Discrimination

Granitic pegmatites are an important source of a broad suite of rare metallic elements
essential to today’s high-technology industries and also for certain bulk minerals [16,17].
Two geochemical families of mineralogically complex rare-element pegmatites having a
granitic association are recognized—the Li–Cs–Ta (LCT) pegmatites and the Nb–Y–F (NYF)
pegmatites. Quartz, potassium feldspar, and albite are the major constituents in both the
LCT and NYF pegmatites, with muscovite, biotite, garnet, tourmaline, and apatite typically
present as accessory phases.

Most LCT pegmatites occur worldwide in supracrustal rocks metamorphosed in the
upper greenschist to lower amphibolite facies and are typically located in the vicinity of
evolved, S-type peraluminous granites and leucogranites from which they are inferred to be
derived by fractional crystallization [18]. Pegmatites of the LCT family are characterized by
enrichment in Li, Rb, Cs, Be, Sn, Nb, Ta, B, P and F, but typically have low abundances of Ti,
Zr, Y and the rare earth elements (REE). In chemically evolved LCT pegmatites, spodumene,
petalite, and lepidolite are the major Li-bearing minerals. Beryl is the primary host mineral
for Be, pollucite for Cs, the columbite group minerals for Nb and Ta, and cassiterite for
Sn. LCT pegmatites are also a significant source of gem minerals and museum quality
specimens of rare minerals. Exploration and assessment for LCT pegmatites are guided by a
number of observations that include increasing contents of Li in white mica and increasing
Mn in garnet. By contrast, NYF pegmatites typically have a subaluminous to metaluminous
A-type granite association. These pegmatites generally contain chemically complex silicate
and oxide minerals that are characteristically enriched in Sc, Ti, Y, Zr, Nb > Ta, REE, U, and
Th, contain negligible P and B, and are impoverished in the alkali elements Li, Rb, and
Cs [19]. The presence of F is documented by abundant fluorite or topaz.

3. Garnet
3.1. Garnet Mineralogy, Chemistry, and Classification

Garnet is a nesosilicate mineral constructed of isolated silicon tetrahedra (SiO4) connected
by interstitial cations that has a generalized crystal chemical formula of X3Y2Si3O12 [20], where
X is a site of 8-fold coordination filled by solid solution of a divalent cation (Fe2+, Ca2+,
Mg2+, Mn2+) and Y is a site of 6-fold coordination occupied by a trivalent cation (Al3+, Fe3+

or Cr3+). As recognized by Menzer [21], common natural occurrences of garnet are of six
isostructural end-member types–almandine [Fe3Al2Si3O12], pyrope [Mg3Al2Si3O12], spes-
sartine [Mn3Al2Si3O12], andradite [Ca3Fe2Si3O12], grossular [Ca3Al2Si3O12], and uvarovite
[Ca3Cr2Si3O12]. Most natural garnets occur as multicomponent solid solutions involv-
ing X and Y site cations, although many additional end-member species and elemental
substitutions exist in natural garnets such that the garnet supergroup comprise a total of
32 species [22]. The broad range of colors displayed by garnet, ranging across the spectrum
from black, brown, red, pink, orange, yellow, and green is a consequence of transition
element substitution in the X and Y structural sites [23].
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3.2. Garnet Sample Suite

The suite of 208 garnets used for this study (Table A1, Appendix A) came from three
sources: (i) 151 specimens from the collection of the Smithsonian’s National Museum of
Natural History (NMNH), (ii) 56 samples from the personal collection of one coauthor
(RSH), and a single sample from the Weld pegmatite in Franklin County, Maine (USA)
collected by another coauthor (MAW). These garnets originated from a wide range of
igneous and metamorphic rock associations. Typically, different rock types contain garnet
with distinctive chemical compositions.

Felsic igneous rocks that typically contain garnet include granitic pegmatites, rhyolites
and syenites that all likely originated in the crust. Almandine and spessartine occur
primarily in granitic pegmatite (e.g., Hawk Mine, NC, USA; Rutherford Mine, VA, USA;
Little 3 Mine, Ramona, CA, USA; Golcando Mine, Minas Gerais State, Brazil) and rhyolite
(e.g., Nathop, CO, USA; Topaz Mountain, UT, USA), whereas andradite is associated with
syenite (e.g., Magnet Cove, AR, USA). Almandine, grossular, and spessartine are very
common constituents of metamorphic rocks (e.g., Osgood Mountains, NV, USA; Sierra
De Cruces, Coahuila, Mexico; Broken Hill, Australia; Ducktown Mine, TN, USA; Jeffrey
Mine, QC, Canada). Garnetiferous kimberlite and chromitite are ultramafic igneous rocks
probably generated in the upper mantle. Pyrope is the dominant garnet species from
our kimberlite localities (e.g., Kimberly, South Africa; Garnet Ridge, AZ, USA), whereas
uvarovite is generally associated with chromite pods (e.g., Saranovskii Mine, Russia).

Samples of garnet in medium- to high-grade metamorphic rocks, such as schist,
gneiss and amphibolite, all have almandine compositions (e.g., Roxbury, CT, USA; Umba
River Valley, Tanzania; Gore Mountain, NH, USA). Carbonate rocks altered by contact
metamorphism that produced skarns contain garnet with compositions corresponding to
mainly grossular (e.g., Sierra De Cruces, Coahuila, Mexico) or in some cases, andradite
(e.g., Erongo Mountains, Namibia). Meta-ophiolitic rocks formed by the metasomatic
alteration of peridotite and gabbroic protoliths contain uvarovite and grossular, respectively
(Toulumne County, CA, USA; Outokumpu, Finland; Eden Mills, VT, USA; Jeffrey Mine,
Quebec, Canada).

Metal sulfide-oxide-silicate ore deposits host two main garnet compositions depend-
ing on the origin of the host rocks. The Zn–Fe–Mn deposit of the Franklin Mine (NJ, USA)
contains andraditic garnet as part of a skarn-like assemblage that includes calcite, mag-
netite and clinopyroxene produced through hydrothermal alteration of the host marble.
Spessartine is genetically associated with garnetiferous units of the Pb–Zn–Ag deposit
Broken Hill (New South Wales, Australia).

3.3. Previous LIBS Analysis of Garnet

In a study of 157 garnets from 92 localities worldwide that include some of the
same garnets from this study Alvey et al. [24] demonstrated how LIBS analysis could be
used to distinguish the six common garnet types. Because chemical analyses were not
available, the museum collection or commercial label accompanying each sample was
accepted as the garnet type classifications for that study. More recently, Harmon et al. [25]
used LIBS analysis to differentiate between garnets from various geologic contexts, such as
discriminating pyropes from different kimberlite localities in South Africa. Here we expand
on these previous studies through comparative chemometric analysis of LIBS broadband
spectra obtained by both a laboratory LIBS system and a handheld LIBS analyzer for
208 garnet specimens whose elemental composition was determined through electron
microprobe (EMP) analysis.

4. Analytical Methods
4.1. Electron Microprobe Analysis

The quantitative chemical analysis of garnet by EMP analysis was performed in
wavelength dispersive X-ray spectroscopy mode using a JEOL 8900 Superprobe electron
microprobe at the Smithsonian Institution National Museum of Natural History. The
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system was operated at an accelerating voltage of 15 kV, a beam current of 20 nA, a beam
diameter of 1 µm and counting times of 20 s on peaks and 10 s for backgrounds. Mineral
standards used were Kakanui hornblende (K, Mg), ilmenite (Fe, Ti), grossular (Si, Al),
manganite (Mn), apatite (Ca, P), and chromite (Cr). A conventional ZAF routine was
used for data reduction. Representative microprobe analyses for the six near-end member
compositions, whose LIBS spectra are displayed in Figure 1, are shown in Table 1.

Figure 1. Spectral processing and chemometric procedure flow diagram for this study.

Table 1. Examples of electron microprobe analyses (reported as oxide wt %) for near end-member compositions of the six
common garnet types, whose broadband LIBS spectra are displayed in Figures 2 and 3.

Sample
ID

Labeled
Type MgO FeO MnO CaO ZnO Al2O3 Cr2O3 SiO2 TiO2 K2O P2O5 Total Assigned

Type

B19430 almandine 0.76 40.67 0.68 1.03 0.03 21.32 0.02 34.17 0.28 <0.01 0.02 98.98 almandine
R3418 pyrope 20.64 8.01 0.32 4.28 0.01 21.58 2.67 43.50 0.41 <0.01 0.01 101.43 pyrope

30 spessartine 0.02 2.34 40.69 0.18 0.07 21.16 0.01 35.20 0.02 <0.01 0.15 99.86 spessartine
R11362 grossular 0.02 0.61 0.63 36.74 0.05 22.36 0.20 38.83 0.10 <0.01 0.02 99.56 grossular

64 andradite 0.08 30.00 0.03 33.70 0.02 0.34 0.00 35.22 0.03 <0.01 0.01 99.43 andradite
161032 uvarovite 0.42 0.54 0.66 33.48 0.15 7.91 19.07 36.46 0.19 <0.01 0.02 98.76 uvarovite

4.2. LIBS Analysis

Two LIBS systems were utilized for this study, a RT-100 commercial laboratory system
(Applied Spectra, Inc., West Sacramento, CA, USA) and the Z-500 handheld LIBS analyzer
(SciAps, Inc., Woburn, MA, USA). Both the RT-100 and Z-500 analyses were undertaken in
the LIBS laboratory of co-author RRH at Juniata College. Data from the laboratory LIBS
system was included in this study to provide a comparison with the handheld LIBS unit
and confirm that both instruments provide similar results.

The RT-100 (Applied Spectra, Inc.) is a versatile laboratory LIBS system that comprised
of a 50-mJ Nd:YAG laser operating at 1064 nm with a 5-ns pulse width and 1–20-Hz
variable repetition rate, and six gated Czerny–Turner spectrographs coupled with high-
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performance charge-coupled diode (CCD) detectors to provide coverage from 187–1044 nm
at a resolution of 0.055–0.068 nm. This configuration produces composite LIBS spectra
consisting of approximately 12,284 data points. User controlled operational parameters
include laser power, signal acquisition delay time, and gate width. Operational parameters
that can be controlled include laser power, gate width, and signal acquisition delay time.
The RT-100 has an automated 3D translational stage that permits data to be collected over
a user-defined grid pattern at 0.5-mm spacing, with a guide laser for ablation spot location,
complementary metal–oxide–semiconductor (CMOS) camera imaging, and active focusing
system that automatically refocuses the laser onto the surface each time the stage is moved
to a new surface location. The RT-100 instrument collected 110 total spectra from a single
location on each sample. The first two spectra were removed as ‘cleaning shots’, and the
remaining 108 were averaged in groups of 18 for a total of 6 averaged spectra per sample.

Handheld LIBS analyzers are well suited to geochemical applications particularly for
real-time analysis outside a traditional laboratory setting or in the field during geological
fieldwork due to its portability and versatility. The work reported here utilized a Z-
500 (SciAps, Inc.) handheld LIBS analyzer that employs a 1064 nm Nd:YAG pulsed
laser with 50 µm focused beam size that delivers 6 mJ to the sample with a 1 ns pulse
duration at a firing rate between 1–10 Hz. The instrument can operate in the ambient
atmosphere, but also is capable of gas purging that delivers an inert gas (He or Ar) directly
to the focusing area on the sample surface where the LIBS plasma formation occurs for
signal enhancement. The analyzer records a broad range of plasma light emission from
180–675 nm. Typical detection limits are in the tens to hundreds of ppm range for most
elements when averaged across 2 mm2 area of sample collection points, which is possible
with its rastering capability. The LIBS emission signal is collected, and the light passed by
fiber optic cable into four internal spectrometers with spectral ranges of 180–254, 254–314,
314–423 and 423–675 nm that use time-gated CCD detectors with resolution of 0.1 nm
full width at half maximum (FWHM) below 423 nm and 0.3 nm FWHM above 423 nm.
This produces composite LIBS spectra consisting of approximately 14,850 data points.
Regular spectrometer wavelength calibration is performed by interrogation of an internal
target made from Grade 316 Mo-bearing stainless steel. For each spectrometer in the unit,
wavelength errors between selected observed emission lines and the values found in the
National Institute of Standards and Technology (NIST) Atomic Spectra Database [26] are
determined and correction coefficients are applied. These new coefficients are used until
the next wavelength calibration is performed, with a record kept of all calibration spectra
and correction values. The data for this study was collected with a 646 ns delay time,
although the instrument is capable of variable gate delays from 250 ns up to 100 µs in
20.8 ns increments. With the Z-500, six locations were analyzed for each sample. After
three cleaning shots, five recorded spectra were averaged to a single spectrum per location
resulting in a total of six averaged spectra. The data collection parameters for both the
RT-100 and Z-500 represented typical settings used for routine analysis and are not the
result of focused parameter optimization efforts.

There is inherent pulse-to-pulse variability in the energy distribution within pulses
generated by the nanosecond lasers used in LIBS instruments. Even with an absolutely
homogeneous sample, this leads to small differences in emission intensity from one mea-
surement to the next that results in an intrinsic degree of measurement imprecision. There-
fore, to improve data quality for this study, multiple laser shots were made at each analysis
location on a sample and each broadband spectrum collected was intensity normalized.
Additionally, non-analytical surface cleaning shots were performed prior to the collection
of data with the handheld analyzer.

4.3. Comparison of Sample Preparation and Analysis Time for EMP and LIBS

Preparation of samples for microprobe analyses is time-consuming and tedious. Frag-
ments and crystals of garnet were selected, and hand separated from rock samples. Large
pieces of garnet were broken into fragments 2–4 mm in width and mounted in holes
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pre-drilled into Bakelite slabs. In general, nearly 8 h were needed to select and extract
25 garnet samples from their host rock with an additional hour needed to load the samples
into a single Bakelite slab. The process of filling the holes with epoxy, allowing the epoxy
to cure, and polishing the mount to yield a flat and uniformly smooth surface generally
took 3–4 h to complete. Prior to the EMP analysis, garnet mounts must be coated by a
thin layer of carbon, to reduce charge buildup and heating in the nonconductive garnet. It
takes an automated coater nearly 10 min to apply the carbon coat simultaneously to two
probe mounts. Data collection by EMP analysis utilizes an automated program for each
spot analysis. Five analyses were collected across each garnet grain, with each analysis
requiring approximately 8 min to complete.

By comparison, minimal sample preparation is required for LIBS analysis by the labo-
ratory system, other than obtaining a sample of requisite size mounted in an appropriate
manner, whereas no sample preparation is required for handheld analysis. Since each
analysis with the handheld instrument is completed in less than 5 s, LIBS analysis is more
than two orders of magnitude more rapid than EMP analysis. In the museum collection
example of interest here, where a mineral collection is contained in multi-drawer cabinets,
less than a minute is required for the compositional analysis of a single garnet specimen
by handheld LIBS, so that more than 400 samples could be analyzed during a typical
8-h workday.

4.4. Chemometric Analysis

The application of mathematical and statistical calculations to complex multivariate
data, particularly spectroscopic data, as a means of extracting information that is not
intuitive or obvious from simple bivariate or trivariate plots, is termed chemometric analy-
sis [27]. Our data handling procedure for this study is illustrated schematically in Figure 1.
Data for chemometric analysis took the form of LIBS broadband spectra as illustrated in
Figures 2–4. Chemometric analysis was performed in Python (Version 3.8) using a bespoke
code written by the first author that is available upon request. For chemometric analysis,
both sets of LIBS spectra were processed following intensity normalization and spectral
averaging [28]. Each averaged spectrum is divided by its respective integrated area under
the curve (AUC), so that the chemometric classification was not based simply on overall
peak magnitude. Principal component analysis (PCA) was used to condense the data
into a representation of several combined features for visualization that best capture the
meaningful differences in sample composition [29]. Our chemometric analysis utilized
two statistical approaches–partial least squares discriminant analysis (PLSDA) and linear
support vector machine classification (SVM).

Data for each classification task was split between training and testing sets. The dataset
for the ‘garnet type’ classification task contained the 172 training samples whose labels
were correct based on EMP analysis, whereas the 36 test samples were those samples in the
two garnet collections documented as being incorrectly labeled or lacking labels. A range
of hyperparameters were tested for each classifier, and the condition with the best overall
accuracy was selected as the representative result. The number of latent variables was
varied between 1–30 for PLSDA, and the value of ‘C’ was varied at intervals between 0.1
and 500 for SVM (i.e., 0.1, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 3, 5, 7, 10, 20, 50, 70, 100, 150, 250, 500).
The choice of regularization parameter influences the precision/recall tradeoff for each
model. Classification matrices were output at each hyperparameter condition, describing
the classification accuracy for the training and test sets. The training set classification
matrices were evaluated with grouped ‘leave-one-sample-out’ cross validation. Here, all
spectra of a single sample were removed and tested against the remaining training data.
This process was repeated for all samples, and the results were averaged. The test set
classification matrices were evaluated by comparing the predicted versus actual classes of
the test data against the model constructed from all the training data.
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Figure 2. Examples of unprocessed broadband spectra between 200–700 nm acquired from averaging five laser shots by a
RT-100 laboratory LIBS system for almandine B19430, pyrope R3418, spessartine 30, andradite 64, grossular R11362, and
uvarovite 161032, which are near end-member compositions (Table 1).

Figure 3. Example of unprocessed broadband spectra between 200–700 nm acquired from averaging five laser shots by a
Z-500 handheld LIBS analyzer for almandine B19430, pyrope R3418, spessartine 30, andradite 64, grossular R11362, and
uvarovite 161032, which are near end-member compositions (Table 1).
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Figure 4. Comparison of unprocessed RT-100 (left) and Z-500 (right) broadband LIBS spectra for sample 70, a mixed
composition garnet labeled as a grossular with 4.87% MgO, 30.20% FeO, 1.23% CaO, 3.69% MnO, and 22.03% Al2O3 that
was reclassified as an andradite on the basis of EMP analysis.

5. Results and Discussion
5.1. Garnet Composition

Garnet composition is highly variable and mainly depends on bulk-rock geochemistry,
together with the pressure, and temperature conditions under which the garnet crystallized.
Species designation of an individual garnet is based on the dominant cation that occupies
the dodecahedral X, octahedral Y, and tetrahedral Z crystallographic sites of the garnet
structure [30,31]. Conventionally, the named garnet species relies on determining the
proportion of garnet end-member components which are typically calculated from chemical
analyses. Though all garnets have a readily recognizable dodecahedral form, each type
can display a wide range of colors because of their intrinsically complex chemistry, so it
is not possible to be certain of a type assignment for a garnet without knowledge of its
composition. Hence, we undertook EMP analysis of our 208 samples to ascertain the extent
to which the assigned labels of these specimens were in fact correct. Respective ranges of
dominant cation contents measured for the six garnet types were:

Almandine FeO = 40.67–21.37 wt % and Al2O3 = 23.84–16.69 wt %,
Pyrope MgO = 25.94–11.70 wt % and Al2O3 = 24.35–23.72 wt %,
Spessartine MnO = 42.37–16.87 wt % and Al2O3 = 21.87–10.87 wt %,
Grossular CaO = 37.31–25.12 wt % and Al2O3 = 26.15–8.56 wt %,
Andradite CaO = 35.15–20.41 wt % and FeO = 12.54–30.00 wt %,
Uvarovite CaO = 34.92–33.48 wt % and Cr2O3 = 19.07–15.31 wt %.

For garnets whose composition exhibit significant solid solution, Mn ranged up to
20.96 wt %, Mg up to 10.90 wt %, and CaO up to 7.87 wt % in some almandines; FeO
ranged up to 20.86, MnO up to 20.74 wt %, and CaO to 7.56 wt % in some pyropes; FeO
ranged up to 21.15 wt % and CaO up to 17.19 wt % in some spessartines; MnO ranged
up to 12.42 wt %, MgO up to 11.92 wt %, and Al2O3 up to 10.12 wt % in some andradites;
FeO ranged up to 16.22 wt % in some grossulars; and FeO ranged up to 11.31 wt % and
Al2O3 to 7.92 wt % in some uvarovites. For this application, we applied the program
of Locock [32] to recast the EMP analyses expressed as weight percent oxides into end-
member garnet components based upon a calculation of the amounts of Fe2+, Fe3+, and
Mn3+, by stoichiometric constraints. Other programs for calculating garnet components
from chemical analyses [33,34] produced similar results. Representative examples of our
microprobe analyses for each garnet type are given in Table 1.
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5.1.1. Comparison of RT-100 and Z-500 LIBS Analysis

Typical broadband spectra obtained by the RT-100 laboratory LIBS system and the Z-
500 handheld LIBS analyzer for near end-member compositions of the six common garnet
types (Table 1) are displayed in Figures 2 and 3, with predominant emission lines identified
in both figures. Figure 4 presents a side-by-side comparison of spectra for grossular 70.
Over the 200–700 spectral range shown in these figures, the element Si is identified by a
few well-defined spectral lines, Al, Mg, and Ca by a larger number of discrete lines or
pairs of lines, and Fe, Mn, and Cr by sets of multiple adjacent lines. In these figures, the
RT-100 and Z-500 spectra for each of the six garnet types are dominated by the expected
element pairs—Fe–Al for almandine, Mg–Al for pyrope, Mn–Al for spessartine, Ca–Fe
for andradite, Ca–Al for grossular and Ca–Cr for uvarovite, but it is notable that there are
distinct differences in the pair of spectra for each garnet type.

The RT-100 laboratory system covers a broader wavelength range (180–1040 nm) and
employs a laser with nearly ten times the power of the handheld unit (50 mJ versus 6 mJ,
respectively). By contrast, the Z-500 has a smaller wavelength range (180–675 nm) but
better spectral resolution and utilizes an Ar gas purge during analysis to increase the
intensity of the spectral lines. LIBS plasma emissions were collected using slightly different
gate delay times, 1 ms for the RT-100 compared to 646 ns for the Z-500, which is responsible
for further differences in the intensity of lines across the spectral range of signal acquisition.
Additionally, the two LIBS instruments do not have the same sensitivity over all portions of
the spectral range. For example, the Si peaks at 251.6 and 288.2 nm are significantly lower
in intensity, or even not detected, in the RT-100 spectra compared to the Z-500 spectra
(Figures 2–4), demonstrating that the laboratory instrument has diminished capability in
the ultraviolet region due either to reduced transmissivity of the signal through the optical
components of the system or an attenuated sensitivity of the spectrometer channels in this
wavelength area. By contrast, the RT-100 is more sensitive in the spectral range between
400–600 nm where Fe and Mg emission lines are more intense than in the Z-500 spectra.

As documented in Tables 2 and 3, some of the samples in our collections had been
misidentified–27 of the 151 samples (i.e., 17.8%) in the NMNH collection and 10 of the
54 (i.e., 18.5%) in the personal collection. The most common misclassifications were six
instances each of almandine labeled as spessartine and grossular labeled as andradite fol-
lowed by five instances spessartine labeled as almandine. Three andradites were labeled as
grossular. Other labeling misclassifications with one or two instances each were almandine
as grossular or pyrope, andradite as almandine or uvarovite, grossular as uvarovite, pyrope
as andradite, and spessartine as andradite, grossular or pyrope. Two of the three samples
labeled as hydrogrossular [Ca3Al2(SiO4)3−x(OH)4x] were grossular and the other was an
andradite, the three samples labeled as schorlomite [Ca3(Fe3+,Ti)2(Si,Ti)3O12] were actually
andradite, and a sample labeled as calderite [(Mn2+,Ca)3(Fe3+,Al)2(SiO4)3] was grossular.
The 37 mislabeled samples were reclassified to their correct type based upon their micro-
probe analyses and the two samples with no prior type attribution were appropriately
classified, so that the database for the chemometric analysis comprised 42 almandines,
40 andradites, 54 grossulars, 18 pyropes, 48 spessartines, and 6 uvarovites.

5.1.2. Garnet Discrimination by PCA

PCA was applied to the LIBS broadband spectra after the pre-processing described in
Section 4.4 above to compare the extent of garnet type discrimination on the basis of the
broadband LIBS spectra acquired by the RT-100 laboratory system and the Z-500 handheld
analyzer, like those shown in Figures 1 and 2. PCA is an unsupervised matrix analysis
technique that employs an orthogonal transformation to convert a set of observations of
possibly correlated variables into a set of linear combinations of uncorrelated variables,
termed principal components, that describe major compositional trends in an analytical
data set [35]. This transformation is undertaken in such a way that the first principal
component accounts for as much of the variability in the data set as possible, with each
succeeding component in turn explaining the next greatest proportion of the residual
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variance given the constraint that it is orthogonal to the preceding components. A score
along each principal component can be calculated for every sample in the dataset and
these can be plotted to show the compositional relationships between samples. The first
few components generated by PCA typically account for the majority of the variance
and, therefore, provide an adequate representation of the data for visualization purposes,
with the results projected onto the first 2–3 principal components to visually portray the
relative separation of the samples in each class. This type of exploratory data analysis
provides a graphical representation of the natural grouping of the samples and highlights
which variables (i.e., LIBS emission wavelengths in this study) most strongly influence
the clustering. Thus, PCA provides a useful tool for both visualizing whether samples are
similar or different and identifying which variables are responsible for observed similarities
and differences, but is not, in general, an appropriate tool for classification of unknown data.

Table 2. Examples of electron microprobe analyses for correctly classified (1) and misclassified (2) garnets, based on the
museum or collection label.

Sample
ID

Labeled
Type MgO FeO MnO CaO ZnO Al2O3 Cr2O3 SiO2 TiO2 K2O P2O5 Total EMP Assigned

Type

1. Examples of Correct Classifications
68 almandine 1.10 40.12 0.44 0.36 0.02 21.29 0.01 34.44 0.06 <0.01 0.10 97.92 almandine
B19430 almandine 0.76 40.67 0.68 1.03 0.03 21.32 0.02 34.17 0.28 <0.01 0.02 98.98 almandine
64 andradite 0.08 30.00 0.03 33.70 0.02 0.34 0.00 35.22 0.03 <0.01 0.01 99.43 andradite
171064 andradite 0.03 26.70 0.22 29.85 0.03 1.76 0.01 37.04 0.19 <0.01 0.02 95.83 andradite
27 grossular 0.77 2.54 0.12 36.16 0.01 20.91 <0.01 39.08 0.13 <0.01 0.01 99.75 grossular
139717 grossular 0.02 0.66 0.63 36.54 0.04 21.83 0.75 38.72 0.03 0.01 0.01 99.23 grossular
122845 pyrope 19.72 8.96 0.24 4.33 <0.01 24.35 0.27 43.56 0.13 0.01 0.04 101.59 pyrope
R3418 pyrope 20.64 8.01 0.32 4.28 0.01 21.58 2.67 43.50 0.41 <0.01 0.01 101.43 pyrope
135296 spessartine <0.01 0.72 42.13 1.31 0.01 21.36 0.01 32.60 0.09 <0.01 0.01 98.53 spessartine
48745 spessartine <0.01 1.93 40.81 0.82 0.02 21.33 0.01 35.35 0.05 <0.01 0.01 100.51 spessartine
62 uvarovite 0.03 0.47 0.04 34.92 0.02 7.45 18.88 35.67 0.77 <0.01 0.01 98.25 uvarovite
123380 uvarovite 0.41 0.57 0.69 33.69 <0.01 8.12 18.86 35.56 0.08 <0.01 0.03 97.99 uvarovite

2. Examples of Misclassifications

118214 almandine 0.27 17.32 24.45 1.51 0.05 20.78 <0.01 34.94 0.10 <0.01 0.02 99.47 spessartine
69 andradite 0.58 7.88 0.06 36.22 <0.01 15.95 0.21 38.54 0.38 <0.01 0.02 99.87 grossular
75 andradite 16.73 14.37 0.36 3.77 0.02 24.11 0.03 42.83 0.04 <0.01 0.01 102.26 pyrope
R3469 andradite 0.17 13.51 15.76 18.40 0.40 10.87 <0.01 36.32 0.04 <0.01 <0.01 95.45 spessartine
123378 grossular 0.02 16.90 0.23 35.15 <0.01 10.12 <0.01 36.71 0.13 <0.01 0.01 99.26 andradite
143894 pyrope 10.90 24.55 1.52 1.70 0.02 23.34 0.04 40.98 0.01 0.01 <0.01 103.15 almandine
R16774 spessartine 0.08 24.59 18.11 0.14 0.03 21.13 <0.01 36.13 0.08 <0.01 0.15 100.44 almandine
107314 uvarovite 0.05 19.20 0.06 34.00 0.05 0.74 9.58 35.42 0.18 <0.01 <0.01 99.28 andradite
26 uvarovite 0.10 11.27 0.04 34.07 0.02 0.84 16.63 34.83 1.14 <0.01 0.02 98.96 grossular

Table 3. Examples of electron microprobe analyses and type assignments for correctly classified (left) and misclassified
(right) garnets.

Correctly Labeled Incorrectly Labeled
Sample ID 68 171064 27 122845 135296 62 118214 69 123378 143894 R16774 107314

labeled type almandine andradite grossular pyrope spessartine uvarovite almandine andradite grossular pyrope spessartine uvarovite
MgO 1.10 0.03 0.77 19.72 <0.01 0.03 0.27 0.58 0.02 10.99 0.08 0.05
FeO 40.12 26.70 2.54 8.96 0.72 0.47 17.32 7.88 16.90 24.55 24.59 19.20
MnO 0.44 0.22 0.12 0.24 42.13 0.04 24.45 0.06 0.23 1.52 18.11 0.06
CaO 0.36 29.85 36.16 4.33 1.31 34.92 1.51 36.22 35.15 1.70 0.14 34.00
Al2O3 21.29 1.76 20.91 24.35 21.36 7.45 20.78 15.95 10.12 23.34 21.13 0.74
Cr2O3 0.01 0.01 <0.01 0.27 0.01 18.88 <0.01 0.21 <0.01 0.04 <0.01 9.58
SiO2 34.44 37.04 39.08 43.56 32.60 35.67 34.94 38.54 36.71 40.98 36.13 35.42

End-Member % End-Member %
Grossular 88.08% 10.07% 1.43% 31.73% 69.66% 43.01% 4.36%

Andradite 73.99% 1.60% 0.42% 25.32% 53.93% 33.77%
Uvarovite 61.02% 0.65% 26.34%
Spessartine 1.04% 0.53% 0.47% 89.96% 57.09% 3.17%
Almandine 89.63% 8.20% 17.48% 33.91% 50.48% 42.03%
Pyrope 0.11% 68.58% 39.95% 56.35%

EMP
assigned

type
almandine andradite grossular pyrope spessartine uvarovite spessartine grossular andradite almandine almandine grossular

PCA plots for our RT-100 and Z-500 analyses are shown in Figure 5. For the RT-100
data set, the three principal components respectively account for 51.2%, 15.2%, and 14.2
of the variance in the data set, compared to 61.0%, 18.5%, and 5.1% for the Z-500 data set.
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Both data sets exhibit good compositional differentiation. In both cases, the six garnet types
are differentiated by three vectors denoting the solid solution of divalent cations in the
dodecahedral X structural site and octahedral trivalent cations in Y structural site that have
different geometric orientations in the PCA plots. Grossular, andradite, and uvarovite are
differentiated along a Fe3+–Al–Cr vector, spessartine is separated from almandine along a
Fe2+–Mn vector, and pyrope distinguished from almandine along a Fe2+–Mg vector. Thus,
we can conclude that LIBS analysis is effective in discriminating the six common garnet
species based on their major element composition.

Figure 5. PCA scores plots for processed LIBS broadband spectra for the training set of 172 garnets (31 almandines,
33 andradites, 46 grossulars, 17 pyropes, 39 spessartines, and 6 uvarovites) acquired with the RT-100 laboratory system
(upper left) and Z-500 handheld analyzer (lower right) showing respective Fe3+–Al–Cr, Fe2+–Mn, and Fe2+–Mg trends.

5.1.3. Comparison of PLSDA and SVM Chemometric Analysis

PLSDA is a supervised pattern recognition and classification technique based on
principal components and ordinary multiple regression analysis that builds a linear model
based upon input data with labels to train a classifier, the performance of which is then
tested by inputting additional data to assess the accuracy of the output data labels [35–38].
PLSDA searches for a subspace by which to project independent variables (samples) onto
dependent variables (class labels) such that the covariance between the independent and
dependent variables is maximized. This creates a model for transforming additional
samples into estimates of class labels. The PLSDA model employed here used leave-one-
sample-out cross validation.

SVM is a suite of related supervised learning methods based on generalized linear
regression that can be used for classification in high-dimensional space [39]. By comparison
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to other machine learning methods that are based on minimizing empirical risk, SVM
is designed to minimize structural risk through finding the ideal compromise between
learning capability with minimum information and accuracy of the algorithm. SVM maps
input vectors into a high dimensional space, where a hyperplane of maximum separation
is derived from parallel hyperplanes constructed on each side of the data. The separating
hyperplane is that which maximizes the distance between the two parallel hyperplanes
while simultaneously minimizing the empirical classification error and maximizing the
geometric margin [40]. For classification problems, the assumption is made that the
larger the margin or distance between these parallel hyperplanes, the better will be the
performance of the classifier. Several recent studies have reported that the SVM method
can result in better classification performance than other approaches when applied to LIBS
spectral data for geological materials such as rocks and minerals [41–43].

The PLSDA and SVM results for the full garnet dataset are presented in Figure 6
and Figure 7 in the form of classification diagrams. These bivariate plots portray the
reclassification of the observations determined by the two chemometric approaches from
the LIBS spectra obtained by RT-100 and Z-500 for the training and testing analysis. Each
entry in the classification matrix indicates the percentage of the LIBS spectra that were
identified as belonging to the column class, when in fact they are actually members of the
row class. These figures illustrate that spectral signatures from both the laboratory LIBS
system and the handheld LIBS analyzer were sufficient to permit discrimination of these
compositionally complex samples with a high degree of confidence.

Figure 6. Classification diagrams for the training (left side) and testing (right side) sets for chemometric analysis of LIBS
spectra obtained by the RT-100 laboratory LIBS system by PLSDA (top) and SVM (bottom). The classification accuracy of
PLSDA and SVM for the training data was 95.5% and 96.1%, respectively, while corresponding values for the test data using
PLSDA and SVM were 79.2% and 83.8%, respectively.
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As illustrated in Figures 6 and 7, for both the RT-100 and Z-500 analyses, PLSDA and
SVM performed extremely well for the training suite of 172 samples whose composition,
discerned from EMP analysis, matched the assigned specimen label. It should be noted that
the number of samples was not equally distributed among all garnet classes with pyropes
and especially uvarovites being underrepresented compared to the other four types. The
overall classification success rate for the RT-100 data was 95.5% for PLSDA and 96.1%
for SVM, while the classification accuracy for the Z-500 data was slightly higher at 98.8%
for PLSDA and 99.0% for SVM. For the RT-100 analyses, both algorithms achieved 100%
classification success only for uvarovite, whereas 100% classification success was achieved
for pyrope and spessartine for the Z-500 analyses. The fact that all training samples were
not correctly classified and classified in a slightly different manner for the two data sets
reflects both the extensive solid solution between the different garnet species and the
aforementioned differences between the laboratory system and the handheld analyzer.
Misclassifications, represented by off-diagonal entries in the training data diagrams, were
generally of the same type and of the same approximate magnitude for the two instruments
and both classifiers. For example, some spectra of almandine were misclassified as being
spessartine at percentages that ranged from 1.6% to 3.2%, whereas some grossular spectra
were misclassified as being either almandine at percentages of 0% to 0.4% or andradite at
percentages of 0.4% to 7.9%.

Figure 7. Classification diagrams for the training (left side) and testing (right side) sets for chemometric analysis of LIBS
spectra obtained by the Z-500 handheld LIBS analyzer by PLSDA (top) and SVM (bottom). The classification accuracy of
PLSDA and SVM for the training data was 98.8% and 99.0%, respectively, while corresponding values for the test data using
PLSDA and SVM were 79.3% and 79.7%, respectively.

In order to evaluate the PLSDA and SVM classifiers with new data that had not
been used to train the algorithms we selected specimens from the sample suite that were
either mislabeled with the wrong garnet type (34 examples) or had no garnet assignment
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on the label (2 examples). This included all the mislabeled samples shown in Table A1
(Appendix A) except for the two grossulars that were labeled as hydrogrossular and the
three andradite samples that had been misidentified as schorlomite, all of which were
used in the training set. The classification success for both the RT-100 and Z-500 analyses
was significantly lower for the test samples that comprised the 36 mislabeled or unlabeled
samples in the overall suite of 208 garnet specimens (Figures 6 and 7). It should be
noted that there were no uvarovites in the group of test specimens. Admittedly, the
selection criterion means that the test samples are not a randomly chosen subset of the
larger sample suite, but instead those samples whose complex chemistry required EMP
compositional analysis and did not permit correct type recognition by visual inspection
alone. Therefore, it is not unexpected that the classification performance is diminished
compared to the training data. The overall classification success rate for PLSDA of 79.2%
was reduced relative to the 83.8% obtained with SVM for the RT-100 data. This compares
to an equivalent performance for the Z-500 data of 79.3% for PLSDA and 79.7% for SVM.
For the RT-100 analyses, both algorithms achieved 100% classification success only for the
single pyrope sample, with the 8 grossulars and 11 almandines classified correctly at 93.8%
and 72.7%, respectively, by PLSDA and both the grossulars and almandines classified
successfully at >90% by SVM. The 9 spessartines and 7 andradites gave only modest correct
classification results. The situation was similar for the Z-500 results with samples identified
with the correct garnet class at levels less than 80%. Interestingly, the SVM algorithm,
which had marginally outperformed PLSDA for both the training and testing sets of RT-100
and Z-500 data, was significantly surpassed by PLSDA for the andradites of the test set,
achieving the lowest classification success of this study at just over 62%. The handheld
and laboratory LIBS instruments achieved similar results using both classifiers, with the
former slightly outperforming the latter with the training data. The situation was reversed
with the test samples where the RT-100 did marginally better than the Z-500. However,
since the difference in classification success is only a few percent it is safe to conclude that
the portable unit performed on par with the much larger and more expensive laboratory
instrument for this application.

One objective of this study was to demonstrate that handheld LIBS could be used
in combination with machine learning tools to rapidly and efficiently carry out mineral
analysis and specimen identification in a museum setting. In order to assess the reliability
of the LIBS analysis, it is necessary to consider the potential limitations of this practical
application. In addition to using classification diagrams to evaluate the efficacy of LIBS
analysis for garnet discrimination, it is also possible to use a voting approach. Rather than
using an aggregate percentage of correct or incorrect classifications, a voting approach
tabulates the individual class assignment for each of the averaged spectra in the data set.
Given the overall goal performing analysis on-site in a mineral collection storage room
of a museum or in the field, our analysis is limited to the results obtained with the Z-500
handheld analyzer.

For this study, there were usually 6 averaged spectra for each of the 208 samples
used for training and testing, i.e., a total of over 1240 class assignments, although in a
few cases, only 5 average Z-500 spectra were collected. Table 4 shows only those samples
for which all votes for either PLSDA or SVM were not to the correct garnet type, even if
most votes were for the correct class. The two classifiers returned a nearly identical total
number of ‘wrong votes’ (70 for PLSDA and 68 for SVM), though they differed in which
samples had the misclassifications. In some instances, PLSDA correctly assigned all the
votes to the correct class and SVM got every assignment incorrect (e.g., entries 14 and 20),
whereas the situation was exactly reversed for other samples (e.g., entry 3). Based on a
‘most votes’ approach, PLSDA and SVM had 12 and 11 incorrect assignments, respectively,
for an overall misclassification rate of less than 6% for both classifiers. A subset of the
errors is attributable to the mixed compositional character of these garnets, as observed
from the EMP analysis. For example, the end-member percentages for entries 1 and 13
differ less than 1%, so it is not surprising that PLSDA split the votes between the garnet
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types with the two highest percentages. Interestingly, SVM correctly assigned the samples
in both instances. However, entry 18 shows that both classifiers can be totally wrong when
the end-member compositions are very close. Even in instances where there is a relatively
large difference between the highest and next highest percentages, the assignments also can
be incorrect, especially if the sum of the end-member percentages is significantly less than
100% (e.g., entries 5, 6 and 9). The sample suite was not studied with optical microscopy
to visually determine the extent to which individual samples displayed zoning, but it
would obviously be challenging to assign a specimen to a single garnet class if it were
heterogeneous. Since the LIBS and EMP analyses were undertaken on the same samples
but not necessarily the same locations, additional differences could arise, especially for
non-homogeneous specimens. Having a larger number of samples with known chemistry
might improve classification success but improvement could be minimal given the natural
variety of garnets that can range from near end-member compositions to highly complex
solid solutions.

Table 4. Summary of voting approach for classification of garnet specimens based on chemometric analysis of spectral
data obtained by the Z-500 handheld LIBS analyzer using PLSDA and SVM. Only samples for which all votes for either
PLSDSA or SVM are not to the correct garnet type are shown. The remaining 187 samples from the training and test sets
had all spectra classified correctly. The microprobe end-member analysis percentages are included for comparison. Sample
identification numbers indicate whether the result is from the training or testing results (bold).

Entry # Sample ID Technique
Garnet Class

Grossular Andradite Uvarovite Spessartine Almandine Pyrope

1 RH-29
Microprobe 32.14% 31.67% 0.33% 8.35%

Z-500 PLSDA 3 3
Z-500 SVM 1 5

2 NMNH
47358

Microprobe 65.82% 7.87% 1.94%
Z-500 PLSDA 4 2

Z-500 SVM 5 1

3 RH-26
Microprobe 90.49% 1.76% 1.76%

Z-500 PLSDA 5
Z-500 SVM 5

4 NMNH
168752

Microprobe 49.56% 43.68%
Z-500 PLSDA 6

Z-500 SVM 1 5

5 NMNH
16321

Microprobe 46.04% 15.55% 0.99%
Z-500 PLSDA 6

Z-500 SVM 6

6 NMNH
B19516

Microprobe 29.33% 34.69% 2.88% 8.88% 1.12%
Z-500 PLSDA 6

Z-500 SVM 4 2

7 NMNH
124835

Microprobe 32.85% 41.98% 1.77%
Z-500 PLSDA 1 5

Z-500 SVM 6

8 RH-48
Microprobe 38.52% 46.03% 0.65% 5.54%

Z-500 PLSDA 4 2
Z-500 SVM 5 1

9 NMNH
107314

Microprobe 33.77% 26.34%
Z-500 PLSDA 2 1 2

Z-500 SVM 5

10 NMNH
123378

Microprobe 43.01% 53.93%
Z-500 PLSDA 5 1

Z-500 SVM 6

11 NMNH
C5704

Microprobe 33.38% 51.10%
Z-500 PLSDA 1 5

Z-500 SVM 6
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Table 4. Cont.

Entry # Sample ID Technique
Garnet Class

Grossular Andradite Uvarovite Spessartine Almandine Pyrope

12 NMNH
161032

Microprobe 34.23% 1.04% 61.21%
Z-500 PLSDA 4 1

Z-500 SVM 4 1

13 RH-83
Microprobe 2.05% 43.30% 9.11% 42.95%

Z-500 PLSDA 3 3
Z-500 SVM 6

14 NMNH
166063

Microprobe 45.38% 40.27%
Z-500 PLSDA 6

Z-500 SVM 6

15 NMNH
R3469

Microprobe 7.21% 35.89% 40.75%
Z-500 PLSDA 6

Z-500 SVM 5 1

16 NMNH
90518

Microprobe 1.91% 52.89%
Z-500 PLSDA 6

Z-500 SVM 1 5

17 NMNH
166064

Microprobe 42.35% 42.73%
Z-500 PLSDA 5 1

Z-500 SVM 4 2

18 RH-66
Microprobe 0.44% 47.30% 49.62% 0.33%

Z-500 PLSDA 6
Z-500 SVM 6

19 NMNH
C5331-1

Microprobe 44.93% 52.02%
Z-500 PLSDA 3 3

Z-500 SVM 6

20 NMNH
C5331-2

Microprobe 47.16% 50.52%
Z-500 PLSDA 6

Z-500 SVM 6

21 NMNH
143894

Microprobe 4.36% 3.17% 50.48% 39.95%
Z-500 PLSDA 4 2

Z-500 SVM 6

The results of this study suggest that one practical way to minimize the number of
incorrectly labeled samples while taking advantage of the high throughput capacity of the
LIBS technique would be to utilize two or more classifiers and adopt an ‘all votes’ approach
for label assignments. This would entail using the LIBS method to rapidly analyze a large
sample suite, carry out preprocessing and chemometric analysis with PLSDA and SVM, and
then assign a label only if all the votes for both classifiers are for the same class. The ability
of one classifier to mitigate the errors of second classifier argues for the use of more than
one tool to reduce errors. Additional classification tools could also be explored to ascertain
if better results can be achieved. In cases where there is not voting unanimity, those samples
should be examined for quantitative compositional analysis. If this metric were applied
to the present study, there are only two samples (Table 4, entries 5 and 18) that would
have been incorrectly assigned as false positives with an additional 19 samples requiring
further analysis. These results suggest that a hybrid LIBS/EMP approach would provide
approximately 99% correct labels, which is a significant improvement over the ~82% level
observed in this study, while offering substantial time and cost savings compared to having
to prepare and compositionally analyze over 200 samples.

5.2. Pegmatite Discrimination

Garnet is widespread in geochemically primitive to rare-element enriched granitic peg-
matites of the LCT family, but also occurs in NYF pegmatites [44]. Analyses of garnet from
LCT granitic pegmatites typically correspond to almandine and spessartine compositions
with minor, but variable Mg and Ca contents [45]. Pegmatite garnets with high percentages
of pyrope, grossular or andradite components are usually the result of local contamination
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of the pegmatite melt by carbonate wall rocks [46]. In LCT pegmatites, almandine is regu-
larly observed in poorly evolved pegmatites of simple mineralogy, whereas spessartine
is more common in highly fractionated Li-enriched pegmatites. Within individual zoned
pegmatites, garnet may occur in multiple generations, with compositions varying from pre-
dominantly almandine in the early crystallizing outermost zones and units, to spessartine
in interior and later more differentiated units dominated by albite- and Li-mica-bearing
assemblages. In REE-enriched NYF granitic pegmatites, Mn-rich almandine is most likely
to occur as the dominant garnet species, whereas spessartine predominates in massive,
non-miarolitic amazonite-bearing NYF pegmatites and rarely in miarolitic cavities even
where Li-mineralization is absent. The second objective of this study was to ascertain if
garnets occurring in LCT pegmatites could be distinguished from those present in their
NYF counterparts.

Figure 8 shows PCA plots for the RT-100 and Z-500 LIBS analyses for garnets occurring
in LCT and NYF granitic pegmatites. The variance in data is similar for both instruments
with 51.0%, 15.7% and 8.1% versus 52.4%, 19.0% and 6.7% for the three principal com-
ponents of the RT-100 and Z-500 data sets, respectively. Neither data set permits clear
differentiation of LCT-affiliated garnet from NYF type garnets. However, the Z-500 LIBS
data does effectively discriminate between almandine and spessartine garnet across both
pegmatite types. Furthermore, the separate PCA plots of garnet from LCT and NYF peg-
matites shown in Figure 9 demonstrate that LIBS analysis successfully distinguishes single
pegmatite bodies (e.g., Little 3, Ruggles localities) and pegmatite groups (e.g., Amelia,
Spruce Pine localities). The PCA plots also reasonably separates metamorphic-affiliated
garnet from pegmatite-generated garnets. For both LCT and NYF in the PCA plots, the
garnet data highlights the change in garnet composition as it relates to increasing mineral
and chemical complexity of the pegmatites via chemical fractionation. In our dataset,
almandine is associated with muscovite-rich pegmatites (e.g., Spruce Pine district), peg-
matites hosting significant uranium and/or phosphate minerals (e.g., Ruggles locality) to
the primitive units/zones of beryl-columbite- and spodumene-bearing pegmatites (Gover-
nador Valadares locality). Fe-rich spessartine occurs in the albite-rich, beryl-bearing Weld
pegmatite to elbaite- and lepidolite-bearing pegmatites of Minas Gerais, whereas near end-
member spessartine resides in the topaz-bearing Little 3 pegmatite and the NYF-affiliated
amazonite- and topaz-bearing pegmatites of the Amelia pegmatite district.

Figure 8. PCA scores plots for processed LIBS broadband spectra for garnets from 10 LCT pegmatites and 17 NYF pegmatites
(Table A2, Appendix A) acquired with the RT-100 laboratory LIBS system (left) and Z-500 handheld LIBS analyzer (right)
showing the compositional distinction of almandine and spessartine garnets. The green dashed lines enclose spessartine
garnets, and the solid red lines enclose almandine garnets.
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Figure 9. PCA scores plots for processed LIBS broadband spectra for garnets from 10 LCT pegmatites and 17 NYF pegmatites
(Table A2, Appendix A) acquired with the Z-500 handheld analyzer showing the unique compositional character of garnets
from pegmatites of different degrees of chemical fractionation. The green dashed lines enclose spessartine garnets, and the
solid red and purple lines enclose almandine garnets.

6. Summary and Future Work

The capability to obtain geochemical information outside of the confines of the tra-
ditional laboratory setting using handheld analyzers has been one of most important
recent technological advancements in analytical chemistry. Laser-induced breakdown
spectroscopy (LIBS) is an established technique of analytical atomic spectrometry that
today offers, in handheld analyzer form, a convenient, reliable, and versatile technique for
localized material analysis. The application of both laboratory and handheld LIBS across
multiple domains of the geosciences has been described in the literature (see e.g., [47–56]
and references therein). LIBS has a persuasive set of advantages that include its sensitivity
to all elements, particularly the light elements (Z < 20) that cannot be analyzed by other
field-portable methods; its capability to analyze material in any state–solid, liquid, or gas
with little to no sample preparation; and its ability for rapid analysis in situ under ambi-
ent environmental conditions. Additionally, LIBS affords high spatial resolution analysis
for lateral and depth compositional profiling. Here we have considered the use of LIBS
spectral analysis, used in conjunction with chemometric techniques and pre-established
databases, to identify and discriminate unknown materials in two possible contexts outside
the laboratory–in a museum mineral collection to rapidly identify mislabeled specimens in
real time and geological exploration fieldwork to recognize and distinguish garnets from
LCT and NYF pegmatites.

Utilizing a collection that consisted of 42 almandines, 40 andradites, 54 grossulars,
18 pyropes, 48 spessartines, and 6 uvarovites that originated from a wide range of igneous
and metamorphic rock associations and were analyzed by both a laboratory LIBS system
and a handheld LIBS analyzer, we were able to ascertain based on actual chemical compo-
sitions determined by EMP analysis, that over 17% of the 208 samples had been incorrectly
labeled. Through PCA, we observed that the six garnet types are differentiated by three
vectors denoting the solid solution of divalent cations in the dodecahedral X structural site
and octahedral trivalent cations in Y structural site that have different geometric orienta-
tions in the PCA plots and concluded that LIBS analysis is effective in discriminating the six
common garnet species based on their major element composition. Overall chemometric
analysis by SVM was equivalent to PLSDA for garnet discrimination for both the laboratory
LIBS and handheld LIBS data sets. Through the application of PCA to the subset of spectral
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data for 27 pegmatite garnets (10 having LCT associations and 17 having NYF associations),
we were able to distinguish spessartine and from almandine and discriminate pegmatite
localities characterized by different degrees of parent melt chemical fractionation.

A demonstration effort is planned to validate the museum labeling study presented
here for garnet type discrimination. This follow-on study will use a handheld LIBS analyzer
to examine an entire museum collection of garnets, using either the >800 specimens
in the mineralogy collection of the Yale Peabody Museum of Natural History or the
>3500 specimens in the mineralogy collection of the Nation Museum of Natural History.
Each sample in the collection would be analyzed and assigned a type-label based upon
a comparison against the spectral library developed from this study of 208 garnets of
known composition. These labels would be validated by subsequently analyzing a random
selection of samples by quantitative chemical analysis by either electron microprobe or
X-ray fluorescence analysis. Additional work also should be carried out to ensure that
the LIBS spectra collected are representative of the bulk composition using tools such as
spectral similarity index or intensity filters [57]. It will also be helpful to acquire spectra
from a larger number of locations. This approach will help ensure that in those cases where
substantial heterogeneity exists electron microprobe can be used to classify the sample
with greater confidence.

Granitic pegmatites can host a variety of minerals that look similar in outcrop or hand
samples and are difficult to distinguish visually. Handheld LIBS units could be a powerful
tool for rapidly distinguishing different black (e.g., biotite, columbite group minerals,
wodginite, cassiterite, hornblende or augite), white (e.g., albite, petalite, pollucite, quartz),
green (e.g., apatite, elbaite, gahnite), or pink minerals (e.g., elbaite, almandine-spessartine)
in the field. The rapid identification of common and accessory pegmatite minerals using a
field-portable LIBS instrument may prove to be a powerful tool in exploration programs
attempting to identify pegmatites that may be potential sources of critical minerals.
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Appendix A

Table A1. Garnet Sample Suite.

Catalog Number Original Sample
Label

EM-Based
Identification Locality

Almandine

RH-16 Alm Alm Roxbury, Litchfield Co., Connecticut, USA
RH-17 Alm Alm Roxbury, Litchfield Co., Connecticut, USA
RH-18 Alm Alm Roxbury, Litchfield Co., Connecticut, USA
RH-19 Alm Alm Roxbury, Litchfield Co., Connecticut, USA
RH-22 Alm Alm South Glastonbury, Hartford Co., Connecticut, USA
RH-39 Sps Alm Garnet Hill, White Pine Co., Nevada, USA
RH-41 Alm Alm Serrote Redondo, Paraiba State, Brazil
RH-44 Alm Alm Altay, Xinjiang, China
RH-45 Sps Alm Ely (nearby), White Pine Co., Nevada, USA
RH 53 (?) Alm Erongo Mountains, Erongo Region, Namibia
RH-60 Alm Alm Sedalia Mine near Salida, Chaffee Co., Colorado, USA
RH-66 (?) Alm Nagar Valley, Northern Pakistan, Pakistan
RH-68 Alm Alm Kievy, Kola Peninsula, Russia
RH-70 Grs Alm Gejiu, Yunnan, China

RH-80 Alm Alm Bella Vista Claim, Alaska Garnet Mines, Petersburg
Borough, Alaska, USA

NMNH-17909 Alm Alm Thorn Mountain, Macon Co., North Carolina, USA
NMNH-74986 Alm Alm Roxbury, Litchfield Co., Connecticut, USA
NMNH-80219 Alm Alm Ray Mica Mine, Yancey Co., North Carolina, USA
NMNH-82575 Prp Alm Bílina, Ústí nad Labem Region, Czech Republic

NMNH-90518 Alm Alm H.H. Barton & Sons Company mine, Gore Mountain,
Warren Co., New York, USA

NMNH-104496 Alm Alm Ötztal, Tyrol, Austria
NMNH-106097 Sps Alm Golconda Mine, Minas Gerais State, Brazil
NMNH-107060 Alm Alm Schneeberg, Tyrol, Austria
NMNH-107061 Alm Alm Zillertal, Tyrol, Austria
NMNH-107089 Alm Alm Roxbury, Litchfield Co., Connecticut, USA
NMNH-107140 Alm Alm Mink’s Pond, Grafton Co., New Hampshire, USA
NMNH-107142 Alm Alm Brooklyn Tunnel, Manhattan, New York, USA
NMNH-114216 Alm Alm Penland, Mitchell Co., North Carolina, USA
NMNH-132542 Alm Alm Roxbury, Litchfield Co., Connecticut, USA
NMNH-132686 Alm Alm Gassetts, Windsor Co., Vermont, USA

NMNH-134685 Alm Alm Ruggles Mine, Grafton, Grafton Co., New Hampshire,
USA

NMNH-143894 Prp Alm Tanzania

NMNH-166062 Alm Alm Chestnut Flats mine, Burnsville, Mitchell Co., North
Carolina, USA

NMNH-166064 Alm Alm Chestnut Flats mine, Burnsville, Mitchell Co., North
Carolina, USA

NMNH-B19430 Alm Alm Ötztal, Tyrol, Austria
NMNH-C2779 Alm Alm Zillertal, Tyrol, Austria
NMNH-C2780 Alm Alm Schwarzenstein, Tyrol, Austria

NMNH-C5331-1 Sps Alm Topaz Mountain, Juab Co., Utah, USA
NMNH-C5331-2 Sps Alm Topaz Mountain, Juab Co., Utah, USA
NMNH-R16774 Sps Alm Governador Valadares, Minas Gerais State, Brazil
NMNH-R3429 Alm Alm Roxbury, Litchfield Co., Connecticut, USA (chlorite schist)

NMNH-R3429 Alm Alm Roxbury, Litchfield Co., Connecticut, USA (muscovite
schist)
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Catalog Number Original Sample
Label

EM-Based
Identification Locality

Pyrope

RH-75 Adr Prp Mutumba, Madagascar
RH-76 Prp Prp Umba River Valley, Tanzania/Kenya
RH-77 Prp Prp Ivory Coast
RH-81 Prp Prp Africa

NMNH-83108 Prp Prp Navajo Indian Reservation, Apache Co., Arizona, USA
NMNH-92684 Prp Prp Mason Mountain mine, Mason Co., North Carolina, USA

NMNH-107198 Prp Prp Navajo Indian Reservation, Apache Co., Arizona, USA
NMNH-107199 Prp Prp Třebonice, Bohemia Region, Czech Republic
NMNH-115588 Prp Prp Mason Mountain mine, Mason Co., North Carolina, USA
NMNH-120315 Prp Prp Navajo Indian Reservation, Apache Co., Arizona, USA
NMNH-122845 Prp Prp Garnet Ridge, Apache Co., Arizona, USA
NMNH-128282 Prp Prp Monastery Mine, Free State Province, South Africa

NMNH-128285 Prp Prp Newlands mine, Barkly West, Northern Cape Province,
South Africa

NMNH-128290 Prp Prp Kamferdam Mine, Kimberley, Northern Cape Province,
South Africa

NMNH-133612 Prp Prp Rauhammaren, Åheim, Norway
NMNH-162498 Prp Prp Dora Maira Massif, Western Alps, Italy
NMNH-R3418 Prp Prp Trziblitz, Bohemia Region, Czech Republic
NMNH-R3421 Prp Prp Kimberley, Northern Cape Province, South Africa

Spessartine

RH-24 Adr Sps Henson’s Branch, Watauga Co., North Carolina, USA
RH-25 Grs Sps Ducktown Mine, Polk Co., Tennessee, USA
RH-30 Sps Sps Fujian Province, China
RH-40 Sps Sps Little 3 Mine, Ramona, San Diego Co., California, USA
RH-55 Sps Sps Tongbei, Fujian Province, China
RH-59 Sps Sps Tongbei, Fujian Province, China
RH-63 Sps Sps Minas Gerais State, Brazil
RH-83 Prp Sps Umba River Valley, Tanzania/Kenya

NMNH-48559 Sps Sps Nathrop, Chaffee Co., Colorado, USA
NMNH-48559-1 Sps Sps Nathrop, Chaffee Co., Colorado, USA
NMNH-48745 Sps Sps Amelia, Amelia Co., Virginia, USA

NMNH-48745-1 Sps Sps Amelia Court House, Amelia Co., Virginia, USA
NMNH-80457 Sps Sps Nathrop, Chaffee Co., Colorado, USA

NMNH-105183 Sps Sps Rutherford mine, Amelia, Amelia Co., Virginia, USA
NMNH-107136 Alm Sps Gilsum, Cheshire Co., New Hampshire, USA
NMNH-107153 Alm Sps Spruce Pine, Mitchell Co., North Carolina, USA

NMNH-107284-1 Sps Sps Broken Hill, New South Wales, Australia
NMNH-107286 Sps Sps Governador Valadares, Minas Gerais State, Brazil
NMNH-107304 Sps Sps Avondale, Delaware Co., Pennsylvania, USA

NMNH-107304-1 Sps Sps Avondale, Delaware Co., Pennsylvania, USA
NMNH-114143 Sps Sps Rutherford mine, Amelia, Amelia Co., Virginia, USA
NMNH-116955 Sps Sps Broken Hill, New South Wales, Australia

NMNH-118214 Alm Sps Pine Mountain mine, Spruce Pine, Mitchell Co., North
Carolina, USA

NMNH-118215 Alm Sps Pine Mountain mine, Spruce Pine, Mitchell Co., North
Carolina, USA

NMNH-134521 Sps Sps Ermo Mine, Carnaúba Dos Dantas, Rio Grande do Norte,
Brazil

NMNH-135296 Sps Sps Amelia Court House, Amelia, Rutherford Mine, Virginia,
USA

NMNH-135296 Sps Sps Rutherford mine, Amelia, Amelia Co., Virginia, USA
NMNH-140187 Sps Sps Broken Hill, New South Wales, Australia
NMNH-140200 Sps Sps Brazil
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Catalog Number Original Sample
Label

EM-Based
Identification Locality

NMNH-158849 Sps Sps Broken Hill, New South Wales, Australia
NMNH-158900 Sps Sps Broken Hill, New South Wales, Australia
NMNH-164543 Sps Sps Minas Gerais State, Brazil

NMNH-166063 Alm Sps Chestnut Flats mine, Spruce Pine, Mitchell Co., North
Carolina, USA

NMNH-166829 Sps Sps Ash Creek, Pinal Co., Arizona, USA
NMNH-170978 Sps Sps Kaokoveld, Kunene Region, Namibia
NMNH-174389 Sps Sps Amelia, Amelia Co., Virginia, USA
NMNH-B19543 Sps Sps Nathrop, Chaffee Co., Colorado, USA
NMNH-B19547 Sps Sps Nathrop, Chaffee Co., Colorado, USA
NMNH-C2719 Sps Sps Broken Hill, New South Wales, Australia
NMNH-C2726 Sps Sps Nathrop, Chaffee Co., Colorado, USA
NMNH-R3437 Sps Sps Broken Hill, New South Wales, Australia
NMNH-R3448 Sps Sps Allen Mica mine, Amelia, Amelia Co., Virginia, USA
NMNH-R3469 Adr Sps Franklin Mine, Sussex Co., New Jersey, USA
NMNH-R6771 Sps Sps Amelia, Amelia Co., Virginia, USA
NMNH-R9587 Sps Sps Nathrop, Chaffee Co., Colorado, USA
NMNH-R11280 Sps Sps Broken Hill, New South Wales, Australia
NMNH-R14530 Sps Sps Nathrop, Chaffee Co., Colorado, USA

WELD-2 Sps Sps Weld, Franklin Co., Maine, USA

Grossular

RH-15 Grs Grs Aosta Valley, Valle d’Aost Autonomous Region, Italy
RH-20 Grs Grs Bishop, Inyo Co., California, USA
RH-26 Uv Grs Black Lake, Québec, Canada

RH-27 Grs Grs Sierra de Cruces, Sierra Mojada municipality, Coahuila,
Mexico

RH-29 Grs Grs Angola#1, Sibindi Cercle, Kayes Region, Mali
RH-33 Grs Grs Coyote Front Range, Bishop, Inyo Co., California, USA
RH-34 Grs Grs Cerro El Toro, Sonora State, Mexico
RH-37 Grs Grs Jeffrey Mine, Québec, Canada
RH-46 Grs Grs Viluy River, Siberia, Russia

RH-49 Grs Grs Sierra de Cruces, Sierra Mojada municipality, Coahuila,
Mexico

RH-50 Grs Grs Havilah, Kern Co., California, USA

RH-51 Grs Grs Sierra de Cruces, Sierra Mojada municipality, Coahuila,
Mexico

RH-52 Grs Grs Sierra de Cruces, Sierra Mojada municipality, Coahuila,
Mexico

RH-58 Grs Grs Sierra de Cruces, Sierra Mojada municipality, Coahuila,
Mexico

RH-61 Grs Grs Akhtaragda River, Siberia, Russia
RH-69 Adr Grs Mali

NMNH-16321 Adr Grs Ural Mountains, Chelyabinsk Oblast, Russia
NMNH-47358 Adr Grs Burnet, Burnet Co., Texas, USA

NMNH-103111 Grs Grs Yakutia-Sakha Republic, Russia
NMNH-107055 Grs Grs Eden Mills, Lamoille Co., Vermont, USA

NMNH-107232-1 Adr Grs Nightingale Mining District, Pershing CO., Nevada, USA
NMNH-107260 Adr Grs Snohomish, Snohomish Co., Washington, USA
NMNH-112962 Grs Grs Eden Mills, Lamoille Co., Vermont, USA
NMNH-117637 Grs Grs Eden Mills, Lamoille Co., Vermont, USA

NMNH-121912 Grs Grs Sierra de Cruces, Sierra Mojada municipality, Coahuila,
Mexico

NMNH-126947 Grs Grs Jeffrey Mine, Quebec, Canada
NMNH-127138 Grs Grs Eden Mills, Lamoille Co., Vermont, USA
NMNH-132506 Grs Grs Eden Mills, Lamoille Co., Vermont, USA
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Label

EM-Based
Identification Locality

NMNH-132617 Grs Grs Ruberoid Asbestos mine, Eden Mills, Lamoille Co.,
Vermont, USA

NMNH-139717 Grs Grs Orford, Québec, Canada
NMNH-143887 Grs Grs Kimolo Region, Tanzania
NMNH-143961 Hgr Grs Buffelsfontein, North West Province, South Africa
NMNH-144275 Grs Grs Mwadui Workings, Tanzania

NMNH-145678 Grs Grs Sierra de Cruces, Sierra Mojada municipality, Coahuila,
Mexico

NMNH-145817 Grs Grs Jeffrey Mine, Québec, Canada

NMNH-150761 Hgr Grs Commercial quarry, Crestmore, Riverside Co., California,
USA

NMNH-153479 Grs Grs Jeffrey Mine, Québec, Canada

NMNH-154129 Grs Grs Sierra de Cruces, Sierra Mojada municipality, Coahuila,
Mexico (green)

NMNH-154129 Grs Grs Sierra de Cruces, Sierra Mojada municipality, Coahuila,
Mexico (gray)

NMNH-154129 Grs Grs Sierra de Cruces, Sierra Mojada municipality, Coahuila,
Mexico (pink)

NMNH-154129 Grs Grs Sierra de Cruces, Sierra Mojada municipality, Coahuila,
Mexico (black)

NMNH-159513 Grs Grs Jeffrey Mine, Québec, Canada
NMNH-168752 Cdr Grs Katkamsandi, Jharkhand State, India

NMNH-171584 Grs Grs Sierra de Cruces, Sierra Mojada municipality, Coahuila,
Mexico

NMNH-172138 Grs Grs Belvidere mine, Lowell, Orleans Co., Vermont, USA
NMNH-B19516 Adr Grs Somma-Vesuvius complex, Naples, Campania, Italy

NMNH-C5946-2 Grs Grs Sierra de Cruces, Sierra Mojada municipality, Coahuila,
Mexico (pink)

NMNH-C5946-2 Grs Grs Sierra de Cruces, Sierra Mojada municipality, Coahuila,
Mexico (yellow)

NMNH-R7586-1 Grs Grs Sierra Los Muertos, Chihuahua State, Mexico
NMNH-R11362 Grs Grs Thetford Mines, Québec, Canada
NMNH-R17257 Grs Grs Jeffrey Mine, Quebec, Canada
NMNH-R18145 Grs Grs Jeffrey Mine, Québec, Canada
NMNH-R18421 Grs Grs Jeffrey Mine, Quebec, Canada
NMNH-R19868 Grs Grs Milford, Beaver Co., Utah, USA

Andradite

RH-31 Adr Adr Osgood Mountains, Humboldt Co., Nevada, USA
RH-35 Adr Adr N’chwaning Mine, Northern Cape Province, South Africa
RH-36 Adr Adr Trantimou, Kayes Region, Mali
RH-48 Grs Adr Tumiq Tal, Gilgit-Baltistan District, Pakistan
RH-54 Grs Adr Erongo Mountains, Erongo Region, Namibia
RH-64 Adr Adr Jeffrey Mine, Québec, Canada
RH-65 Adr Adr Kirman, Kerman Province, Iran
RH-67 Adr Adr Sarbayskii Mine, Kustanay Oblast, Kazahkstan
RH-71 Adr Adr Kazahkstan

NMNH-45263 Scm Adr Magnet Cove, Hot Spring Co., Arkansas, USA
NMNH-95204 Adr Adr Franklin Mine, Sussex Co., New Jersey, USA

NMNH-106348 Adr Adr Virginia Lime and Stone Company quarry, Loudon Co.,
Virginia, USA

NMNH-107251 Adr Adr Onca de Fier, Caras-Severin, Romania
NMNH-107258 Adr Adr Zermatt, Valais Canton, Switzerland

NMNH-107258-1 Adr Adr Zermatt, Valais Canton, Switzerland
NMNH-107314 Uv Adr Red Ledge mine, Nevada Co., California, USA
NMNH-112864 Scm Adr High Atlas Mountains, Morocco
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NMNH-113829 Adr Adr Zermatt, Valais Canton, Switzerland
NMNH-116725 Adr Adr Sondrio, Val Malenco, Lombardy Province, Italy
NMNH-117800 Scm Adr Magnet Cove, Hot Spring Co., Arkansas, USA
NMNH-123378 Grs Adr Eden Mills, Lamoille Co., Vermont, USA
NMNH-124835 Adr Adr Copper Mountain, Prince of Wales Island, Alaska, USA
NMNH-126160 Adr Adr Sondrio, Val Malenco, Lombardy Province, Italy
NMNH-143917 Alm Adr Schwarzewand, Salzburg, Austria
NMNH-146475 Adr Adr Condore, Valle di Susa, Piedmont Province, Italy
NMNH-147797 Grs Adr Las Truchas, Oaxaca, Mexico
NMNH-171064 Adr Adr La Prieta Linda mine, Chihuahua, Mexico
NMNH-173775 Adr Adr Erongo Mountains, Erongo Region, Namibia
NMNH-B19470 Adr Adr Zermatt, Valais Canton, Switzerland
NMNH-B19492 Adr Adr Onca de Fier, Caras-Severin, Romania
NMNH-B19638 Adr Adr Sondrio, Val Malenco, Lombardy Province, Italy
NMNH-C2744 Adr Adr Onca de Fier, Caras-Severin, Romania
NMNH-C2763 Adr Adr Conway, Carroll County, New Hampshire, USA
NMNH-C6771 Adr Adr Franklin Mine, Sussex Co., New Jersey, USA
NMNH-R3467 Adr Adr Franklin Mine, Sussex Co., New Jersey, USA
NMNH-R4284 Adr Adr Choto Nagpur, Hazaribagh, Bihar, India
NMNH-R17196 Adr Adr Chihuahua, Mexico

Uvarovite

RH-62 Uv Uv Saranovskii Mine, Ural Mountains, Russia
NMNH-107315 Uv Uv Yermo, San Bernadino Co., California, USA
NMNH-123380 Uv Uv Outokumpu, North Karelia, Finland
NMNH-139716 Uv Uv Jackson, Amador Co., California, USA
NMNH-161032 Uv Uv Outokumpu, North Karelia, Finland

NMNH-C5704 Uv Uv Blue Point Claim, Jacksonville, Tuolumne Co., California,
USA

Catalog number abbreviations: NMNH—National Museum of Natural History, Smithsonian Institution collection, RH—R. Harmon garnet
collection, WELD—Weld pegmatite. Garnet species abbreviations: Alm = almandine, Pyp = pyrope, Sps = spessartine, Grs = grossular,
Adr = andradite, Uv = uvarovite, Cdr = calderite, Hgr = hydrogrossular, Scm = schorlomite, (?)—undetermined.

Table A2. Pegmatite Sample List.

Sample ID EM-Based Classification Locality

LCT Pegmatites

RH-40 spessartine Little 3 Mine, CA, USA
NMNH-80219 almandine Ray Mica Mine, NC, USA

NMNH-106097 almandine Golconda Mine, Minas Gerais State, Brazil
NMNH-107140 almandine Mink’s Pond, NH, USA
NMNH-107286 spessartine Minas Gerais State, Brazil
NMNH-134685 almandine Ruggle’s Mine, NH, USA
NMNH-140200 spessartine Minas Gerais State, Brazil
NMNH-164543 spessartine Minas Gerais State, Brazil
NMNH-R16774 almandine Governador Valadares, Minas Gerais State, Brazil

WELD-2 spessartine Weld, ME, USA

NYF Pegmatites

RH-24 spessartine Henson’s Branch, NC, USA
NMNH-48745 spessartine Amelia Court House, VA, USA

NMNH-48745-1 spessartine Amelia, VA, USA
NMNH-105183 spessartine Amelia, VA, USA
NMNH-107153 spessartine Spruce Pine, NC, USA
NMNH-114143 spessartine Rutherford Mine, VA, USA
NMNH-114216 almandine Spruce Pine, NC, USA
NMNH-118214 spessartine Spruce Pine, NC, USA



Minerals 2021, 11, 705 26 of 27

Table A2. Cont.

Sample ID EM-Based Classification Locality

NMNH-118215 spessartine Spruce Pine, NC, USA
NMNH-135296 spessartine Amelia, VA, USA
NMNH-135296 spessartine Rutherford Mine, VA, USA
NMNH-166062 almandine Chestnut Flats, NC, USA
NMNH-166063 spessartine Spruce Pine, NC, USA
NMNH-166064 almandine Spruce Pine, NC, USA
NMNH-174389 spessartine Amelia, VA, USA
NMNH-C5278 almandine Hawk Mine, NC, USA
NMNH-R6771 spessartine Amelia, VA, USA
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