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Abstract: The purpose of this research was to evaluate the possibility of using gold mine waste rocks
(GMWRs) as alternative raw material for the manufacturing of fired bricks. The feasibility study was
assessed through (i) physical, chemical, mineralogical and environmental characteristics of GMWRs;
(ii) determination of the natural clay (NC) substitution effect when using GMWRs; (iii) the effect of
the firing temperature on the mechanical and physical properties of the fired bricks. Five mixtures of
NC and GMWRs were studied. The percentages of substitution of NC with GMWRs varied from
0 to 100%. The brick specimens were fired at 900 ◦C, 1000 ◦C and 1050 ◦C. The results show that
increasing the firing temperature improved the flexural strength and density of the bricks, while the
substitution of NC with GMWRs caused a reduction in the mechanical resistance of the bricks and an
increase in their porosity and, consequently, their water absorption rate. However, the properties
of bricks that contained up to 80 wt% of GMWRs and fired at 1000 ◦C and 1050 ◦C satisfied the
requirements set by the applicable civil engineering and environmental standards. This was found to
be an efficient and sustainable solution to mitigate environmental hazards and better manage mining
wastes, concurrently producing marketable products from them, which is in accordance with the
circular economy concept.

Keywords: valorization; mining waste rocks; fired bricks; environment; clays; mechanical properties

1. Introduction

The generation of mining waste rocks is an inevitable consequence of the mining
industry. It constitutes an inseparable part of the ore extract and treating process [1].
The management of mining wastes is becoming a world concern due to: (i) their high
amount, which is estimated to be between 20 and 25 billion tons of solid waste each
year [2]; (ii) their environmental impact [3]; (iii) their expensive restoration costs [4];
(iv) and potential human health risks [5–7]. The implementation of both efficient and
sustainable solutions to better manage this waste is therefore becoming a more serious
priority. Recently, a lot of research has been conducted to find and develop alternative
solutions for the reuse of these mining wastes [8–15], especially as alternative secondary
raw materials in the construction sector [16–22]. The aim is to reduce the huge quantity of
waste, its environmental impact, and to contribute to the conservation of non-renewable
material resources for future generations.

On the other hand, the new environmental regulations insist on efficient and sustain-
able management of all types of wastes [23,24]. Consequently, all the mining companies

Minerals 2021, 11, 695. https://doi.org/10.3390/min11070695 https://www.mdpi.com/journal/minerals

https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0001-5341-1901
https://orcid.org/0000-0003-3193-1046
https://doi.org/10.3390/min11070695
https://doi.org/10.3390/min11070695
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/min11070695
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min11070695?type=check_update&version=3


Minerals 2021, 11, 695 2 of 17

are trying to manage their wastes, either by reducing their production upstream, or by
recovering/recycling/reusing these wastes if possible, or both.

In the literature, many economic and environmentally friendly solutions were shown
to be effective and safe for reusing mining waste as alternative raw materials. The aim
is to manufacture building and construction materials from waste, such as fired bricks,
ceramics, lightweight aggregates, concrete, mortar, geopolymers and road construction.
For example in Morocco, Taha et al. [25–27] showed that fired bricks with properties similar
to conventional ones can be produced by substituting 30% of natural clay with calamine
waste and 100% of coal waste. Loutou et al. [28] and Bayoussef et al. [29] produced high-
performance ceramics and lightweight aggregates using phosphate sludge and clay by-
product from phosphate mines. Argane et al. [30–32] and Elmachi et al. [33] used mining
wastes as alternative fine sands for mortar and aggregates for concrete. Cementitious
materials, including geopolymers and ecological cement, were developed using phosphate
mining by-products [34,35]. Through an experimental study, Amrani et al. [36] investigated
the possibility of phosphate wastes disposal in the road construction field. The results of
this study confirmed that the obtained physical, geotechnical, chemical, mineralogical and
environmental properties of wastes satisfy the conventional characteristics to be used as
materials for embankments. Therefore, phosphate waste can be used successfully in the
construction of roads by replacing natural aggregates.

Internationally, Contreras et al. [37] demonstrated the feasibility of integrating “il-
menite mud” waste in the fabrication of ceramic tiles. The results of their study showed
that the use of mud as an additive (3–10%) can improve the sintering properties, increase
the mechanical strength (about 15%), and reduce the apparent porosity and water ab-
sorption (about 50%). Onuaguluchi et al. [38,39] evaluated the incorporation of copper
residues in mortar formulation. The obtained samples provided high resistance to com-
pression, abrasion, acid attack and penetration chlorides compared to a reference mortar.
Thomas et al. [40] studied the feasibility of using copper tailings as a substitute for nat-
ural sand for concrete production. In their study, concrete samples were formulated by
using copper tailings as fine aggregates (0 to 60%). The results showed that concrete
mixtures made with a 60% substitution rate present high mechanical strength and satis-
factory durability. Chen et al. [41] investigated the potential of producing bricks by using
hematite residues. It was observed that the proportion of 84% hematite residues can
provide high-quality bricks that satisfy the required characteristics in China according to
the conventional standards. Ali Umara Shettima Shettima et al. [42] evaluated iron ore
tailing (IOT) as a replacement for river sands in concrete. Five concrete mixtures were
formulated with different mass ratios of 0, 25%, 50%, 75% and 100% of IOT as sand and
using a 0.5 water/cement ratio (W/C). The results revealed that the compressive strength
of the fabricated samples was improved in comparison with the reference concrete sample
no matter what the considered age was. Therefore, using IOT is recommended for concrete
as a sand replacement. In the same approach, Benarchid et al. [43] assessed the reuse of
low-sulfide mining waste rocks as aggregates for concrete according to recycling guidelines
of non-hazardous inorganic waste in Quebec, Canada. The obtained results of the com-
pressive strength test revealed the feasibility of manufacturing concrete using low-sulfide
mining waste.

In the same context, this study was conducted to evaluate the feasibility of producing
fired bricks using GMWRs from the Agadir region, Morocco. The choice of this valorization
process was based on the characteristics of the wastes and especially the biggest challenge
of reducing the transport costs for waste producers and potential consumers. The aim
of this research was to partially substitute the natural clays (NC) used in the fabrication
of fired bricks with the gold mine waste rocks (GMWRs) from Agadir region, Morocco.
The obtained specimens were sintered at different temperatures (900 ◦C, 1000 ◦C and
1050 ◦C). Further to this, the mechanical, physical, mineralogical and environmental
characteristics of the specimens (flexural strength, water absorption, density, porosity and
toxicity characteristic leaching procedure (TCLP) test) were evaluated.
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2. Materials and Methods
2.1. Materials and Research Methodology

Representative samples of gold mine waste rocks were sampled from a gold mining
site located in the Agadir region, Morocco. The GMWR sample was crushed and ground
according to the desired granulometry for brick preparation. The natural clay that is
commonly used in the production of high-quality fired bricks was also sampled in the
same region. The raw materials were prepared for further characterizations and processing
into fired bricks through the methodology described in Figure 1.
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2.2. Characterization Methods

The physical properties, chemical and mineralogical composition and thermal and
environmental behavior of the NC and GMWRs were determined through laboratory tests,
in accordance with the French Association for Standardization (AFNOR) and the American
Society for Testing and Materials (ASTM) standards. The toxicity characteristic leaching
procedure (TCLP) was used to determine the mobility of heavy metals in the fired bricks
made from GMWRs. The thermogravimetric analysis was performed in an air atmosphere
with 10 ◦C/min as the heating rate to analyze the thermal behavior of the raw materials.

For the X-ray diffraction (X’pert Philips, PANalytical X’Pert-Pro, 2009 vintage, Notting-
ham, UK), Cu Kα radiation was used to identify the crystalline phases in the NC, GMWRs
and fired samples. The chemical composition of the raw materials was analyzed using
inductively coupled plasma with atomic emission spectroscopy (ICP–AES) (Perkin Elmer
Optima 3100 RL, PerkinElmer, Waltham, MA, USA) following a total HNO3/Br2/HF/HCl
digestion, with a detection limit that varied depending on the analyzed element.

The carbon (C) and sulfur (S) contents were determined using LECO equipment with
a detection limit of ±0.05 wt%.

A laser analyzer (Malvern Mastersizer 2000 Ver. 5.12F, Malvern Instruments Ltd.,
Malvern, UK) was used to determine the particle size curve of each sample. The specific
gravity (GS) and bulk density were measured following the NF EN 1097-6 (pycnometer
method) and NF EN 1097-3 standards, respectively. The plasticities of the NC and GMWRs
were assessed using Atterberg limits according to NF P 9405 1. During the analysis, three
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replicates of each analysis were performed. The results presented in the figures represent
the average of the values.

2.3. Manufacture of Laboratory Brick Samples

In this study, the approach adopted is described in Figure 1. First, the raw materials
(NC and GMWRs) were prepared and homogenized to formulate mixes with different
portions of GMWRs (0, 20, 40, 60, 80 and 100 wt%). The formulations were mixed with an
adequate amount of water and rectangular bricks with dimensions of 10 mm × 20 mm
× 100 mm were formed, employing a conventional method used by potters and adopted
by Geoenvironment and Civil Engineering Laboratory (L3G) of the Faculty of Sciences
and Techniques of Marrakech [44]. Figure 2 presents the device used to produce the brick
specimens. Two small wooden plates with a thickness of 1 cm served as the bilge during
pressing so that all the bricks were of the same thickness. After pressing, the wooden plate
was superimposed on paper of the same size. The base area of the wood plate corresponded
to that of the brick to be prepared. The brick was then cut with a sharp blade using the
wooden plate as a model.
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The brick samples were air-dried at ambient temperature for 48 h, and then fired at
the three temperatures—900, 1000 and 1050 ◦C—using a muffle furnace, with 30 ◦C/h as
the heating rate and held for 3 h at the required temperatures.

2.4. Fired Bricks’ Characterization

To evaluate the influence of the incorporation of GMWRs in fired clay bricks, the
technological properties were determined. Four brick samples per mixture were tested.
Flexural strength was measured using a SYNTAX testing machine (SYNTAX 100 kN and
300 kN, 3R company, Montauban, French) following the ASTM C 674 (1999) standard [45].
The density, porosity and water absorption of the bricks were determined according to
ASTM-C373 (1999) [46].
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Finally, the leaching of heavy metals in the fired bricks was assessed using the TCLP
test, following the Environmental Protection Agency (EPA) method 1311 [47] and the
MA-100-Lix.com.1.1 standard (2010) [48].

3. Results and Discussion
3.1. Raw Materials Characterization
3.1.1. Physical, Chemical and Mineralogical Properties

Table 1 summarizes the different physical and chemical properties of the raw materials
used in this research. Figure 3 illustrates the grain size distribution of the raw materials.
The NC and GMWR samples show a relatively similar grain size distribution, with the
proportion of particles between 20 µm and 70 µm greater in the GMWRs. Furthermore,
they presented other similar physical properties, such as bulk density (1.5 g·cm−3) and
specific gravity (2.6 g·cm−3). The plasticity index of the GMWRs was lower than the one of
the NC. This was due to the amount of clayey materials in the NC compared to those in
the GMWRs.

Table 1. Physico-chemical properties of the raw materials.

Chemical Compositions (%) Physical Properties Mixture Designs (%)

DL * NC GMWRs NC GMWRs NC GMWRs

SiO2 0.1 50.8 ± 1.5 43.26 ± 1 Moisture
(%) 10.4 11.5 F0 100 0

Al2O3 0.1 16.4 ± 1 10.13 ± 0.5 Plasticity
limits 25 19 F20 80 20

TiO2 0.1 1.1 ± 0.7 1.1 ± 0.2 (%) F40 60 40

Fe2O3 0.1 5.9 ± 0.9 8.59 ± 1 Plasticity
index 27 12 F60 40 60

MnO 0.01 0.1 ± 0.05 0.156 ±
0.02 (%) F80 20 80

MgO 0.1 3.5 ± 0.5 2.65 ± 0.2 Specific
gravity 2.6 2.61 F100 0 100

CaO 0.1 8.5 ± 1 11.23 ± 1.2 (g·cm−3)

Na2O 0.03 0.3 ± 0.01 – Bulk
density 1.5 1.5

K2O 0.01 3.0 ± 0.1 1.19 ± 0.3 (g·cm−3)
P2O5 0.1 – 0.16 ± 0.01 LOI (%) 11.5 21.53

*: detection limits.
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Figure 3. Particle size distribution of the GMWRs and NC.

The chemical compositions of the NC and GMWRs identified using ICP–AES, and
summarized in Table 1 show that silica SiO2 was the main component of both materials
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with 51 wt% and 43 wt%), alumina (16 wt%, 10 wt%), CaO (8.5 wt%, 11 wt%) and iron oxide
(5.9 wt%, 8.59 wt%). The CaO richness for solid GMWRs was confirmed by a considerable
loss of ignition (21.5 wt%). Moreover, the existence of carbonates in the raw materials
contributes to stabilize the acid generation phenomena.

The mineralogical composition of the GMWRs and the NC are presented in Figure 4.
From the obtained result, the GMWRs were mainly dominated by quartz, calcite, albite and
muscovite, while magnetite and chlorite were present as minor phases. The NC (Figure 4b)
was composed of quartz, calcite, clays minerals (illite and kaolinite), magnetite and feldspar
as minor phases. In comparison to the NC, the GMWRs were poor in clay minerals, which
explains the lower value of the plasticity index (11.5%).
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Depending on the chemical composition of the GMWRs, its ability to be used in the
manufacture of fired bricks was evaluated using the ternary diagram in Figure 5. This
diagram was developed based on a literature synthesis of the chemical compositions of
natural clays used for the fabrication of fired bricks. The diagram in Figure 5 shows the
difference in chemical composition between GMWRs and the NC. The composition of the
GMWRs was close to that of natural clays. Based on the results obtained, the GMWRs
showed a high probability to be successfully used in the fired bricks industry. Thus, this
study was conducted to evaluate the feasibility of using GMWRs as a substitute for natural
clays according to the applicable civil engineering and environmental standards.

3.1.2. Thermal Behavior of Raw Materials

Figure 6 presents the thermogravimetric analysis (TGA) curves for the NC and
GMWRs up to 1050 ◦C. The total weight loss of the GMWRs was 16.57%. Three main
stages of weight loss steps are illustrated. The first loss in the 40–210 ◦C range could
have been related to the loss of moisture and the dehydration of clay minerals (loss of
hygroscopic and crystal water). The second loss in the 230–334 ◦C range was related to the
dehydroxylation of iron hydroxides and the evolution of anhydrite III to anhydrite II. The
last and greatest weight loss (13.94%) occurred in the 550–800 ◦C range and was associated
with the degradation of the calcium and magnesium carbonates found in the GMWR.
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The TGA curve of the NC shows four main weight loss steps. The first one was
centered at 200 ◦C and represents the dehydration of moisture and intercalated water, the
second loss between 400–600 ◦C corresponded to the vaporization of the adsorbed water
and the combustion of organic substances, followed by the dihydroxylation of the clay
minerals between 600 ◦C and 750 ◦C. The last weight loss between 750 ◦C and 850 ◦C was
attributed to the destruction of carbonates.

3.1.3. Evaluation of Acid Generation Potential

The prediction of the environmental behavior of the GMWR samples was performed
through the static test called acid–base accounting (ABA) [50,51], which provides important
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information to decide on the nature of the acidity of the mining wastes and therefore on
their potential risk to the environment.

The overall principle of this test is to take a balance sheet of the acid potential of
generation (AP) and the neutralization potential (NP) of the selected materials. The AP and
NP are determined from the total sulfur and carbon contents existing in the solid wastes. It
should be mentioned that these contents are specified in kg equivalent of calcite per ton of
material (kg CaCO3/t).

Table 2 summarizes the values of the total carbon and sulfur in the GMWR samples.
The total sulfur and inorganic carbon contents were analyzed using an induction furnace
(ELTRA CS-2000, ELTRA ELEMENTAL ANALYZERS, Stevensville, MI, USA) with a
detection limit = 0.05 wt%.

Table 2. Test acid–base accounting (ABA) of GMWR samples.

Sample C% S% NP AP NNP NP/AP

GMWR 2.28 0.14 189.9 4.37 185.53 42.45

The authors did not evaluate the presence of sulfides/sulfates in the GMWRs in detail
as the S content was very low. Therefore, the AP was calculated assuming that all the sulfur
occurred as pyrite that will oxidize and generate acidity.

The AP value was determined from the sulfide content according to the following formula:

AP = 31.25 × Stotal (%) (1)

where:
AP: acidity potential (kg CaCO3/t of material);
Stotal (%): total sulfur weight content (%);
31.25: conversion factor 1000 kg/t × M(CaCO3)/100% × Ms.
However, there are various variants to NP determination. Each of these variants is

carried out under different conditions leading to different interpretations. This is especially
true for materials whose generating nature is less obvious, i.e., they are neither highly acid
generating nor highly acid consuming [52].

In this study, the NP was determined with the standard carbonate NP method, which
consists of measuring the total inorganic carbon with an induction furnace and converting
the value into kg CaCO3/t equivalents. This method is simple and widely used in the
industry [53].

The CNP was evaluated assuming that the Ctotal (wt%) measured is totally present in
carbonates (Cinorg). The results were then converted to calcite equivalents (kg CaCO3/t) by
multiplying by a factor of 83.33:

CNP = %Cinorg × 83.33 (2)

CNP: carbonate neutralization potential (kg CaCO3/t of material);
%C: carbon weight content (%);
83.33: conversion factor.
Finally, to know the nature of the material (generator or consumer of acid), we com-

pared the values of AP and NP found with the static ABA test. The difference between
these two values gives the net neutralizing potential (NNP). When the NNP is less than
−20 kg CaCO3/t, it indicates an acid-producing material, whereas materials with an NNP
greater than 20 kg CaCO3/t are considered to be acid consumers. However, there is an area
of uncertainty for this technique between 20 > NNP > −20 kg CaCO3/t, as indicated by
Skousen et al. [54]. Another useful tool for assessing the potential for acidity production
is from NP/AP ratio results. In general, Materials are considered not to be not to be acid
generators if the NP/AP ratio is superior to 2.5. However, when the NP/AP ratio is less
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than 1, they are considered acid generators. Materials providing an NP/AP ratio ranging
between 1 and 2.5 are in an area of uncertainty.

The results presented in Table 2 show that the GMWR sample contained very low
sulfur content, the net neutralization potential (NNP) was positive and higher than 20 kg
CaCO3/t and the NP/AP ratio was above 42.45. From these results and Figure 7, this
shows the variation of NNP as a function of AP and the no-acid-, uncertain and acid-
generation zones, it appears clearly that the GMWR samples were located in the no acid
generation zone.
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3.2. Detailed Fired Bricks Properties
3.2.1. Physical and Mechanical Properties

In order to investigate the ability to use GMWRs in the manufacture of fired bricks,
they were qualified in terms of their mechanical, physical and mineralogical properties.
The obtained results were compared to the control specimen and the required engineering
standardsstandards. Figure 8 illustrates the behavior of the technological properties of the
fired bricks as a function of the proportion of waste and the firing temperature. Generally,
no significant difference was observed for the values of various characteristics of the fired
bricks sintered at 1000 and 1050 ◦C. The results derived from each experimental analysis
were taken as the average of four measurements for each brick mixture.

According to the results, it is noteworthy that the bricks containing 100% GMWRs and
fired at 900 ◦C developed significant cracks. This caused the deterioration of the bricks in
water. Consequently, their density, water absorption and porosity could not be determined.

As shown in the results, the incorporation of GMWRs and the firing temperature
significantly affected the mechanical and physical properties of the specimens (strength,
density, water absorption and porosity). The incorporation of GMWRs caused a decrease
in the flexural strength and density. On the other hand, porosity and water absorption
were affected differently and tended to be enhanced.

The flexural strength of the produced bricks is presented in Figure 8a. This parameter
is considered as the main quality indicators required by building standards, which allows
for the assessment of the suitability of the material for use in the construction industry.
Figure 8a shows the influence of the amount of GMWRs and the firing temperature on the
flexural strength. As shown, the flexural strength of bricks decreased with the increasing
proportion of GMWRs. The results show that up to an 80% GMWR mix, the strength of
the bricks was greater than 2.5 MPa, which represents the minimum strength specified
by the standards. Furthermore, at 1050 ◦C, the flexural strength values varied between
12.77 and 3.96 MPa, when GMWR addition increased from 0 to 80%, respectively. The
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decrease observed in the flexural strength with the addition of GMWR was due to the
main source of reductions in mechanical properties, namely, the open porosity, which
increased with GMWR addition. On the other hand, the flexural strength of specimens
slightly increased as the firing temperature increased from 900 to 1050 ◦C. It went from
10.62 to 12.77 MPa for the 0% reference brick and from 2.53 to 3.96 MPa for F80. This
improvement in flexural strength was attributed to the improvement in the consolidation
or vitrification processes when the firing temperature was increased. Bricks produced
using GMWRs alone (100%) presented poor mechanical properties, where the flexural
strength was less than 2.5 MPa. Therefore, we can conclude that GMWRs cannot be used
alone to manufacture high-quality fired bricks. The acquired results are an average of the
measurements performed on four specimens.
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The bulk density results show a behavior similar to that of flexural strength, decreasing
with GMWR addition and increasing slightly with the rising firing temperature. The
decrease in bulk density with the incorporation of GMWRs at different firing temperatures
can be explained by the increase in the volatile matter in the brick mixtures. This result
is supported by the high porosity values of the elaborated bricks, which was the main
contributor to the reduction in the strength of the bricks.

The results of water absorption and porosity are presented in Figure 8c,d. In general,
the water absorption was related to the accessible open porosity of the fired bricks. A high
number of open pores led to high rates of water absorption. The open porosity and water
absorption rates increased significantly with the increase in GMWR addition and decreased
slightly with the rising firing temperature. As an illustration, at 1050 ◦C, the porosity
improved by about 31% from 27% to 39% when 80% of the NC was replaced with GMWRs;
however, the increase in firing temperature from 900 to 1050 ◦C reduced the porosity of
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bricks F0 and F80 from 28.82% and 41.84% to 26.98% and 37.93%, respectively, roughly 6%
and 9% for the bricks, respectively. Moreover, the values of water absorption presented in
Figure 8c confirmed the close relationship between porosity and water absorption. A similar
trend was observed in these parameters. Therefore, at 1050 ◦C, the water absorption rates
of elaborated bricks increased from 15.20% to 20.1% when 80% of the NC was substituted
with GMWRs. The increase in the water absorption and porosity values of the bricks with
the incorporation of a high percentage of GMWRs can be explained by the degradation of
the carbonate minerals contained in the GMWRs. This decomposition caused the release
of gases and subsequently greater porosity in the fired specimens. This observation was
confirmed by the thermogravimetric analysis (LOI = 16.57 wt%).

Figure 9 highlights the inter-relation of different properties of bricks fired at 1050 ◦C.
It is interesting to mention that a good relationship existed between water absorption
and porosity Figure 9c (R2 = 0.97), open porosity and bulk density Figure 9a (R2 = 0.97),
flexural strength and bulk density Figure 9d (R2 = 0.94), and flexural strength and open
porosity Figure 9b (R2 = 0.97). These findings confirmed the preceding conclusions from the
standardized tests, namely, the decline in flexural strength when open porosity increased
and the increase in water absorption with the open porosity growth, which was related to
the amount of volatile matter.
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3.2.2. Mineralogical Characterization of Fired Bricks

XRD analysis of the fine powders of the fired bricks was performed in order to
investigate the mineralogical composition of the bricks prepared using GMWRs. Figure 10
illustrates the principal crystalline phases that were formed during the firing process. As
can be seen, new crystalline phases were developed in the process of firing, with GMWR
additions, such as akermanite, anorthite and muscovite. The formation of akermanite
(Ca2Mg[Si2O7]) was the result of contact metamorphism of calcium, magnesium, silicon
and oxygen. It was also observed that there was a decrease in quartz pic when increasing
the sintering temperature (Figure 10b); this finding was confirmed by the increase in
anorthite, akermanite, and albite pics.
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3.2.3. Environmental Behavior of Fired Bricks

The toxicity characteristic leaching procedure (TCLP) test was carried out to assess
the environmental behavior of the fired bricks. The TCLP test was performed following
the protocol adopted by the US Environmental Protection Agency (EPA) [35]. The aim is
to simulate the leaching of heavy metals from fired bricks at their end life (as demolition
wastes). The principle is to compare the concentrations of certain contaminants in the
leachate from the TCLP test, with the limit concentrations (for each element) defined by
the same agency (EPA). It consists of extracting the contaminants present in the sample to
be analyzed (mine waste or aggregates (obtained by crushing or grinding)) using an acetic
acid solution whose pH was determined previously by a pre-test. The pH values tested
using this test were 2.88 or 4.93. The solid:liquid ratio was 20:1. The samples were put in
closed bottles and agitated for 18 ± 2 h in a rotary agitator with a speed of 30 rpm. The
leachates were then filtered (0.45 µm), acidified and analyzed using ICP–AES.

In this study, 20 g of each sample was added to 400 mL of a leaching solution (pH of
4.93 ± 0.05). Each mixture was then placed in a high-density polyethylene (HDPE) bottle,
and the bottles were tumbled for 18 h at 30 ± 2 rpm. Samples were filtered through a 0.45
µm nylon filter and the leachates were analyzed by ICP–AES.

Table 3 summarizes the compared parameters between the obtained results of test
and the US EPA thresholds. The results show that all concentrations of F80 were under the
regulatory limits fixed by the US EPA. Therefore, the studied samples were considered non-
hazardous waste. On the other hand, it was observed that the mobility of As in the F100
mixture (100% waste) exceeded the limit defined by the Agency, while this concentration
was under the limit for the F80 mixture. This result confirmed that this waste cannot be
used alone to produce high-quality fired bricks.

Table 3. Results of TCLP test of GMWR raw material and F0, F100 and F80 fired bricks at 1050 ◦C.

Sample As Ba Cd Cr Cu Mo Pb Zn

µg·L−1 µg·L−1 µg·L−1 µg·L−1 µg·L−1 µg·L−1 µg·L−1 µg·L−1

GMWRs 86.74 2612.13 ND 43.14 212.62 ND 231.92 243.4
F0 3.66 114.14 0.22 10.56 10.7 ND ND 280.48

F100 8014.33 15.94 0.28 291.87 1.66 25.33 ND 6.6
F80 2741.54 18.51 0.3 251.24 1.17 16.48 ND 8.04

Limits
(US

EPA)
5000 100,000 1000 5000 - - 5000 2000

4. Conclusions

The objective of this experimental study was to assess the possibility to use GMWRs
from the Agadir region, Morocco, as a secondary source and alternative raw material
for manufacturing fired bricks. From the results obtained in this study, the following
conclusions could be drawn:

• The chemical and mineralogical compositions of GMWRs show compatibility with
NCs commonly used in the fabrication of fired bricks. The clay minerals (chlorite)
contained in the GMWR favor their reuse in the bricks production.

• The obtained results show that the GMWR cannot be used alone to make good-quality
fired bricks.

• The integration of GMWRs in the matrix of fired bricks as secondary raw material led
to an increase in water absorption and porosity rates, which resulted in a decrease in
flexural strength and bulk density.

• Laboratory bricks with up to 80% GMWRs and fired at 1000 ◦C and 1050 ◦C met the
requirements of current construction standards. They met the mechanical require-
ments (ASTM-C674), which require a flexural strength higher than 2.5 MPa. They also
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were in agreement with the ASTM C373 standards, which require a porosity rate of
less than 40% and water absorption of less than 20%.

• The results of the TCLP leaching test showed that the mobility of heavy metals from
bricks containing up to 80% GMWRs was below the limits set by the US EPA.

The use of solid mining wastes as aggregates and their incorporation in the field of
building materials is a promising environmental solution, which aims not only to reduce
their quantities but also to conserve the natural resources (clays, sands, aggregates, etc.)
that are consumed abusively in current constructions.
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