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Abstract: Carbonaceous shale is more topical than ever before due to the associated unconventional
resources of methane. The use of FTIR, SEM-EDX, and mineralogical analyses has demonstrated
a promising approach to assess methanogenesis potentials in a more rapid and reliable manner
for preliminary prospecting. Representative core samples from the borehole that penetrated the
carbonaceous Mikambeni shale Formations were investigated for methanogenesis potentials. The
absorption band stretches from 1650 cm−1 to 1220 cm−1 in wavenumber, corresponding to C-
O stretching and OH deformation of acetic and phenolic groups in all studied samples, thereby
suggesting biogenic methanogenesis. The CO2 was produced by decarboxylation of organic matter
around 2000 cm−1 and 2300 cm−1 and served as a source of the carboxylic acid that dissolved the
feldspar. This dissolution process tended to release K+ ions, which facilitated the illitization of the
smectite minerals. The SEM-EDX spectroscopy depicted a polyframboidal pyrite structure, which
indicated a sulfate reduction of pyrite minerals resulting from microbial activities in an anoxic milieu
and causes an increase in alkalinity medium that favors precipitation of dolomite in the presence of
Ca and Mg as burial depth increases. The contact diagenesis from the proximity of Sagole geothermal
spring via Tshipise fault is suggested to have enhanced the transformation of smectite to chlorite
via a mixed layer corrensite in a solid-state gradual replacement reaction pathway. The presence of
diagenetic chlorite mineral is characteristic of low-grade metamorphism or high diagenetic zone at a
temperature around 200 ◦C to 230 ◦C and corresponds to thermal breakdown of kerogen to methane
at strong absorption band around 2850 cm−1 and 3000 cm−1, indicating thermal methanogenesis.

Keywords: methanogenesis potentials; biogenic methanogenesis; thermal methanogenesis; carbona-
ceous shale; carboxylic; illitization; chloritization; framboidal pyrite

1. Introduction

Carbonaceous shale has been more topical than ever before due to the associated
unconventional resources for energy supply. Shale constitutes an essential component of
unconventional gas generation due to the global clamor for an energy transition from heavy
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greenhouse domination to low-carbon natural gases [1–3]. With respect to climate change
moderation, carbonaceous shale has been identified to promote a short-term accelerated
action to achieve the 2015 Paris agreement climate targets of keeping the global temperature
increases below 2 ◦C. In recent studies [4,5], shale gas exploration has been prioritized
in the US from 2006 to 2020, cutting off well over 430 million tonnes of CO2 emission
and accounting for over 30% of the financial fiscal year [6,7]. In contrast to conventional
shale source rocks, carbonaceous shales tend to host natural gas under a low pressure and
extremely low permeability but extractable using horizontal well-drilling and hydraulic
fracturing technologies [8–11].

Despite many decades of research in carbonaceous shale, a reliable and rapid discrimi-
native approach to identify a potential methane gas-bearing rock remains elusive. However,
some studies have used petrographic and sedimentological properties [12,13], geophysical
properties [14–16], and geochemical and mineralogical characteristics [17–20] to attribute
most organic matter transformation to their burial. Furthermore, there is extensive recent
literature [21–29] on the successful use of an organic geochemical method to determine
petrophysical properties such as total organic carbon (TOC), thermal maturity, vitrinite
content, and desorbed gas composition. Undoubtedly, these investigative approaches pro-
vide deterministic information rather than discrimination at the preliminary exploratory
stage [30]. The discriminative approach identifies sweet-spot targets for further detailed
and determinative investigations, which require huge cost implications.

This research provides information on methane formation during the transformation
of organic components of organic-rich sedimentary deposits. It applies evidence from
mineralogical, structural, and functional-group features of the carbonaceous Mikambeni
shale in the Tuli Basin. The Permian Tuli Basin is known as the Limpopo-area Karoo Basin,
hosting coal resources used to power a coal-fired plant for electricity generation in the
northeastern region of South Africa [31–34]. The potential for methanogenesis sources has
not been given proper attention in the burial depth, having a thickness of 1 km or less.

Study Area

The Tuli Basin is a trans-frontier depozone that straddles the triple junction of South
Africa, Zimbabwe, and Botswana situated within latitudes 29◦36′22.19′′ E and 28◦25′23.15′′ E
and longitudes 23◦11′24.45′′ S and 22◦43′24.54′′ S (Figure 1). This basin is a back-bulge
structural depression that resulted from crustal subsidence due to tectonic regimes adjacent
to the Cape Fold Belt (CFB) orogenic belt. The subsidence controls the accommodation
space that preserves the Carboniferous–Jurassic sedimentary sequence of the Tuli Basin in
South Africa [35,36]. The succession of formations from oldest to youngest is the Tshidzi,
Madzaringwe, Mikambeni, Fripp, Solitude, Klopperfontein, Bosbokpoort, and Clarens
Formations [37] (Figure 1).

The Mikambeni Formation consists of the Permian black carbonaceous shale inter-
calated with coal seams and alternating sandstone and siltstone [31]. The thickness of
the Mikambeni Formation ranges from 60 to 100 m, corresponding to the proximal and
distal points. The variation in shale thickness is interpreted to be caused by basin tecton-
ics and differential subsidence trends as transporting river flowed from the northwest
to deposit more sediments towards the southeast direction of the basin [34]. The coal
seam associated with the Tuli Basin is dominated by collotellinite, suggesting organic
matter input from cellulose and woody tissues of the higher terrestrial plant. Based on
lithofacies description, the shale color and content suggest a reducing condition associ-
ated with oxygen deficiency causing decay of fauna and flora or plant organisms. Given
the overall sedimentary sequence, the deposition represents a fluvial-to-aeolian milieu.
This deposition reflects different paleo-climatic overprints of different ages spanning from
the Permian to the Jurassic Period [38]. Besides the lignin, the cellulose and tannins of
vascular plants dicroidium are partly responsible for the main coal seam associated with
the carbonaceous shale of the Mikambeni Formation [31,39]. In contrast to lithofacies of
Mkambeni, the Tshidzi Formation shows non-sorted to poorly sorted argillaceous or sandy
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sediments with particles size up to 2 m in diameter. This argillaceous diamictite suggests
a glacial or fluvioglacial environment resulting from a low energy level of mudflow to
deposit well-sorted sediments. There is a progressive change from reducing or anoxic to the
oxidizing environment as shale formations become younger. The Triassic black shale at the
lower unit of Solitude Formation has a dark grey shale and grey shale towards overlying
Bosbokpoort and Clarens Formations [38]. This color variation reflects a progressive fall in
water level where sediments are deposited on floodplains of meandering rivers under dry
and oxidizing conditions. The preponderance of red calcareous concretions of overlying the
Bosbokpoort further support an oxidizing environment towards the upper Tshipise Basin.
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Figure 1. Map and sedimentary sequence of the Tuli Backbulge Basin.

2. Materials and Methods

Mineralogical identification of 16 core samples from the borehole that penetrated
the carbonaceous Mikambeni shale Formations at different depths was determined using
X-ray diffraction (XRD) at Council for Scientific and Industrial Research (CSIR) Pretoria
(Figure 2).

Based on the lithological facies, 8 representative shale samples corresponding to the
formations were selected and pulverized in an agate mortar. The clay fractions were
dispersed in 0.7 mg/mL of distilled water and put in an ultrasonic water bath for 40 s to
prevent the flocculation of particles [40]. Afterward, the air-dried samples were treated with
ethylene glycolation to identify smectite minerals and dimethyl sulphoxide to differentiate
kaolinite from chlorite [41]. Samples were tightly mounted on oriented sample holder with
very little pressure using black loading preparation technique using PANalytical X’Pert
Pro-powder diffractometer equipped with X’Celerator detector coupled with receiving
slits, variable divergence, and Fe-filtered Cu-Kα radiation at the Energy Centre CSIR
Pretoria. While the receiving slit was positioned at 0.040◦, the counting area was from
2 to 80◦ on a 2θ scale at 1.5 s [42]. The interstratified I/S minerals were measured on a
less than 2 µm fraction of air-dried samples using Cu-Kα radiation [43]. Semi-quantitative
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mineral measurements were obtained using single line fitting of TOPAS software while the
detection limits remained 1%.Minerals 2021, 11, x FOR PEER REVIEW  4  of  16 

 

 

Figure 2. Stratigraphic column of the studied borehole showing lithologic description and 

carbonaceous shale sampling depth. 

The functional group information was provided by the Fourier Transform Infrared 

(FTIR) Alpha Bruker spectrophotometer at the University of Venda, Limpopo. Pulverized 

samples were  placed  in  the measurement  position  of  the  spectrometer  and  scanned 

between a minimum and maximum wavelength range of 500 and 4000 cm−1, respectively. 

The  absorbance  spectrum depicts  the  crystalline  phases which  reflect  their  functional 

group.   

A Zeiss EVO MA15 scanning electron microscope (SEM) equipped with a tungsten 

filament  and  a Bruker  energy‐dispersive X‐ray  (EDX)  spectrometer were used  for  the 

morphological  analysis.  The  system  was  operated  under  a  high  system  vacuum, 

approximately 7.03 e to 007 mbar. The electron beam was generated with an accelerating 

voltage of 20 kV and a probe current of approximately 2nA. The sample was sprinkled 

onto a carbon  tape substrate and carbon‐coated prior  to being  loaded  into  the SEM. A 

secondary  electron  detector  was  used  to  produce  images  at  300×,  600×,  and  900× 
magnification. Some of these particles are out of focus, owing to the three‐dimensional 

depth loss of information; focusing one part results in the other being out of focus on some 

of these images, particularly at high magnifications. 

3. Results 

The mineralogical  identification of  the carbonaceous shale samples obtained  from 

different depths  of  two  boreholes  analyzed using X‐ray diffraction  (XRD)  values  and 

patterns  is presented  in Table 1 and Figure 3a,b. The results show the presence of clay 

minerals composed of montmorillonite, mixed illite/smectite (I/S), illite, chlorite, and non‐

clay minerals such as dolomite, albite, microcline, pyrite, and quartz. The average quartz 

Figure 2. Stratigraphic column of the studied borehole showing lithologic description and carbonaceous shale
sampling depth.

The functional group information was provided by the Fourier Transform Infrared
(FTIR) Alpha Bruker spectrophotometer at the University of Venda, Limpopo. Pulverized
samples were placed in the measurement position of the spectrometer and scanned between
a minimum and maximum wavelength range of 500 and 4000 cm−1, respectively. The
absorbance spectrum depicts the crystalline phases which reflect their functional group.

A Zeiss EVO MA15 scanning electron microscope (SEM) equipped with a tungsten
filament and a Bruker energy-dispersive X-ray (EDX) spectrometer were used for the mor-
phological analysis. The system was operated under a high system vacuum, approximately
7.03 e to 007 mbar. The electron beam was generated with an accelerating voltage of 20 kV
and a probe current of approximately 2nA. The sample was sprinkled onto a carbon tape
substrate and carbon-coated prior to being loaded into the SEM. A secondary electron
detector was used to produce images at 300×, 600×, and 900× magnification. Some of
these particles are out of focus, owing to the three-dimensional depth loss of informa-
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tion; focusing one part results in the other being out of focus on some of these images,
particularly at high magnifications.

3. Results

The mineralogical identification of the carbonaceous shale samples obtained from
different depths of two boreholes analyzed using X-ray diffraction (XRD) values and
patterns is presented in Table 1 and Figure 3a,b. The results show the presence of clay
minerals composed of montmorillonite, mixed illite/smectite (I/S), illite, chlorite, and non-
clay minerals such as dolomite, albite, microcline, pyrite, and quartz. The average quartz
content was 29.42%, ranging from 25.10% to 35.60%. However, quartz with higher values
was found at a depth of 470 m. The relatively high quartz content may be attributed to the
preserved detrital silica input from associated siltstone facies, since it has high resistance to
mechanical alteration, although diagenetic quartz can precipitate from the dissolution of
feldspar [38,44].
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Table 1. Mineral composition of the carbonaceous shale samples from different depths.

Sample ID Formation Depth (m)
Mineral Composition (%)

Qtz Micr Alb Chl Ill I/S Mont Dol Cal Pyr

SBH1

Mikambeni

370 25.95 13.05 8.40 2.15 15.20 8.25 21.35 - 5.30 -
SBH2 380 25.10 12.85 7.25 2.70 16.80 9.80 21.90 - 4.40 -
SBH3 390 29.55 8.80 6.05 3.45 14.85 9.70 20.50 - 6.45 1.50
SBH4 410 25.75 10.45 4.90 3.55 15.90 9.05 18.05 - 8.80 3.02
SBH5 430 25.60 9.15 5.05 2.05 18.50 10.40 18.25 10.35 - 1.20
SBH6 440 33.02 9.50 4.45 3.73 19.26 11.98 9.85 7.30 - 1.00
SBH7 450 34.80 8.80 3.05 3.15 19.70 12.20 7.80 11.05 - -
SBH8 470 35.60 9.75 - 4.05 20.50 13.20 5.40 10.65 - 1.50

Note: Qtz—Quartz, Micr—Microcline, Alb—Albite, Chl—Chlorite, Ill—Illite, I/S—Mixed Iliite/Smectite, Mont—Montmorillonite,
Dol—Dolomite, Calcite—Cal, Pyr—Pyrite.

In contrast to the quartz content, the average amount of microcline and albite was
10.17% and 5.45%. However, there is no albite mineral present at a depth of 470 m.
Feldspars are susceptible to dissolution reaction as burial depth increases, as the albite
minerals progressively reduce until the 470 m [45,46]. As burial depth increases, the
montmorillonite content progressively decreases from 21.35% to 5.40%, while, on the other
hand, the illite and mixed I/S contents increased from 15.20% to 20.50% and 8.25 to 13.20%.
This observation is ascribed to the illitization reaction at burial depth temperature less
than 200 ◦C in which precursor minerals of K-feldspar or smectite transform to illite or
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mixed Smectite/illite (S/I) in the presence of sufficient K+ [47–49]. The chlorite content has
an average value of 3.42% and ranges from 2.20% to 5.65% in a dispersed sequence in all
samples. The presence of chlorite mineral suggests a by-product of the montmorillonite-
illitization-chloritization transformation. This transformation process occurs in a closed
system having a low ratio of fluid to shale rock [50]. The distribution of dolomite showed
a progressive increment in concentration from 5.30 to 11.05 with burial depth. Since the
organic-rich shale has a low fluid-to-rock ratio, the idea of dolomite replacing calcite with
the saturated fluid of Mg2+ may not be feasible. The explanation is the precipitation of
primary dolomite and stepwise recrystallization due to bacterial mediation [51]. It is
worth noting that a high fluid–rock ratio is necessary for a steady and saturated supply of
Mg2+ for dolomitization replacement of calcite, which favors permeable sandstone over
impermeable buried shales. High burial temperature is insufficient to destroy the evidence
of pyrite grain history or origin. Hence, its presence suggested detrital grain devoid of
oxidizing setting but associated with anoxic, aridity, or fluvial settings [52,53].

The Fourier Transform Infrared (FTIR) spectra of the studied carbonaceous shale depict
different absorbance bands of organic and mineral content at the various diagnostic wave-
length of the infrared spectrum (Figure 4). Each absorbance band indicates the functional
group representing the whole molecular structure of a material [30]. Most of the studied
samples exhibit a strong characteristic absorbance peak around 650–900 cm−1, correspond-
ing to the aromatic phenolic group, C=C-OH. However, the peak reduces as temperature
increases with depth due to bond deformation [54]. The aromatic C=C absorption group
suggests a wavelength band that is typical of terrigenous plants that have lignin-derivative
materials [55]. The peak stretching from around 1000 cm−1 to 1220 cm−1 indicates the
C-O stretching and OH deformation of the carboxylic, COOH groups, suggesting decar-
boxylation of organic matter [56]. The deformation of the carboxylic group releases the
CO2, reflecting a characteristic strong absorption around 2000–2300 cm−1 [30]. However,
the aliphatic hydrocarbon is considered to contain more carboxylic- and phenolic-OH
functional groups with a micelle-like structure that has a relative macromolecular weight
ranging from 3500 to 100,000 Da compared with aromatic hydrocarbon [57]. In aromatic
hydrocarbon, the voids among the carbon chain serve to act as trapping and binding sites
for organic lipids and inorganic materials such as hydrous oxides and clay minerals [57].
The hydrocarbon gas, CH4, shows infrared absorbance peaks between 2850 and 3000 cm−1

due to aliphatic C-H stretching of methyl and methylene vibration [54,58]. The low absorp-
tion peak around 3500 cm−1 corresponds to water desorption wavelength [59]. The spectra
showed inconspicuous peaks of the carboxylic group at greater burial depths around 450 m,
suggesting over-maturation of organic matter beyond the methanogenesis window.

Representative SEM images of the studied carbonaceous shales are presented in
Figure 5a–d. The image depicts a mixture of pore structures, organic matter, and mineral
contents. The image (Figure 5a) revealed conspicuous intragranular pores among grains
of quartz, feldspars, chlorite, illite, carbonate, and pyrite minerals as shown by the XRD,
forming an interconnected pore. The interconnected pores provide migration pathways
for gaseous hydrocarbon during organic matter (OM) maturation [60]. The carbonate
compound of calcite and dolomite was found to dominate the shale, with carbon elemental
content ranging from 65% to 73% (Figure 6c). Furthermore, the organic matters were
also hosted in the intragranular pores of mineral grain, which suggests dissolution cavity
of carbonate minerals since intrapore of clay minerals such as feldspar is difficult to
observe [61]. Non-spherical, closely packed polyframboidal pyrite was observed, which
is affirmed by the multiple occurrences of Fe-elemental contents on the EDX result. The
presence of the polyframboidal pyrites suggests an anaerobic condition that favors organic
matter degradation and thermal maturation as burial depth increases [62]. The thermal
maturity of the organic matter is further supported by the presence of fibrous chlorite and
illite minerals (Figure 6d), which are index minerals for high-diagenetic temperature zone
and quality hydrocarbon reservoirs [63].
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4. Discussion
4.1. Diagenetic Alteration Pathways

The mechanical compaction of detrital sediments and terrestrial plant materials follow-
ing sedimentation of the 40 m thick Fripp Formation over Mikambeni Formation initiate
their diagenetic changes. At this initial stage, the brackish interstitial fluid or pore water
and bacterial activities are pronounced due to the degradation of plant material to produce
humic material. Humic substances are composed of weak acidic electrolytes with aliphatic
and aromatic hydrocarbon, which may incorporate atomic radicals N, O, or S [57]. The
humic acid gains significance at a wavenumber absorption peak around 650–900 cm−1,
corresponding to the acetic and phenolic group. The compaction process leads to de-
hydroxylation in which the pore fluid is released, as indicated by the water absorbance
band around 1300–1900 cm−1. More evidence of the early-stage organic degradation in
the Tuli Basin was marked the by bioturbation of burrowing organisms (Figure 6). In the
studied basin, soft sediment burrowing organisms such as beetles and ants have produced
un-bifurcated ichnofossils which are tentatively recognized as Skolithosi sp. and other
bifurcated trace fossils [36].

With an increase in burial pressure and depth of about 360 m thick, which results
from successive overlying sediments of the Solitude, Klopperfontein, Bosbokpoort, and
Clarens formations, the elevated temperature causes further geochemical and mineralogical
changes. The gradual decrease in montmorillonite and a parallel progressive increase of
illite minerals were observed, while mixed-layered montmorillonite-illite (M-I) mark the
extent of progress along with series of reactions between burial depths of about 370 m
to 470 m. In Mikambeni shale, the first series of the illitization reaction progress is made
possible due to the presence of microcline and montmorillonite minerals as expressed in
Equation (1) [64]. Alternatively, diagenetic illite may have crystallized from geochemical
interaction between kaolinite and microcline or potassium ion (K+), but the absence of
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kaolinite inhibits that reaction’s progress pathway. Retrospective studies [44,65] have
reported the kaolinite illitization via reactions with k-feldspar, K+, or H+ as burial depth
increases; however, this reaction mechanism is hindered due to the absence of kaolinite
minerals in Mikambeni shale. Kaolinites may have precipitated due to increasing quartz
concentrations, but it is likely to be consumed immediately after crystallization as expressed
in Equation (2) due to high temperature. Studies [66–68] have unequivocally demonstrated
that the kaolinite dissolution in shale rock can take place at a lower temperature than 60 ◦C.

Al2Si4O10[OH]2·nH2O + KAlSi3O8
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KAl3Si3[OH]2 + SiO2 + nH2O (1)

Al3+ + SiO2 + 2.5H2O
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0.5Al2Si2O5(OH)4(kaolinite) + 3H+ (2)

Furthermore, the organic and inorganic interaction promotes the illitization by ini-
tiating the release of the H+ ion from the carboxylic acid functional group as expressed
in Equation (3). The carboxylic C=O band can remain approximately at a wavenumber
of 1000 to 1225 cm−1 stretching regardless of the source material. The CO2 produced by
decarboxylation of organic matter is commonly suggested as a source of the acid that
dissolves the microcline feldspar [69]. This carbon dioxide, CO2, is recognized from its
characteristic strong absorptions around 2000 and 2300 cm−1.

CH2O (carboxylic group) + H2O
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As the reaction continues, more K+ ions are concentrated via replacement K-feldspar
(microcline) by the albite at a higher temperature between 120 ◦C and 180 ◦C as represented
in Equation (5) [66,71]. The absence of kaolinite minerals with a parallel increase in chlorite
suggests complete dissolution of kaolinite at such a high temperature.
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NaAlSi3O8 (Albite) + K+ (5)

With further burial diagenesis, the presence of a high concentration of potassium
K+ fluid promotes the illitization processes of montmorillonite minerals. However, other
factors such as time, fluid/rock ratio, nature of starting material, and kinetic mechanism
have been considered as important for illitization. It is worth noting that the direct con-
version of smectite to illite as expressed in Equation (6) [72] does not suggest a solid-state
reaction but rather shows the quantitative and compositional changes in shale mineralogy
that takes place during burial diagenesis. Importantly, this conversion of smectite to illite
reaction has been indicated to take place at similar temperature intervals as the matura-
tion index for organic matter and the release of interstitial water during I-M diagenesis
to enhance hydrocarbon migration [69]. By implication, the range for the change in I/S
ordering from random to regular during smectite illitization in shales coincides with the
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temperature range of organic matter maturity and the onset of oil generation in young
sedimentary basins.

2Na0.4
(
Al1.47 Mg0.29Fe0.18

)
Si4O10(OH)2(Smectite) + 0.85K+ + 1.07H+
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1.065K0.80
(
Al1.98Mg0.02

)
(Si3.22Al0.78)O10(OH)2(illite) + 4.6SiO2

+0.36Fe(OH)3 + 0.56Mg2+ + 0.8Na+ + 0.9H2O
(6)

Although present in low quantities (Table 1), chlorite mineral is increasingly crystal-
lized as a discrete phase rather than evolutionary trend phases of kaolinite and carbonate.
The evolutionary phase involves the chloritization phase of kaolinite in the presence of
iron- and magnesium-supplied smectite illitization processes at a temperature between
165 and 200 ◦C [73], but reaction progress is inhibited due to the absence of kaolinite. At a
lower temperature of about 120 ◦C and in the presence of carbonate minerals, another chlo-
ritization reaction via kaolinite and iron oxide could occur [12,74]. The possible explanation
for hydrothermal chloritization cannot be discounted in the Mikambeni carbonaceous
shale owing to the presence of Sagole thermal spring via the Tshipise fault [75,76]. This
interpretation is consistent with the chloritization processes reported at the geothermal area
of Iceland in which iron-rich smectite (saponite) is transformed into mixed-layer smectite-
chlorite (S-C) at about 200 to 230 ◦C [50]. In support of the S-C mixed layer, corrensite is
a resulting mineral composed of 50% of each chlorite and smectite mineral [77]. With a
further increase in temperature due to burial depth, chlorite crystallizes at temperatures
greater than 240 ◦C due to a gradual replacement of iron-rich smectite with daughter chlo-
rite mineral in close zonation contact [78]. This reaction mechanism suggests a solid-state
gradual replacement; however, the reaction pathway may be a continuous series transition
instead of a stepwise progression [79] since shale has a low pore fluid to rock ratio due to
poor interconnectivity of pores. Stepwise transition is noted to predominate in the system
with high pore-fluid-to-rock ratio such as sandstone; hence, chloritization in the studied
shale may be a by-product of smectite illitization. Although the rise in temperature of
diagenetic chlorite could be promoted by contact diagenesis associated with the Sagole
geothermal area, the pore fluid of Mikambeni shale is unaffected by the thermal spring
due to extremely highly impermeable shale. Carbonate minerals commonly revert to
the thermodynamically stable mineral as dolomite replaces limestones in the deep-burial
diagenetic realm, as represented in Equation (7) [79]. Calcite dissolution increases with
burial dolomitization in the presence of an organic-rich and interstitial fluid via stepwise
precipitation of dolomite.

CaCO3 + Fe2+ + Mg2+
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2CaMg(CO3)2 + 2Ca2+ (7)

The disappearance of calcite at relatively greater burial depths suggests a low pH
medium, while its replacement by dolomite indicates an alkaline setting corresponding
to oil window and organic matter maturation at a temperate range of 80–120 ◦C [80–82].
Promoted by sulfate reduction of pyrite mineral resulting from microbial activities, an
increase in alkalinity medium favors precipitation of dolomite in the presence of Ca and Mg
as burial depth increases [83]. The reduction process of Fe3+ to Fe2+ in the form of pyrite
is evident from the framboidal structure revealed by SEM microscopy, thus suggesting a
reducing or anoxic environment. Framboidal pyrites having bioclast structures that result
from the reduction of organic matter in an organic-rich shale.

4.2. Methanogenesis Potentials of the Carbonaceous Shale

The biogenic methanogenesis from diagenetic carbonaceous shale may be attributed both
to microbial degradation of organic matters and their thermal maturation as burial depth
increases (Figure 7). The carboxyl C=O stretching absorption peak, around 1000–1220 cm−1,
is stronger in spectra. The presence carboxyl group increases solubility properties. The
post-depositional activities of microbial degradation on organic matter of shale deposit tend
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to produce biogenic methane, sulfide gases, and organic acids fluid capable of dissolving
some reactive mineral phases.Minerals 2021, 11, x FOR PEER REVIEW  12  of  16 
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Among the evidence of methanogenesis processes are the imprints of burrowing
organisms, which suggest a connection with bioturbation processes capable of expelling
biogenic gases from carbonaceous matter in shales [84]. The micro-FTIR revealed several
linking bonds such as aromatic C=C stretching and amide group N=H bending in the
acetic and propionic functional group, thus consistent with the organic macerals rich in
protein, carbohydrate, lipids, and lignin [85]. At this stage, dewatering of pores first occurs
at 10–50 ◦C, followed by biogenic methane from residual lignin at 50–70 ◦C (Figure 7)
and characterized by carbonate minerals and acetic organic group. The water absorption
spectra stretch between 3500 and 4000 cm−1 wavenumber band. This observation alludes to
the carbon δ13C isotopic analysis, which reported an aceticlastic decomposition of aliphatic
to aromatic components with the generation of early methane gas [86].

At greater depth, the organic functional group comprising mainly phenolic and
carboxylic, which were observed alongside mineralogical components of illite and chlorite
was associated with thermal methanogenesis. At depths greater than 2500 m, recent
studies [87] have established the presence of diagenetic illite and chlorite minerals to
characterized geochemical zones in which the temperature is above 180 ◦C and the low
metamorphic zone. Although the Mikambeni shale is shallower, the proximity of Sagole
and Siloam geothermal fields may play a role in the elevated temperature that caused the
diagenetic and thermal maturation of organic matter. The alteration in I-M ordering from
random to regular during montmorillonite illitization and chloritization in shales coincides
with the temperature range of organic matter maturity and the onset of the oil and gas
window in the Mikambeni shale. Depending on the nature of the organic matter, marine
diatoms and fora-minifera undergo a catagenesis at the oil window, while the terrestrial
higher plant materials exceed catagenesis to methanogenesis at about 200 ◦C, as indicated
by the organic carboxylic group [87,88]. The methane is indicated by a strong absorption
band around 3015 cm−1 and a band around 1305 cm−1.

The formation of solid carbon components involves a multi-stage process of kerogen
degradation, initiated by deposition of organic matters [89]. Sources of organic matter could
be either derived from the ocean, consisting of phytoplanktonic remains, or land, which
consists mainly of vascular plant remains. However, accumulation of both marine and land-
derived organic matter is common at deltas or floodplains of meandering rivers [90,91].
Under this oxic condition in the water column, the aerobic degradation of organic matter
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continued until the dissolved oxygen was less than 0.2 mL/L H2O [92]. The deficiency
in oxygen may be due to climatic overprint, sea-level changes, tectonic activities, and
hydrographic factors, resulting in an insufficient supply of oxygen to oxidize the organic
materials [93,94]. In addition, the faster rate of organic matter accumulation in sediments
more than the aerobic degradation and bacterial oxidation processes may contribute to
the enrichment of organic carbon beyond its decomposition [95]. Below 0.2 mL/L H2O
oxygen concentration, anaerobic conditions and degradation of organic matter begin,
giving rise to the solid carbon-containing components in shale sediments [95]. This anoxic
setting is established as all the oxidants in the shale sediments deplete due to further
reduction processes caused by increasing burial depth, promoting the activities of sulfide-
reducing bacteria [96]. Studies [97–100] have highlighted minerals and compounds such
as pyrite, sphalerite, hydrogen sulphide, and iron sulfide as evidence of the reduction
process that ensued from sulfide-driven bacteria. With further increase in burial depth
below the sediment–water interface, the methanogens begin to degrade the organic carbon
to generate biogenic methane. This is consistent with the previous work of Tourtelot (1979),
which argued that methane is unlikely to form unless all sulphates are depleted while
vanadium and nickel are concentrated.

5. Conclusions

The combination of FTIR, SEM-EDX, and mineralogical analyses demonstrated a
promising approach to assess methanogenesis potentials in carbonaceous shale rock. In
shale rock that is dominated by terrigenous higher plants, the biogenic methanogenesis is
found to correspond to the absorption spectrum stretching from 1650–1220 cm−1 frequen-
cies. This spectrum reflects the C-O stretching and OH deformation of acetic and phenolic
groups in all studied samples. Given the strong absorptions around 2000–2300 cm−1,
CO2 is produced by decarboxylation of organic matter. The gas becomes acidified and
dissolves feldspar to release K+ ions, which promoted the illitization of smectite. The
SEM microscopy depicted a framboidal structure, which indicated a sulfate reduction
of pyrite mineral. The reduction process results from microbial activities in an anoxic
milieu and causes an increase in alkalinity medium that favors precipitation of dolomite
in the presence of Ca and Mg as burial depth increases. The contact diagenesis from the
proximity of Sagole geothermal spring via Tshipise fault is suggested to have enhanced the
transformation of smectite to chlorite via a mixed-layer corrensite in a solid-state gradual
replacement reaction pathway. The presence of diagenetic chlorite mineral is characteristic
of low-grade metamorphism or high diagenetic zone at a temperature around 200–230 ◦C
and corresponds to thermal breakdown of kerogen to methane at a a strong absorption
band around 2850–3000 cm−1.
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