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Abstract: Metallic mineral deposits represent natural geochemical anomalies of economically valu-
able commodities but, at the same time, their weathering may have negative environmental impli-
cations. Cu-sulfide mineral deposits have been recognized as deposits with a particularly large en-
vironmental footprint. However, different Cu deposits may result in significantly different environ-
mental impacts, mostly depending on weathering conditions, but also on geological characteristics
(mineralogy, geochemistry, host-rock lithology) of the Cu mineralization. This study presents new
mineral and geochemical data from the Repparfjord Tectonic Window sediment-hosted Cu deposits
and the Caledonian volcanogenic massive sulfides (VMS) deposits. The deposits share similar min-
eral features, with chalcopyrite and bornite as the main ore minerals, but they differ according to
their trace element composition, gangue mineralogy, and host lithology. The studied sediment-
hosted Cu deposits are depleted in most toxic metals and metalloids like Zn, As, Cd, and Hg,
whereas the Roros Caledonian VMS mineralization brings elevated concentrations of Zn, Cd, In, Bi,
As, and Cd. The conducted leaching experiments were set to simulate on-land and submarine
weathering conditions. A high redox potential was confirmed as the main driving force in the de-
stabilization of Cu-sulfides. Galvanic reactions may also contribute to the destabilization of miner-
als with low rest potentials, like sphalerite and pyrrhotite, even under near-neutral or slightly alka-
line conditions. In addition, the presence of carbonates under near-neutral to slightly alkaline con-
ditions may increase the reactivity of Cu sulfides and mobilize Cu, most likely as CuCO:s (aq).

Keywords: Cu-sulfide ore; Nussir; Ulveryggen; Roros VMS deposit; leaching tests; submarine
weathering conditions; on-land weathering conditions

1. Introduction

Copper is one of the most widely used mineral commodities in modern society, with
a particular importance to electronics, electrical power generation, and the renewable en-
ergy sector, as well as in electric vehicle technologies [1-3]. In nature, Cu can be found in
various types of mineral deposits, but in addition to the Cu-porphyry type (e.g. Chuquica-
mata, Chile [4]; El Teniente, Chile [5]; Ok Tedi, Papua New Guinea [6]), deposits of vol-
canogenic massive sulfides (VMS) and Cu-sediment hosted types represent the most im-
portant sources of Cu. Worldwide, 20 million tons (Mt) of copper was the total mine pro-
duction in 2020 [7]. This number decreased from 24.5 Mt in 2019 due to COVID-19 lock-
downs in April and May [8]. Chile remains the major copper producer (5.7 Mt) followed
by Peru (2.2 Mt), China (1.7 Mt), DR Congo (1.3 Mt), and the US (1.2 Mt) [9]. A range from
60% to 75% of copper is mined from porphyry-copper deposits [10], 20% from sediment-
hosted Cu deposits [11], and around 6% of Cu is mined from VMS deposits [12].

In this study, sediment-hosted Cu mineralization is represented by samples from the
Nussir and Ulveryggen Cu deposits, from the Repparfjord Tectonic Window, while the
Reros deposit, located within the Upper Allochthon of Scandinavian Caledonides, was
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selected as representative of VMS mineralization (Figure 1). All three deposits are charac-
terized by chalcopyrite and bornite as the main ore minerals, but they significantly differ
in trace element composition, gangue mineralogy, and host lithology. The Ulveryggen Cu
sediment-hosted deposit was mined in the period from 1972 to 1978/79, and tailings were
deposited subaqueously in Repparfjorden. The Nussir deposit has not been mined yet,
but there are plans for start-up mining of both the Nussir and Ulveryggen deposits in the
near future [13]. The mine tailings from this operation are designated to be disposed of
subaqueously in Repparfjorden as well. The Reros VMS deposit was mined from 1644 to
1977 [14], and similar to other historic VMS mines along the Scandinavian Caledonides,
the mine waste material was disposed of on land, and still represents a significant envi-
ronmental threat [15].

Mining activities may result in negative environmental impacts due to the accumu-
lation of large quantities of mine waste material, generation of acid mine drainage (AMD),
and dispersion of heavy metals in aquifers, streams, and marine sediments and soils. Cop-
per has been recognized as a commodity with a particularly large environmental footprint
(e.g. [16-18]); the environmental impact of Cu mines mostly depends on tailings disposal
site conditions and the geological features of Cu mineralization, including mineral, geo-
chemical, and host lithology characteristics (e.g. [19-22]).

AMD is a major problem associated with mineral deposits, in which Cu occurs in the
form of sulfides (e.g. chalcopyrite, bornite, chalcocite, covellite) or if barren sulfides (e.g.
pyrite, marcasite, pyrrhotite) represent asignificant component in the ore mineral assem-
blage (e.g. [23,24]). The consequences are often severe, leading to a lowering of the pH of
contaminated aquifers, and release of metals and metalloids into the environment (e.g.
[25-29]). Traditionally, tailings have been deposited in subaerial conditions, but several
countries including Norway, practice subaqueous deposition [30]. Since subaqueous dep-
osition in particular raises environmental concerns, we have tested the stability of repre-
sentative Cu mineral assemblages from two of the most common types of Cu-sulfide de-
posits in Norway (sediment-hosted Cu deposits and VMS deposit) in a set of experiments
that simulated subaerial and subaquatic weathering site conditions.

Kinetic leaching tests represent a powerful and relatively inexpensive tool to predict
generation of AMD (e.g. [31]). They are designed to simulate sulfide-weathering processes
in different physicochemical conditions. Kinetic leaching tests can be industrial or per-
formed in the laboratory. Industrial tests are run in leaching columns, heaps, tanks, vats,
dumps, large bins or drums [32]. They are placed in the field and subjected to meteoric
waters, oxygen from the atmosphere, and changing temperature depending on the season.
These tests can be conducted for several months to several years and are infrequently
sampled for concentrations of dissolved metals and metalloids, sulfate, and changing pH
and Eh parameters [33]. The tests can be accelerated by adding additional water [32].

However, more often the leaching tests are performed in miniature versions and run
in laboratory size equipment—batch reactors, leaching columns, and humidity cells (e.g.
[34—42]). The results are later extrapolated or mathematically modelled for larger volumes
[33]. The tests are well-controlled and parameters such as water pH and Eh, metals and
metalloids concentrations are continuously measured. The tests are often accelerated by
increased temperature or the addition of hydrogen peroxide (e.g. [43]). The laboratory
leaching tests also allow determination of an acid neutralizing capacity of gangue miner-
als and the acid producing potential of sulfides as well as to test remediation mechanisms,
(e.g. [34,44-46]). However, many authors (e.g. [47]) argue that laboratory tests cannot be
simply extrapolated to the field conditions. For example, a faster oxidation of pyrite and
chalcopyrite from the Aitik site in Northern Sweden was observed in the laboratory com-
pared to the field conditions [47].

The importance of characterization of ore parageneses and their host rocks was rec-
ognized as an important tool in the prediction of leaching of heavy metals from naturally
contaminated rocks during anthropogenic activities e.g. underground constructions [31].
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The tests are designed around primary ore mineralization to observe the oxidation poten-
tial of major ore minerals, and aim to extrapolate the results of the study to apply to pro-
duced mine tailings. The reactivity of the tailings with the surrounding environment will
be significantly higher due to particle size and an increase in surface energy.

Norway has a long shoreline, and the ore-bearing rocks are often subjected to weath-
ering by seawater. In addition, Norway is one of few countries where subaquatic mine
tailings deposition is permitted. In both cases, it is important to understand the role of
salinity on weathering of sulfides. Therefore, during the experiments seawater was used
together with meteoric water.

The aim of this study is to evaluate the potential environmental impact of the studied
Cu mineralization, considering geological characteristics including mineralogy, geochem-
istry, as well as the main physicochemical features of subaerial and subaquatic disposal
sites.

2. Geological Settings
2.1. Sediment-Hosted Cu Deposits of Nussir and Ulveryggen, Repparfjord Tectonic Window

The Repparfjord Tectonic Window, Northern Norway, is composed of mafic
metavolcanics and carbonate-siliciclastic sequences that were compressed in a SE-NW di-
rection during the Svecofennian Orogeny at ca. 1.84 Ga [48,49]. The rocks are metamor-
phosed under greenschist to lower amphibolite facies conditions, and [50] determined the
age of host volcanics to be about 2.1 Ga, with Nussir mineralization around 1.765 Ga. The
Repparfjord Tectonic Window contains numerous sites with Cu mineralization (e.g.
[14,51]), of which the Nussir (26.7 Mt at 1.13% Cu) and the Ulveryggen (7.7 Mt at 0.81%
Cu) deposits have the greatest implications for the local environment [14,52]. The Nussir
deposit is hosted by a thin (no more than 5 m thick) metadolostone layer that can be traced
for several kilometres (Figure 1a,c), intercalated with metasandstone, metasiltsone and
metapelites. The metasedimentary complex is overlain by a several hundred meters thick
metavolcanic sequence [49,50,53]. Despite the close geographical occurrence of the Nussir
and Ulveryggen deposits, they have different lithologies. The Ulveryggen deposit is
hosted by arkosic metasandstones, metasiltstones, and metaconglomerates with low car-
bonate content. Mineralization can be traced for more than 1 km in the northeast direction
and is structurally confined to tight folds [48,49,54,55]. Chalcopyrite, bornite, sphalerite,
and minor pyrite are the main ore minerals at both deposits.

The Nussir mineralization is confined to a thin (up to 5 m thick) dolomitic marble
layer intercalated with metasiltstone, metapelites and metasandstones, localizing the min-
eralization within quartz-carbonate veins as well as disseminated in mafic metavolcanics
[49,50,54,55]. The major ore minerals at the Nussir and Ulveryggen deposits are chalcopy-
rite, bornite, and chalcocite [49,50,54].
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Figure 1. Geological maps showing the locations of the mines in (a) the Repparfjord Tectonic Win-
dow: Nussir and Ulveryggen sediment-hosted Cu deposits, and (b) the Reros area, drawn based on
interactive online maps at [56] as well as modified after [49,55]. The map of Norway in (c) shows the
locations of the Nussir, and Reros areas.

2.2. Volcanogenic Massive Sulfide (VMS) Deposit Raros, The Upper Allochthon of Scandinavian
Caledonides

The Reros VMS mining area includes several hundreds of mineralizations in the
south-eastern part of the Upper Allochthon of the Scandinavian Caledonides [57], includ-
ing the Roros deposit studied herein. The mineralizations are characterized by predomi-
nately chalcopyrite, sphalerite, pyrite, and galena hosted by interbedded metatuffite,
metagraywacke, and gabbroic sills and dykes [14,58,59].

The Upper Allochthon of Scandinavian Caledonides extends for about 1500 km, from
the Stavanger region in southern Norway to the Barents Sea region in northern Norway.
This first-order tectonostratigraphic unit is dominated by sedimentary and magmatic
rocks derived from the Iapetus Ocean, including ophiolite and island-arc complexes usu-
ally associated with VMS type mineralization (Figure 1b,c; [60-62]).

The Roros mining area in Trendelag County, south-eastern Norway, hosts numerous
occurrences of the VMS type (Figure 1b). Among the largest occurrences are found at the
Storwartz and Olav mines in the eastern sector, and the Kongens mine in the north-west-
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ern sector (Figure 1), with average Cu and Zn contents of about 2.7% and 4.2-5%, respec-
tively [59]. The mineralization is hosted by metagraywacke interbedded with metatuffites,
metabasalts and gabbroic sills and dykes [14,58,59], with major ore minerals: chalcopyrite,
pyrrhotite, sphalerite, and pyrite.

3. Materials and Methods

For this study, representative samples of the Cu sulfide mineralization were selected
from the Nussir and Ulveryggen sediment-hosted Cu deposits, and from the Reros VMS
deposit. Two main types of samples were analyzed: (1) Mineral assemblages composed of
ore and gangue minerals and (2) Individual Cu-sulfide minerals.

Twenty-seven polished thin sections of representative mineral assemblages were
prepared at the Department of Geosciences at UiT The Arctic University of Norway. Three
thin sections represented reference samples for the respective deposits. The reference sam-
ples were studied under a reflective polarizing light microscope and a Zeiss Merlin Com-
pact Field Emission Scanning Electron Microscope (FE-SEM) equipped with an energy-
dispersive X-ray spectrometer (EDS) at UiT The Arctic University of Norway, to deter-
mine mineral and geochemical characteristics of the ore mineral assemblages prior to and
after the leaching tests. In order to investigate the primary ore, the SEM was run in a high
vacuum regime at 20 kV accelerating voltage, 20 s counting time, and with an aperture of
60 um.

In order to simulate weathering processes corresponding to the tailings disposal site
conditions, a set of leaching experiments were performed on the polished thin sections
(Figure 2). The experiments were designed to simulate (Figure 3): (1) Subaquatic vs. on-
land disposal site conditions; (2) Oxidative vs. reductive conditions; (3) Carbonate buff-
ered vs. carbonate free systems; and (4) Seawater infiltrated vs. meteoric water infiltrated
sites (Table 1). Each thin section was placed in an individual beaker of 400 mL with a
height of 10.5 cm and diameter of 8.5 cm. The thin sections were then covered with a 4 cm
thick layer of quartz sand (200 g) for the simulations of on-land conditions, whereas nat-
ural marine sediments (200 g) were used for the simulations of submarine conditions.

The average organic content in the natural marine sediments was 0.82 wt.% (Supple-
mentary Table S1), whereas the quartz sand was free of organic matter. To test the influ-
ence of redox potential, half of the beakers with quartz sand were doped with ~10 wt.%
of organic matter and sealed with parafilm tape to prevent oxidation reactions. The other
half of the beakers were left open during the entire experiment and refilled with circa 150
mL of meteoric water once per day to ensure oxidative conditions. Pure calcium carbonate
was used to buffer relevant solutions. The experiments were run for three months, and in
order to accelerate the reactions, the beakers were kept in a water bath at 50 °C.

At the end of the experiments, the samples were carefully removed and investigated
under a reflective light microscope. The formation of secondary minerals was studied by
Raman spectroscopy, conducted at UiT The Arctic University of Norway in Tromse. A
Renishaw inVia confocal Raman microscope equipped with a 532 nm (green) diode laser
was used to identify the mineral phases in the studied ore samples, as well as the degree
of weathering after simulation of weathering conditions under on-land and subaquatic
conditions. The identification was based on Raman spectra published in the literature [63].

Individual grains of Cu sulfides were handpicked under a binocular microscope,
washed in an ultrasonic bath and pulverized in an agate mortar. An amount of 0.5 g was
analyzed for bulk trace element composition at the AcmeLabs (Vancouver, B.C. Canada),
on an ICP MS instrument following the internal LF202 analysis code.
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Figure 2. (A) Photograph of the test setup; (B) backscattered electron image of chalcopyrite (Cpy) in
assemblage with bornite (Bn) and inclusions of iron oxides (FeO) from unaltered reference sample
E-N-1 (Nussir); (C) backscattered electron image of chalcopyrite (Cpy) with small inclusions of
bornite (Bn) from unaltered reference sample E-U-1 (Ulveryggen); (D) backscattered electron image
of the Reros reference sample E-R-1 showing the mineral assemblage of chalcopyrite (Cpy), sphal-
erite (Sph), pyrite (Py), and pyrrhotite (Po).

#1 #2 #3 #4
Eh =239.7 mV Eh =247.9 mV Eh=211.1mV Eh=231.2mV
pH =7.64 pH = 7.31 pH =7.29 pH =7.63

sealed with parafil sealed with parafil sealed with parafil sealed with parafil

Marine sediments (200g)| |Marine sediments (2009)| |Marine sediments (200g) Marine sediments (2009)

#5 #6 #7 #8

Eh =2226 mV Eh =245.7 mv Eh =191.5mV Eh =286.1 mV
pH=8.76 pH=7.54 pH =7.86 pH =543

Figure 3. Schematic presentation of test settings #1-#8 conditions. Eh and pH are measured in sedi-
ments before the tests. See text for explanation.
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Table 1. Experimental setups. The cross mark corresponds to the ingredient added to the composition of the mixture.
Sample last digits correspond to the experiment setup number.

Materials Used to Maintain the Designed Conditions

. Condition Descrip- Marine  Prefabri- Meteoric  Organic
le # t # Wat t
Sample Condition tion Sediment cated Sand Sea Water Water Matter Carbonate
Marine sediments,
Env-1NS-1 TOC =0.82 wt.%.
Env-2Ulv-1 Carbonate + + +
Env-3RS-1 buffered + + +
Seawater
Marine sediments,
Env-NS-2 TOC =0.82 wt.%. + +
Env-Ulv-2 Carbonate + +
Env-RS-2 buffered + + +
Meteoric water
Marine sediments,
Env-NS-3 TOC = 0.82 wt%,
Env-Ulv-3 non-buffered
Fnv-RS-3 on-buffered. N N
Seawater
Marine sediments,
Env-NS-4 TOC = 0.82 wt.%, "
Env-Ulv-4 + +
non-buffered.
Env-RS-4 . + +
Meteoric water
Env-NS-5 Quartz sand, TOC=0 N N N
wt.%, carbonate-
Env-Ulv-5 buffered. Meteori " "
Env-RS-5 - veteotic + +
water
Env-NS-6 Quartz sand, TOC=0 + +
Env-Ulv-6 wt.%, non-buffered. + +
Env-RS-6 Meteoric water + +
Quartz sand,
Env-N5-7 TOC=10 wt.%, N N
Env-Ulv-7 + +
carbonate-buffered.
Env-RS-7 . + + + +
Meteoric water
Quartz sand,
Env-NS- + +
nv-N5-8 TOC=10 wt.%, non-
Env-Ulv-8 buffered. Meteor: + + +
Fnv-RS-8 uffered. Meteoric N N

water

I NS—Nussir; 2 Ulv—Ulveryggen;  RS—Reros, “+” —present in the experiment

4. Results
4.1. Mineral Analyses
4.1.1. Nussir and Ulveryggen

Mineral analyses show that typical ore assemblages from the Nussir and Ulveryggen
sediment hosted Cu deposits consist of chalcopyrite, bornite, and chalcocite (Figure 2B,
C). The Reros VMS mineralization is represented by massive sulfide bodies predomi-
nantly composed of chalcopyrite, sphalerite, pyrite and pyrrhotite (Figure 2D).

The Nussir dolomitic marble contains rhomboidal-shaped fragments of carbonates
that are up to 5 mm in diameter. The mineralization is confined to crosscutting quartz-
carbonate veins with euhedral to subhedral grains of vein carbonate, which are up to 0.1-
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0.3 mm in diameter. Quartz grains are anhedral and about 0.1 mm in diameter. Chalcopy-
rite is the dominant Cu mineral together with bornite; the minerals are intergrown and
contain abundant inclusions of pyrite and sphalerite (Figure 2B).

The Ulveryggen arkosic metasandstone contains fragments of quartz and feldspar
up to 0.2 mm in size. The ore minerals are disseminated and they have grown interstitially
between fragments of quartz and feldspar together with muscovite. The main ore miner-
als are bornite and chalcopyrite (Figure 2C), with minor amounts of pyrite and chalcopy-
rite.

4.1.2. Reros

Since the Roros samples were prepared from pieces of massive ore, only ore minerals
were observed under the microscope. The main ore minerals are pyrrhotite, pyrite, chal-
copyrite and sphalerite, which show various intergrowth textures. Chalcopyrite, which is
the most abundant mineral, occurs as individual grains that are several centimetres in
diameter. Pyrite and pyrrhotite crystals also show large grain-sizes (several centimetres
in diameter), while sphalerite forms small inclusions of less than 0.1 mm in diameter (Fig-
ure 2D).

4.2. Leaching Tests

Experimental conditions #1 (Marine sediments, TOC = 0.82 wt.%; carbonate buffered;
infiltrated with seawater (Figure 3); Ehsed = 239.7 mV, pHsed = 7.64, where Ehsed and pHsed
are values of redox potential and pH for pore water in sediments measured after initial
stabilization of conditions, i.e. 60 h after the experiment started) did not affect stability of
mineral assemblages from the Nussir and Ulveryggen deposits (Figures 4A and 5A).
However, for the sample from the Reros VMS deposit, small grains of sphalerite were
weathered while some pyrite grains remained well-preserved (Figure 6A; Supplementary
Figures S3H and S4A,B).

Experimental conditions #2 (Marine sediments, TOC = 0.82 wt.%; carbonate buffered;
infiltrated with meteoric water; Ehsea=247.9 mV, pHsed = 7.31; Figure 3) resulted in partial
oxidation of sulfides from the Nussir and Ulveryggen deposits (Figures 4 and 5B; Supple-
mentary Figures SIA-C and S2B). As for the experimental conditions #1, small grains of
sphalerite from the Roros VMS deposit were affected (Figure 6B; Supplementary Figure
54D). Pyrite was partly oxidized along rims, while other parts remained unaltered (Figure
6B; Supplementary Figure S4C-E). Pyrrhotite was weathered significantly (Supplemen-
tary Figure 54D), and chalcocite was weathered while chalcopyrite remained unaltered
(Supplementary Figures S4C,E).
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Figure 4. Microphotographs of samples under the reflected light microscope from the Nussir test
runs after 90 days of the weathering experiment. The photographs are taken in crossed polars and
correspond to test setups from 1 to 8 in Table 1. (A) reductive condition #1: well-preserved chalco-
pyrite (Cpy) grain (sample ENV-NS-1); (B) reductive condition #2: secondary minerals (SM) on top
of chalcopyrite (Cpy) (sample ENV-NS-2d); (C) reductive condition #3: well-preserved chalcopyrite,
secondary minerals are possibly forming in the cavities in the grain (Sample ENV-NS-3); (D) reduc-
tive condition #4: secondary minerals formed on the surface of chalcopyrite (Cpy, sample ENV-NS-
4); (E) oxidative condition: secondary minerals on the surface of Cpy (ENV-NS-5); (F) oxidative con-
dition #6: Cpy grain is partly oxidized (ENV-NS-6); (G) oxidative condition #7: well-preserved as-
semblage of Cpy and bornite (Bn) (ENV-NS-7); (H) oxidative condition #8: intensively oxidized chal-
copyrite grain (fENV-NS-8).
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Figure 5. Microphotographs of Ulveryggen samples after 90 days of experiments. The photographs
are taken under a reflected light microscope, with crossed polarizers. Setup description is given in
Table 1, (A)—(H) microphotographs correspond to #1-8 conditions. (A) Intergrowth of chalcocite
(Cct) with bornite (Bn, ENV-Ulv-1); (B) well-preserved chalcopyrite (Cpy) with minor oxidation of
fine grains (ENV-Ulv-2); (C) well-preserved chalcopyrite grains (ENV-Ulv-3); (D) unaltered chalco-
pyrite grains (ENV-Ulv-4); (E) partly oxidized chalcopyrite grain with secondary mineral and oxi-
dation cover on the surface; (F) oxidized Cu sulfide, likely chalcopyrite with secondary minerals
formed on the lateral parts; (G) well-preserved chalcopyrite grain; and (H) micro-assemblage of
well-preserved bornite (Bn) with chalcopyrite.

Experimental conditions #3 (Marine sediments, TOC = 0.82 wt.%; no added car-
bonates; infiltrated with seawater; Ehsea= 211.1 mV, pHsea = 7.29; Figure 3) did not affect
the samples from the Nussir and Ulveryggen deposits (Figures 4C and 5C; Supplementary
Figure S2D), but sulfides from the Reros VMS deposit went through extensive oxidation
reactions (Figure 6C; Supplementary Figure S4F,G). Pyrrhotite was oxidized significantly,
however chalcopyrite crosscutting pyrrhotite remained well-preserved (Figure 6C). Pyrite
was partly oxidized along the rims. Covellite was observed along cracks in the pyrite.
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Figure 6. Microphotographs of polished thin sections from the Reros deposit after the 90-day exper-
iment. The photographs (A)-(H) are taken under crossed poles, reflected light microscope and cor-
respond to test conditions #1-8 (Table 1). (A,B) well-preserved pyrite grains (Py) with partly oxi-
dized sphalerite (Sph) triangles (blue); (C) partly oxidized pyrite with secondary minerals formed
on the rim of Cu-sulfides; (D) oxidation of sulfide mineral assemblages: pyrite (Py), sphalerite (Sph),
pyrrhotite (Po), and secondary minerals likely formed on Cu-sulfides; (E) Intensive oxidation and
the formation of secondary minerals (Cu-ox) of chalcopyrite (Cpy); (F) relatively well-preserved
pyrite and intensely oxidized sphalerite, with minor amount of iron oxides (Fe-ox); (G,H) micro-
assemblages of well-preserved sphalerite (Sph), chalcopyrite (Cpy), pyrite (Py), and pyrrhotite (Po).

Experimental conditions #4 (Marine sediments, TOC = 0.82 wt.%; no added car-
bonates; infiltrated with meteoric water; Ehseda = 231.2 mV, pHsea = 7.63; Figure 3) partly
affected the Nussir and Ulveryggen samples: fine-grained fragments were significantly
oxidized (Figures 4D and 5D; Supplementary Figures SID-F and S2E), while larger grains
were partly oxidized. Chalcopyrite obtained oxidized rims while bornite remained well-
preserved (Supplementary Figures SID-F and S2E). Chalcocite from the Nussir deposit
was partly oxidized, while chalcocite in contact with pyrite from Ulveryggen remained
well-preserved (Supplementary Figure S2E). The Reros samples were weathered signifi-
cantly (Figure 6D; Supplementary Figure S4H). Notably, bornite was weathered to a
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higher degree than chalcopyrite. The latter was found in veins within bornite and re-
mained well-preserved (Supplementary Figure S4H). Oxidized rims were formed around
pyrite grains, whereas pyrrhotite and sphalerite had undergone significant weathering
(Figure 6F).

Experimental conditions #5 (quartz sand, TOC = 0 wt.%; carbonate buffered, infil-
trated with meteoric water; Ehsea = 222.6 mV, pHsea = 8.76; Figure 3) affected the sulfides
from all three studied deposits to different degrees. Chalcopyrite and bornite from Nussir
were extensively weathered (Figure 4E; Supplementary Figure S1G), whereas for the Ul-
veryggen sample, chalcopyrite and chalcocite were partly weathered while most of the
pyrite and bornite remained well-preserved (Figure 5E; Supplementary Figures S2F-H
and S3A). Sulfides from Reros were more oxidized in comparison to sulfides from Nussir
and Ulveryggen. In contrast to pyrite and chalcopyrite, which remained well-preserved
or only partly oxidized, pyrrhotite and sphalerite were significantly weathered (Figure
6E; Supplementary Figure SSA-C).

Experimental conditions #6 (quartz sand, TOC = 0 wt.%; no added carbonates; infil-
trated with meteoric water; Ehsea=245.7 mV, pHsed = 7.54; Figure 3) resulted in extensive
oxidation of the sulfides from the Nussir and Ulveryggen deposits. Chalcopyrite, bornite
and chalcocite obtained a weathered rim around the grains (Figures 4F and 5F; Supple-
mentary Figures S1H and S3B,C). Some grains of chalcopyrite were entirely covered with
a thin film of weathering products (Figure 4F). Pyrite from Ulveryggen remained well-
preserved, but might have accelerated the oxidation of bornite (Supplementary Figure
S3C). Pyrrhotite and sphalerite from the Reros deposit were significantly weathered,
whereas pyrite remained relatively well-preserved with insignificant formation of iron
oxides (Figure 6F; Supplementary Figure S5D). A weathered Cu-containing mineral was
also observed within the pyrite (Supplementary Figure S5D).

Experimental conditions #7 (quartz sand, TOC = 10 wt.%, carbonate buffered, infil-
trated with meteoric water; initial Ehsea= 191.5 mV, pHsea = 7.86; Figure 3) did not affect
the Nussir and Ulveryggen sulfides. The minerals remained well-preserved (Figures 4G
and 5G; Supplementary Figure S3D,E). The Reros ore minerals also remained almost un-
affected, however some pyrite grains were slightly tarnished with bright blue secondary
covellite and brownish iron hydroxides (Figure 6G; Supplementary Figure S5E,F).

Experimental conditions #8 (quartz sand, TOC = 10 wt.%, no added carbonates, infil-
trated with meteoric water; Ehsea= 286.1 mV, pHsea = 5.43; Figure 3) resulted in well-pre-
served sulfides from the Ulveryggen and Reros deposits (Figures 5H and 6H; Supplemen-
tary Figures S3F,G, and S5G ). Chalcopyrite from Nussir was observed both as relatively
well-preserved grains (Figure 4H) and significantly weathered grains (Supplementary
Figure 52B).

4.3. Raman Spectroscopy

Raman spectra (Figure 7) obtained from chalcopyrite and pyrite from the Nussir, Ul-
veryggen, and Reros deposits suggest formation of new peaks 450 and 500 cm™ after ex-
posing samples from the Nussir and Ulveryggen to experimental conditions #2 and #5,
respectively (Figure 7A-D).
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Figure 7. Raman spectrometry of chalcopyrite (Cpy) and pyrite (Py) from Nussir, Ulveryggen and
Roros after 90-days of testing in selected conditions. Sample numbers correspond to condition num-
bers and can be found in Table 1. Cps—counts per second. A-E: right images are microphotographs
of samples under reflected light microscope; left diagrams relate to Raman spot analyses. A,B—
chalcopyrite (Cpy) from the Nussir deposit (sample Env-NS-2, experimental condition #2); C,D—
chalcopyrite (Cpy) from the Ulveryggen deposit (sample Env-Ulv-5, experimental condition #5);

E—pyrite (Py) and F—chalcopyrite (Cpy) from the Reros deposit (sample Env-RS-1, experimental
condition #1).

4.4. Mineral Chemistry

In addition, to determine the concentration of potentially toxic elements including
Cu, Zn, Ni, Hg, Cd, and As (e.g. [64]), the bulk chemical compositions of hand-picked

Nussir, Reros chalcopyrite as well as Ulveryggen bornite were analyzed (Table 2). The
Nussir and Ulveryggen results are taken from [53].
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Table 2. Lithogeochemistry of hand-picked chalcopyrite from the Nussir deposit (NS-35-ccp), born-
ite from the Ulveryggen deposit (Ulv-2-bn) and chalcopyrite Reros Mine (RSL-ccp).

Element, ppm LD 1 NS-35-ccp 2 Ulv-2-bn 3 RSL-ccp
Ag 0.5 0.5 LLD >100
As 5 LLD LLD 226.1
Ba 3 12 527 18
Bi 0.1 0.3 0.1 9.9
Cd 0.1 LLD LLD 30
Co 1 85 2 535.9
Cu 10 >10,000 >10,000 >10,000
Hg 0.01 LLD LLD 4.59
Mo 2 LLD 5 6.5
Ni 0.1 100 LLD 7.8
Pb 5 LLD LLD 196.1
Rb 1 LLD 24 25
Sb 0.2 LLD LLD 1.8
Sn 1 LLD LLD 8
T1 0.05 3.69 0.96 2
\Y% 5 5 27 LLD
\% 0.5 0.6 LLD 0.7
Zn 30 310 LLD 2942

! NS—Nussir, 2 Ulv—Ulveryggen, 3 RSL —Reros; Bn—bornite, ccp—chalcopyrite, LD —limit of
detection, LLD —lower than limit of detection, ND —no data.

4.4.1. Nussir and Ulveryggen

The Nussir chalcopyrite contains 100 ppm of Ni, 85 ppm of Co and 310 ppm of Zn.
The content of Biis 0.3 ppm, while As, Mo, Cd, Sb, Pb, and Hg contents are minor or below
the detection limit. The Nussir chalcopyrite also contains Ba (12 ppm), most likely in the
form of nearly insoluble inclusions of barite.

Ulveryggen bornite contains 2 ppm of Co and 5 ppm of Mo. Nickel, Zn, As, Sn, Sb,
Cd, Pb, and Hg contents are minor or below the detection limit, while the Rb content is 24
ppm. The content of Ba in the Ulveryggen bornite is 527 ppm.

4.4.2. Roros

Chalcopyrite was picked from the crushed Reros sample. The Co content is 535.9
ppm. The chalcopyrite also contains: Ni 7.8 ppm and Zn 2942 ppm. As content is 226.1
ppm, and Sn and Sb contents are 8 and 1.8 ppm respectively. Chalcopyrite contains 30
ppm of Cd and 18 ppm of Ba. The Bi content is 9.9 ppm and Hg content is 4.59 ppm.

5. Discussion

The Cu mineralization found in the Nussir and Ulveryggen sediment-hosted Cu de-
posits is characterized by predomination of chalcopyrite, bornite and chalcocite. Mine tail-
ings from these Cu-sulfide deposits are associated with a high risk for the generation of
acid mine drainage (AMD) because of the high Fe?*/Fe3* and S>-/SOs* ratios in their min-
eral assemblages. Furthermore, the Ulveryggen deposit has a low carbonate content that
additionally increases the risk. In contrast, a low content of potentially toxic elements such
as As, Cd, Hg, and Zn in both, reduces their environmental threat [53].
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The Reros Cu-Zn VMS deposit, similar to other VMS deposits worldwide [65,66], is
characterized by a polymetallic composition (Table 2). The main ore minerals are sulfides,
including chalcopyrite, bornite, pyrite, and pyrrhotite. High Fe?* and S*- contents together
with an absence of carbonates from its mineral assemblages point to a high risk for the
generation of AMD in this deposit (e.g. [23,27,46,67,68]). In addition, the enrichment in a
wide spectrum of potentially toxic metals and metalloids (e.g. As, Bi, Cd, In, and Zn) mag-
nifies the environmental risk associated with mining activities and/or processes of natural
weathering in this type of ore deposits (e.g. Rio Tinto VMS deposits, the Iberian Pyrite
Belt in Spain [26,28,69-71] and the Britannia Creek VMS deposit, Canada [48]).

Leaching tests are recognized as powerful tools to predict the behavior of sulfides in
different conditions (e.g. [20,32,37,39,40]). Such tests play an important role in the initial
phases of mining planning, while deciding the potential placement of tailings for future
storage. The tests are usually performed in batch reactors specially equipped with sensors
controlling temperature, pH, and the amount of dissolved oxygen (e.g. [39,47,72]). Other-
wise, the tests can be performed in leaching columns (e.g. [32,73]) or in static conditions
(e.g. [46,74]) for periods of several days to several years. The leaching experiments in this
study were designed to test the stability of ore mineral parageneses from three different
Cu deposits under diverse physicochemical conditions (Figure 3, Table 1), and predict the
behavior of ore-bearing mineral assemblages disposed in on-land and submarine condi-
tions. As expected, the high redox potential was the main driving factor in destabilization
of sulfides (e.g. [75]):

4 FeSz + 15 Oz + 14 H20 [=] 4 Fe(OH)s + 16 H++ 8 SO:- 1)
4 FeS+10 Oz +9 H20 [=] 4 Fe(OH)s + 8 H+ + 4 SO ?)
4 CuFeS: + 15 Oz + 14 H20 [=] 4 Cu?* + 4 Fe(OH)s + 16 H* + 8 SOs>- 3)

The organic matter content of the natural marine sediments that were used (0.82
wt.%) was sufficient to prevent oxidation of the sulfides in experimental conditions in
which the sulfide parageneses were exposed to seawater. In the setups with meteoric wa-
ter, a different scenario was observed. A lower solubility of oxygen in seawater (4.6 mg/L
at 50 °C) compared to meteoric water (5.6 mg/L at 50 °C) was probably one of the control-
ling factors [76]. When sediments were doped with an additional 10 wt.% of organic mat-
ter, the differences between seawater and meteoric water influence were not recorded.

The carbonate buffered conditions were mostly less reactive due to a slightly alkaline
pH value of the infiltrating aqueous solutions. However, the samples from the Reros VMS
deposit revealed that sphalerite can enter galvanic reactions and be extensively dissolved
even in alkaline or near-neutral conditions. The prerequisite is that sphalerite (-0.24 V;
[77]) occurs in direct contact with sulfides with greater rest potentials like pyrite (0.63 V;
[78]) or chalcopyrite (0.54 V; [79]). In interactions with oxygen-rich solutions, sphalerite
will act as an anode:

ZnS [=] Zn>- + 50+ 2e- @)

and prevent oxidation of pyrite, and Cu-sulfides reacting with oxygen adsorbed on their
surface:

15 Oz (aq) + 2H* + 2e- [=] H20 (5)

This reaction will not affect the pH of the aquifer, but it will promote leaching of Zn.

The galvanic reaction may represent a particularly large environmental issue in min-
eral deposits in which pyrrhotite (-0.24 V; [77]) is intergrown or occurs in direct contact
with Cu-sulfides and/or pyrite:

FeS [~] Fe2r + S0 + 2¢- (6a)
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Fe?* + 3H:0 [~] Fe(OH)s + 3H* + - (6b)

The anode reaction will result in dissolution of pyrrhotite, oxidation of ferrous to
ferric ions, and consequently in acidification of the system.

In the experimental setups buffered with carbonates, the Cu sulfides showed an in-
creased reactivity (Figures 4B,E, 5B,E and 6E) whereas pyrite did not show significant
changes under these conditions (Figure 6B). Carbonates are often used for prevention of
acid mine drainage (e.g. [80]), but the results of this study show that in near-neutral to
slightly alkaline conditions Cu can be mobilized from sulfides, most likely in the form of
CuCOs (aq) [53,81]. This reaction is more intensive in solutions with a higher redox poten-
tial (Figures 4E, 5E and 6E).

In addition, gangue mineralogy might also play a role in the rate and degree of oxi-
dation. The Nussir mineralogy is hosted by dolomitic marble, while Ulveryggen Cu sul-
fides are hosted by arkosic sandstone, which retards the oxidation of sulfides [53]. Reros
sulfides, studied here, were sampled from a massive ore with an absence of gangue min-
erals. Therefore, galvanic interaction was favoured to higher degree of oxidation and was
not prevented or retarded by gangue mineralogy. Weathering in mine tailings will be ac-
celerated due to higher surface area, however this is also true for gangue mineralogy
which in the case of Nussir and Ulveryggen might play a buffering role. On the other hand
Roros mineralization being hosted by massive mafic volcanic rocks, which are extremely
soluble, will most probably not retard the oxidation reaction or buffer it to limited degree.

Raman spectroscopy confirmed the slight distortion of crystal lattices of pyrite and
chalcopyrite (Figure 7), however, the signal was low. Optically, even when the blue tinge
was observed in the Nussir and Ulveryggen samples, Raman analyses did not record any
changes in crystal structure of sulfides from these two deposits. This is attributed to oxi-
dation occurring in a thin layer of secondary minerals, which tends to be amorphous and
is characterized by the absence of a detectable lattice. In addition, the signal from primary
minerals is significantly higher.

6. Conclusions

The mineral assemblages from all three studied deposits point to a high risk for gen-
eration of acid mine drainage due their high Fe?*/Fe3* and S*/SOs* ratios. However, dif-
ferent ore-forming conditions of sediment hosted Cu deposits (Nussir and Ulveryggen)
from conditions related to the formation of VMS deposits (Reros) resulted in contrasting
behavior of the trace elements. As a consequence, the Nussir and Ulveryggen deposits are
depleted in most potentially toxic elements, such as As, Cd, Hg, and Zn, whereas the
Reros VMS mineralization is enriched in a wide spectrum of potentially toxic metals and
metalloids, including As, Bi, Cd, In, and Zn.

The leaching experiments revealed the redox potential as the main factor that con-
trols the stabilities of Cu-sulfides for both on-land as well as submarine conditions. Gal-
vanic reactions may contribute to the destabilization of minerals with low rest potentials,
like sphalerite and pyrrhotite, even under near-neutral or slightly alkaline conditions. The
destabilization of pyrrhotite can have particularly negative environmental consequences
due to the release of ferrous ions to an aquifer and acidification of the system as a result
of oxidation of ferrous to ferric ions.

Although carbonates are often used for prevention of acid mine drainage, the pres-
ence of carbonates under near-neutral to slightly alkaline conditions may increase the re-
activity of Cu sulfides and mobilize Cu, most likely in the form of CuCO:s (aq).

More complex ore minerals assemblages lead to deeper weathering in given condi-
tions. Thus, Reros chalcopyrite were notably more altered than chalcopyrite from the Ul-
veryggen and Nussir deposits.

Supplementary Materials: The following are available online at www.mdpi.com/2075-
163X/11/6/627/s1, Figure S1. Microphotographs demonstrating the Nussir sulfides reaction after 90-
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day tests; Figure S2. Microphotographs taken under a reflected light microscope; Figure S3: Micro-
photographs taken under reflected light; Figure S4: Microphotographs of Reros samples under re-
flected light; Figure S5: Microphotographs of Reros samples under the reflected light microscope
after 90-days of experimental tests; Table S1: Total organic carbon (TOC) of gravity core HH-12-002-
MF-GC obtained from Repparfjord.
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