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Abstract: Hyperspectral technology has been used to identify pigments that adhere to the surfaces
of polychrome artifacts. However, the colors are often produced by the mixing of pigments, which
requires that the spectral characteristics of the pigment mixtures be considered before pigment un-
mixing is conducted. Therefore, we proposed an experimental approach to investigate the nonlinear
degree of spectral reflectance, using several mixing models, and to evaluate their performances in the
study of typical mineral pigments. First, five mineral pigments of azurite, malachite, cinnabar, orpi-
ment, and calcite were selected to form five groups of samples, according to their different mass ratios.
Second, a fully constrained least squares algorithm based on the linear model and three algorithms
based on the nonlinear model were employed to calculate the proportion of each pigment in the
mixtures. We evaluated the abundance accuracy as well as the similarity between the measured and
reconstructed spectra produced by those mixing models. Third, we conducted pigment unmixing on
a Chinese painting to verify the applicability of the nonlinear model. Fourth, continuum removal was
also introduced to test the nonlinearity of mineral pigment mixing. Finally, the results indicated that
the spectral mixing of different mineral pigments was more in line with the nonlinear mixing model.
The spectral nonlinearity of mixed pigments was higher near to the wavelength corresponding to
their colors. Meanwhile, the nonlinearity increased with the wavelength increases in the shortwave
infrared bands.

Keywords: hyperspectral technology; mineral pigments; linear mixing model; nonlinear mixing
model; pigment unmixing; reconstructed spectra

1. Introduction

The use of pigment analysis to determine the type and proportion of pigments on the
surface of artifacts has become a research focus. In ancient times, pigments were usually
made of chromatic materials existing in nature. Mineral pigments were commonly used in
polychrome cultural relics with relatively stable properties [1]. Some mineral pigments,
such as malachite and azurite, exhibit unique absorption specificities that can be used to
identify them [2]. The different colors on the surface of polychrome artifacts are created by
pigments being mixed together or layered on top of one another. The shape and absorption
position of the spectrum are related to the spectra and proportions of its components. It is
hard to recognize the types of pigment using only the human eye. Thus, the identification
of the pigments used on the surfaces of artifacts needs modern techniques.

In recent decades, many non-invasive techniques have been employed on polychrome
artifacts to provide information about the types and the distributions of pigments on the
entire surfaces of artifacts [3–5]. Many of these techniques, such as X-ray fluorescence (XRF)
and Raman spectroscopy, focus on elemental and molecular analysis for the recognition
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of the pigments in the mixture. For instance, Delaney et al. [6] combined reflectance,
molecular fluorescence imaging spectroscopy, and macroscale X-ray fluorescence scanning
on Johannes Vermeer’s Girl with a Pearl Earring (c. 1665, Mauritshuis) to obtain a com-
prehensive understanding of the distribution of pigments and how the coloration of the
painting was achieved. Additionally, pigment analysis with spectrophotometry and Fiber
optics reflectance spectroscopy (FORS) can provide the optical material characteristics
for the study of spectral reflectance [7,8]. They have been increasingly employed for the
identification of pigments in mixtures, due to their portability and ability to perform non-
invasive investigation. For instance, Fonseca et al. [9] employed reflectance spectroscopy
to noninvasively identify madder and cochineal pigments on oil works. The features in the
first derivative transformation of the FORS spectra were used for pigment identification.
Among them, hyperspectral technology has been applied to the pigment identification
field, with the advantages of its noninvasive qualities, no need for sampling, high spectral
resolution, and full surface coverage [10]. They can be divided into two categories: single
pigment identification and pigment unmixing. The first directly compares the measured
spectrum with spectral databases to obtain the type of possible pigment; the second can
provide more than one possible pure pigment, as well as the proportion of each pigment in
the mixture.

Single pigment identification calculates the similarity between an unknown spectrum
and standard spectra in a spectral library based on different spectral matching methods,
such as spectral angle mapping (SAM), spectral feature fitting (SFF), or binary encoding
(BE). The pigment with the most similar spectrum will be considered the pigment type
at that point. Many studies have applied this type of method to identify the pigments
on the surfaces of artifacts. Wang et al. [11] acquired hyperspectral images that covered
400–1000 nm and their spectral information from the wall paintings at Jokhang Monastery
in Lhasa, Tibet, China. The methods of SFF, SAM and BE were used together to identify
the pigments of azurite, malachite, red lead and cinnabar by comparing their reflectance
spectral curves, characteristic reflectance peaks, first derivative peaks, and spectral similar-
ity with standard pigments. Wu et al. [12] used a shortwave infrared imaging spectrometer
that covered 1000–2500 nm to analyze cultural relics. An ancient painting that was created
to celebrate the 80th birthday of the Empress Dowager Chongqing in the Qianlong period
served as a sample. They highlighted the absorption features on the spectral curve by
continuum removal and then used SAM to identify azurite pigment in the clothes of the
characters. Li et al. [13] proposed an automatic identification method for the extraction of
painting boundaries and the identification of pigment composition based on the visible
spectral images of colored relics. They applied superpixel segmentation to extract the paint-
ing boundary and compare the proximity between the geometric profiles of the unknown
spectrum from each superpixel and the known spectrum from a deliberately prepared
database. This method assumes that the color on one point, observed by the naked eyes
or by instruments, is formed by a single pigment. This assumption is difficult to satisfy,
often the patterns on the surface of artifacts are a combination of more than one pigment in
different proportions.

Based on the assumption that pigments are often mixed in painting, the second cate-
gory is pigment unmixing, which can provide several possible types of pigment and their
proportions for each pixel in the hyperspectral data at the same time. A single pixel in
the hyperspectral image may be described as a mixture of the reflectance spectra of the
pure pigments present in this pixel. The pure pigment spectra are regarded as endmember
spectra and the proportion of the pure pigment is regarded as its abundance. The process
of obtaining the type and proportions of pigment endmembers in a mixed spectrum is
similar to the unmixing of mixed pixels in the hyperspectral image. Early works mainly
focused on the linear mixing model (LMM), due to its simplicity and definite physical
meaning [14]. This can be subdivided into three ways of performing linear unmixing for a
pigment mixture. The first extracts the endmember spectra and obtains their corresponding
abundances step by step. Endmember extraction and abundance inversion are relatively in-
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dependent algorithms, which can be developed separately. For instance, Deborah et al. [15]
employed fully constrained least squares (FCLS) for the pigment mapping of The Scream
(1893) painting, under the assumption that the endmembers were known. This approach
can recognize the mixture of some percentage of different pigments. Bai et al. [16] used
the Gram Matrix and Max-D techniques to estimate the dimensionality in HSI data as well
as extract the endmember spectra. After extracting endmembers, the nonnegative linear
least squares algorithm and the K-means algorithm were used to estimate the pigment
classification maps. They provided a novel pigment mapping approach to study the mate-
rial diversity of cultural heritage artifacts by using a hyperspectral image. Zhao et al. [17]
performed the ratio spectra derivative spectrophotometry algorithm using some bands
with a high degree of linear mixing to estimate the abundance of components in a mix-
ture. The accuracy of the abundance inversion was much higher than that obtained using
the FCLS method. The second kind of method can extract endmembers and calculate
abundance simultaneously, such as independent component analysis (ICA). Under the
assumption that the mixed spectrum is a linear combination of multisource signals, these
algorithms were applied to the quantitative analysis of pigment mixture [18]. For instance,
Wang et al. [19] first used ICA to obtain the pure pigment spectra from mixtures, and then
estimated the Kubelka-Munk (K-M) theory to obtain the proportions of pure pigments.
This method is suitable for the analysis of mixed pigments and has the potential for appli-
cation to color material restoration in the cultural heritage conservation field. The third
kind applies sparse modeling by building a pigment spectral library. They use a complete
dictionary to decompose the measured spectrum of a pigment into a sparse coefficient
vector that directly corresponds to the abundances of pure pigment in the mixture. For
instance, Rohani et al. [20] utilized sparse unmixing via variable splitting and augmented
Lagrangian to detect hematite and indigo pigments on the surface of a Roman–Egyptian
portrait. However, the linearity assumption in the pigment spectral mixing is not satisfied.
The accuracy of pigment unmixing based on the LMM will be limited if LMM cannot
describe the pigment spectral mixing well.

In recent years, some nonlinear mixing models (NLMM) have also been introduced
into pigment identification. The K-M model [21] can predict the reflectance spectra for pig-
ment mixtures in semitransparent or opaque paint layers from a weighted sum of the ratios
between the absorption and scattering coefficients of each pigment. Taufique et al. [22]
utilized the single-constant K-M theory for the classification of green pigments in the
Selden Map, China, created in the early 17th century. They first transformed the spectra
extracted into the ratio of absorption and scattering and then performed linear unmixing
using the non-negative least square technique to obtain the abundance of pigments. This
method provided a tool to estimate pigment diversity and spatial distribution within
historical artifacts where prior information is unknown. Rohani et al. [23] associated the
two-constant K-M model with a deep neural network classifier to realize pigment recogni-
tion and quantitative estimation of concentration on hyperspectral data. In addition, with
the development of deep learning, some scholars have used neural network models to
unmix pigments. For instance, Bai [24] proposed a new neural network and applied it to
two historical maps, the Gough Map of Britain and the Selden Map of China. The method
makes full use of the spatial and spectral characteristics to achieve pigment mapping.
Kleynhans et al. [25] created a one-dimensional convolutional neural network that was
trained by the surface pigment dataset of four ancient paintings. This was then used to test
a 14th century painted manuscript.

The studies mentioned above applied different linear or nonlinear models to improve
the performances of abundance inversion on pigment mixtures. The accuracy abundance
of pigment mixtures is hindered by the complexities of the spectral mixing characteris-
tics. However, it is more important to quantitatively investigate the nonlinear degree of
spectra mixed by different pigments before conducting pigment unmixing. Therefore, we
developed an experimental approach to investigate the spectral mixing characteristics of
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typical pigments to help select the most suitable method and achieve higher accuracy in
pigment identification.

In this study, each group of samples was made by mixing two pigments in different
mass ratios, which were selected from the mineral pigments that were commonly used
in Chinese painting. The samples were a mixture of azurite and malachite, azurite and
orpiment, cinnabar and orpiment, cinnabar and calcite, and orpiment and calcite. Four
mixing models were selected to evaluate the nonlinear mixing characteristics through
an approach composed of three steps. The first step was to evaluate the accuracy of the
abundances generated by different algorithms based on the ground truth of concentrations
and endmembers in the pigment samples. In the second step, the reconstructed spectra
were obtained by the abundances inversed by different models. The similarity between
the measured and reconstructed spectra were compared to evaluate the nonlinear mix-
ing degree in the whole and each spectral band. In the third step, the best model was
applied to a Chinese painting, aiming to evaluate the ability of this model to estimate the
pigment concentrations.

This paper is organized as follows: In Section 1, we start with an overall introduction
of the study and a brief review of related works. Section 2 provides a detailed description
of sample preparation, including the pigment selection, mockup making and data acquisi-
tion process. Section 3 introduces the overall scheme as well as the investigated models
including linear and nonlinear models, while Section 4 shows the experiments results. In
Section 5, other methods are performed in the study of mineral pigments and the obtained
results are discussed. In Section 6, the conclusion is briefly summarized and future work
is outlined.

2. Materials
2.1. Sample Preparation
2.1.1. Pigment Selection

Through repeated practice over a long time, the usage of pigments has gradually
developed certain rules and painting skills. After careful investigation and comparison,
we selected azurite, malachite, cinnabar, orpiment, and calcite as the study objects, which
are the mineral pigments most commonly used in traditional Chinese paintings. They
are the representative pigments in cyan, green, red, yellow and white colors, respectively.
For example, in Chinese landscape painting, azurite is often used to spot dark areas of
mountains and rocks to enhance the contrast between brightness and darkness. Malachite
is often used to draw green leaves and bright areas of mountains and rocks. Cinnabar is
often used to draw red autumn leaves, flowers, pavilions, etc. Orpiment is often used to
draw autumn scenes with leaves and moss, while calcite is often used as a white pigment,
which can be mixed with other pigments to dilute the color to obtain a multilayer effect.

To ensure the pigments’ quality, pigments in powder form produced by Jiang Sixutang,
a famous traditional pigment brand established 300 years ago, were selected to produce
mixed pigment samples to study the mixing characteristics of different mineral pigments.

2.1.2. Binder Selection

Since mineral pigment powder cannot be directly drawn on the surface of the substrate,
some binder materials are used to enhance adhesion in traditional painting, including
animal protein, polysaccharides or lipids [26]. In this experiment, the gelatin produced by
Jiang Sixutang was used as the binder, which is a kind of binding material that is similar to
the traditional animal protein, used in ancient times [27].

2.1.3. Making the Mockups

Raw rice paper, without aluminum on the surface, produced by a famous brand called
Rongbaozhai, was selected as the substrate. In this study, we designed five single pigment
samples: azurite, malachite, cinnabar, orpiment and calcite. The five series of pigment
mixtures were a mixture of azurite and malachite, a mixture of azurite and orpiment, a
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mixture of cinnabar and orpiment, a mixture of cinnabar and calcite and a mixture of
orpiment and calcite. Each sample block was designed to be 4 × 4 cm, which provides a
large enough area to acquire spectral data. The mixtures can be made through the following
steps. First, the powder pigments were weighed by using an electronic balance with 0.001 g
precision in the different mass ratios. Each group mixture included seven mixed-pigment
samples, in which the total mass of a mixture, by weight in the laboratory, was 1 g. Second,
the same amount of gelatin was added, about 2 mL. Third, they were stirred and mixed so
that the gelatin and pigments were fully integrated. Fourth, the mixtures were painted once
on the raw rice paper with a brush. In this way, we obtained five pure pigment samples, as
shown in Figure 1, as well as five groups of mixture samples, as shown in Figure 2.

Figure 1. The sample blocks of pure pigments.

Figure 2. The five groups of sample blocks with mixed pigments.

A Chinese painting was utilized to further study the combination of pigment mixtures
in different types and proportions. It was drawn with several commonly used pigments,
based on traditional Chinese painting skills, as shown in Figure 3. We selected the raw
rice paper as the substrate and the gelatin as the binding material. The pigments used
during painting were recorded as reference data. In this painting, first, the shape of the
leaves were outlined with black ink. Second, the green leaves were filled with the pigment
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malachite, and the blue leaves were filled with the pigment azurite. Third, the veins were
delineated with ink again. Finally, each leaf was rendered with light ink. The red petals
were drawn by mixing cinnabar and clam meal. They were painted using the side edge of
the brush, with clam meal in its middle position and cinnabar in its tip position, causing a
variation in color from dense to light. The center of the red flower was drawn with the red
pigment eosin. The stamens were drawn with the yellow pigment orpiment. The branches
were drawn by mixing malachite and ocher.

Figure 3. A Chinese painting in true color, which was drawn with several pigments.

2.2. Data Acquisition and Preprocessing

In this study, the instrument used to acquire the spectral data was an Analytical Spec-
tral Devices (ASD) FieldSpec 4 portable spectroradiometer (Analytical Spectral Devices Inc.,
Boulder, CO, USA). The main specifications of this instrument are shown in Table 1. The
reflectance spectra of the samples were measured using a well-sealed probe with an internal
halogen light source for illumination under a dark room. The spectral reflectance was
normalized with a white standard reflectance measured on a Spectralon plate (Labsphere,
Inc., North Sutton, NH, USA). Each sample was measured 15 times to prevent ambient
light and reduce operational error. The measured reflectance spectra were averaged with
ViewSpecPro software (ViewSpecPro 6.2).

Table 1. Specifications of ASD FieldSpec 4 portable spectroradiometer.

Name Parameters

Spectral range 350–2500 nm
Number of bands 2151

Spectral width 2.5 nm

Spectral resolution 350–1000 nm @ 3 nm;
1001–2500 nm @ 8 nm

Size 12.7 × 35.6 × 29.2 cm
Weight 5.44 kg

The instrument used to capture the hyperspectral image of the Chinese painting was
a Themis Vision Systems VNIR400H (Themis Vision Systems Inc., Long Beach, MS, USA),
a pushbroom scanning hyperspectral imaging system. The main specifications of this
instrument are shown in Table 2. This system uses two halogen lamps close to the solar
spectrum for illumination. During data acquisition, the lights were fixed on the left and
right sides of the camera. The camera and lights were placed vertically with respect to the
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painting. The collected hyperspectral image was resized to 1004 × 953 pixels to include the
whole picture.

Table 2. Specifications of hyperspectral imaging spectroradiometer parameters.

Name Parameters

Spectral range 400–1000 nm
Number of bands 1040

Spectral width 0.6 nm
Spectral resolution 2.6 nm

Weight 1.85 kg

The original hyperspectral data are always influenced by the change in environmental
parameters and dark current noises. Therefore, it is necessary to reduce the noise using
Equation (1)

R =
Rraw − Rdark

Rwhite − Rdark
, (1)

where R is the calibrated data, Rraw is the collected original hyperspectral data, Rwhite
is the standard white board data, and Rdark is the dark current noise data. Due to the
noise being presented more seriously at both ends of the wavelength, the first 50 and
last 50 spectral bands were omitted from the data. Thus, we obtained a hyperspectral
image with 51–990 bands (405.79–1000.79 nm). The minimum noise fraction (MNF) was
performed using ENVI software (ENVI 5.3, Research System Inc., Boulder, CO, USA).
The former 10 components with more than 95% cumulative information content were
selected to perform inverse MNF transformation to restore hyperspectral data dimension
and achieve data denoising.

3. Methods

The overall process of studying the nonlinear mixing characteristics of the reflectance
spectra of typical mineral pigments is given in Figure 4.

The experiment can be carried out as follows:

(1) Pigment sample preparation and data acquisition. Samples of mixed pigment in dif-
ferent mass ratios and a Chinese painting were produced as study objects. Moreover,
the progress of data acquisition of those objects is given in detail in Section 2.2.

(2) Accuracy analysis of abundances estimated by linear and nonlinear algorithms. For
each mixture sample, the measured spectrum was decomposed to obtain the abun-
dance of each pigment endmember, under the assumption that the pigment endmem-
bers are known. The FCLS based on the linear mixing model and the Fan model (FM),
the generalized bilinear model (GBM) and polynomial post-nonlinear model (PPNM)
algorithms based on the nonlinear mixing model, were selected and adapted to es-
timate the abundance of each pigment in the mixed samples. Then, the abundance
accuracies of linear and nonlinear algorithms were compared to explore the spectral
nonlinearity of the mixed pigment.

(3) The similarity analysis between measured and reconstructed mixed spectra. Based on
the measured spectra of pure pigments and their corresponding abundance in a mix-
ture calculated by different algorithms, the reconstructed spectra can be obtained by
the LMM, the FM, GBM and PPNM, respectively. Moreover, by comparing the similar-
ities between the reconstructed spectra and the measured spectra of the corresponding
mixed pigments, the spectral characteristics of pigment mixing were analyzed.

(4) Spectral mixing characteristics analysis. According to the above spectral unmixing
analysis and reconstructed mixed spectra analysis, the spectral nonlinearity of the
mixed pigments was discussed for the five typical mineral pigments.
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(5) Experiment with a Chinese painting. The PPNM algorithm was selected to study a
Chinese painting to evaluate the nonlinear model’s ability to correctly estimate the
pigments and their relative concentrations.

Figure 4. The overall process of the study.

3.1. Spectral Characteristics

The spectra of pure pigment and mixed pigment samples are shown in Figure 5.
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Figure 5. Spectra of pure pigments and mixed pigments in different mass ratios: (a) pure pigment spectra; (b) azurite and
malachite mixed spectra; (c) azurite and orpiment mixed spectra; (d) cinnabar and orpiment mixed spectra; (e) cinnabar
and calcite mixed spectra; (f) orpiment and calcite mixed spectra.

Figure 5a illustrates the unique spectral characteristics for the five mineral pigments,
which cover the visible and shortwave infrared range of the spectrum (350–2500 nm).
Azurite is composed of subcarbonate with the formula 2CuCO3·Cu (OH)2, whose spectrum
shows a relatively sharp band at about 460 nm and a broad strong absorption band centered
at about 800 nm. Different absorption bands at about 1500 nm, 1930 nm, 2050 nm, 2285 nm,
and 2355 nm are characteristic of the functional groups CO3

2− and OH−. Malachite is
composed of subcarbonate with the formula CuCO3·Cu (OH)2, whose spectrum shows a
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relatively sharp band at about 526 nm. The typical strong absorption band is centered at
about 800 nm, which is the characteristic of the main cation Cu2+. A series of absorption
bands are seen at about 1930 nm, 2050 nm, 2270 nm, and 2350 nm. Cinnabar is composed
of mercuric sulfide with the formula HgS, presenting a steep sigmoid-shaped spectrum
with an inflection point at about 600 nm. Orpiment is composed of arsenic trisulfide
with the formula As2S3, presenting a simple sigmoid shape with an inflection point at
about 480 nm. Calcite is composed of calcium carbonate with the formula CaCO3, whose
spectrum gradually increases from visible near-infrared bands and has absorption features
of CO3

2− at about 1900 nm, 2350 nm, and 2500 nm.

3.2. Absorption/Scattering Characteristics

According to the Kubelka-Munk theory [28], the relationship between the reflectance
spectra of a substance and its absorption and scattering coefficients can be expressed as in
Equation (2)

R = 1 +
K
S
−
[(

K
S

)2
+ 2
(

K
S

)] 1
2

, (2)

where R is the pigment spectrum measured, K is the absorption coefficient, and S is the
scattering coefficient. The ratio between absorption and scattering coefficients K/S can be
calculated using Equation (3)

K
S

=
(1− R)2

2R
, (3)

In this way, the K/S values of the five mineral pigments were computed. Figure 6
shows the ratio between the absorption and scattering coefficients of the different mineral
pigments for five groups of mixed samples.

In these five groups of mixed samples, the correlation between the absorption and scat-
tering characteristics of the component pigments is clear. As can be seen from Figure 6a,b,
for azurite and malachite pigments as well as azurite and orpiment pigments, there is
less overlap between the K/S curves. There is basically no overlap at the peak position
between the K/S curves. Their K/S curves are obviously different. In addition, for the
other mineral pigments, as shown in Figure 6c–e, there are many overlaps between the
K/S curves of the component pigments. One K/S curve almost completely contains the
other K/S curve, with fewer intersections. Therefore, these five groups of samples are not
only a common mixture in painting, but also representative of the K/S property. We hope
to investigate the nonlinear degree of pigment mixing in different component pigments
characterized by the different K/S curves.
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Figure 6. The ratio between the absorption and scattering coefficients of different mineral pigments: (a) azurite and
malachite pigments; (b) azurite and orpiment pigments; (c) cinnabar and orpiment pigments; (d) cinnabar and calcite
pigments; (e) orpiment and calcite pigments.

3.3. Linear Mixing Model

LMM is a simplified spectral mixing model that works under the assumption that each
incident photon interacts with only one component on the surface and that the reflectance
spectrum does not mix before entering the sensor [29]. In that case, the spectrum of a mixed
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pixel can be described as a linear combination of the endmembers’ spectra, which can be
expressed in Equation (4)

y =
R

∑
i=1

miai + ε = Ma + ε, (4)

where y = [y1, y2, . . . , yL]
T is the mixed pigment spectrum measured, L is the number

of spectral bands, and M is the L× R matrix whose columns are the L× 1 endmember
mi = [mi,1, mi,2, . . . , mi,L]

T , i = 1, 2, . . . , R, and R is the number of endmembers in this
mixture, a = [a1, a2, . . . , aR]

T is the abundance vector, where ai is the abundance of the ith
endmember in this pigment mixture, and ε is the error term.

Moreover, the abundance of each endmember in the LMM must satisfy the following
sum-to-one and non-negativity constraints, as shown in Equation (5).

R

∑
i=1

ai = 1, ai ≥ 0, (5)

FCLS is the most widely used abundance inversion algorithm based on the LMM [30].
Given the known mixed spectra y and the endmembers’ spectra M, we can determine the
abundance matrix using the FCLS. Based on the constraints in Equation (5), we can perform
it according to the following optimization problem, which is given by Equation (6).

â = argmin||y−Ma||22,
s.t. a ≥ 0, 1T

Ra = 1,
(6)

3.4. Bilinear Spectral Mixing Model

The bilinear spectral mixing models are an improvement on the LMM, which addi-
tionally account for the presence of multiple photon interactions between endmembers by
introducing the bilinear term [31]. Each term is represented by the cross-product of the
two endmembers as well as the nonlinear coefficient. According to the different nonlinear
coefficients and constraints, the bilinear spectral mixing models vary.

3.4.1. Fan Model

In 2009, Fan et al. [32] proposed a new nonlinear model for inferring the abundance
of endmembers with hyperspectral images, which only considered the presence of the
second-order scattering between endmembers and ignored the influence of higher-order
multiple scattering. The FM extended the LMM with the cross-product term mi⊗mj, which
describes spectral interactions between every two endmembers. Moreover, the bilinear
terms in the FM are scaled with the respective abundances, reasoning that the probability
that each incident photon interacts with two endmembers should be proportional to their
corresponding abundances in the mixed pixel [33]. In this case, the FM can be given by
Equation (7)

y =
R
∑

i=1
miai +

R−1
∑

i=1

R
∑

j=i+1
aiaj
(
mi ⊗mj

)
+ ε,

s.t. ai ≥ 0,
R
∑

i=1
ai = 1,

(7)

where y ∈ RL is the mixed pigment spectrum measured, L is the number of spectral bands,
mi is the ith endmember spectrum, R is the total number of endmembers in a mixture,ai is the
abundance of the ith endmember in this mixture, mi⊗mj =

[
mi,1mj,1, mi,2mj,2, . . . , mi,Lmj,L

]T

is the Hadamard or element-wise product of two endmembers vector, and ε is the error
term. The constraints on the abundance are “sum to one” and “non-negativity”.
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3.4.2. Generalized Bilinear Model

In 2011, Halimi et al. [34] proposed the GBM, which improved on the FM by introduc-
ing additional parameters to each bilinear term. The parameter γi,j indicates the interaction
degree between the endmember i and j, and is constrained in [0,1]. The parameter γi,j
has an upper bound of 1, reflecting the fact that the interaction term mi ⊗mj is always
smaller than the product of the individual abundances. Moreover, it makes sense to assume
γi,j ≥ 0 to ensure that the measured vector y is positive. The GBM model can be given by
Equation (8)

y =
R
∑

i=1
miai +

R−1
∑

i=1

R
∑

j=i+1
γi,jaiaj

(
mi ⊗mj

)
+ ε,

s.t. ai ≥ 0,
R
∑

i=1
ai = 1,

(8)

when γi,j = 0, the GBM reduces to the LMM, and when γi,j = 1, the GBM reduces to
the FM.

3.4.3. Polynomial Post-Nonlinear Model

In 2012, the PPNM was proposed by Altmann et al. [35], assuming that a second-order
polynomial can be used to perform a transformation of the spectrum that is linearly mixed
by its endmembers to describe nonlinearities. The PPNM uses parameter b to scale the size
of the quadratic term, and all bilinear terms in a pixel are multiplied by the same parameter.
The PPNM can be given by Equation (9)

y =
R
∑

i=1
miai + b

R
∑

i=1

R
∑

j=1
aiaj
(
mi ⊗mj

)
+ ε,

s.t. ai ≥ 0,
R
∑

i=1
ai = 1,

(9)

where b is a parameter to adjust the degree of the nonlinear effect. When b = 0, the PPNM
reduces to the LMM. It should be noted that both the Fan model and the GBM exclude
self-interaction terms such as mi ⊗mi, while they are included in the PPNM because
self-interactions can form an important contribution to the measured spectra [36].

4. Experimental Results
4.1. Abundance Accuracy by Different Methods

Pigment unmixing mainly involves endmember extraction and abundance inversion.
The former step is used to determine the types of pigment endmember and their spectra
from the spectrum of the mixed pigment, which has been discussed in [37]. The latter step
is used to calculate the proportion of each pigment in the mixture. In this study, we assume
that the types of pigment endmember and their corresponding spectra are known, and
then we use different unmixing algorithms to perform abundance inversion.

The root mean square error (RMSE) was used to evaluate the abundance accuracy
of different algorithms. It compares the difference abundances calculated by the four
algorithms with those measured by a balance in the laboratory. For each group of mixture,
the RMSE can be calculated as follows

RMSE =

√
1
n

n

∑
i=1
||ai − âi||2 , (10)

where âi is the ith is abundance of one endmember calculated by the unmixing algorithm,
ai is the ith abundance of the same endmember measured by a balance in the laboratory,
and n is the number of samples in each group of mixtures (n = 7 in this study). The
smaller the RMSE, the smaller the error in the abundance inversion and the higher the
unmixing accuracy.
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By using the spectra of the pure pigments, FCLS based on the LMM as well as the
FM, the GBM and PPNM based on the NLMM were carried out on the five groups of
mixtures to obtain the abundance values. In practice, the parameter γ in the GBM is limited
to [0, 1], and parameter b in the PPNM is limited to [−100,100]. We obtained parameter
γ and b MATLAB (The Math Works Inc., Natick, MA, USA) based on the optimization
problems mentioned in [34,35]. The abundance results of five groups of mixed pigment
samples—azurite and malachite, azurite and orpiment, cinnabar and orpiment, cinnabar
and calcite, and orpiment and calcite—are listed in Tables 3–7, respectively. Their RMSE
values are also calculated and listed in these tables.

Table 3. Abundance estimated by different approaches for mixed pigment samples of azurite and malachite.

Abundance
Measured

Azurite 0.2 0.3 0.4 0.5 0.6 0.7 0.8
RMSE

Malachite 0.8 0.7 0.6 0.5 0.4 0.3 0.2

Abundance
by FCLS

Azurite 0.3777 0.3199 0.5191 0.5455 0.6294 0.7554 0.9815
0.1103Malachite 0.6223 0.6801 0.4809 0.4545 0.3706 0.2446 0.0185

Abundance
by FM

Azurite 0.3715 0.3220 0.4744 0.4923 0.5588 0.6503 0.7933
0.0753Malachite 0.6285 0.6780 0.5256 0.5077 0.4412 0.3497 0.2067

Abundance
by GBM

Azurite 0.3715 0.3220 0.4744 0.4923 0.5588 0.6503 0.7933
0.0753Malachite 0.6285 0.6780 0.5256 0.5077 0.4412 0.3497 0.2067

Abundance
by PPNM

Azurite 0.3016 0.2629 0.4112 0.4614 0.5106 0.6043 0.7763
0.0666Malachite 0.6984 0.7371 0.5888 0.5386 0.4894 0.3957 0.2237

The abundance estimated by the FM and GBM is the same due to the parameter γ = 1 in the mixture samples of azurite and malachite.

Table 4. Abundance estimated by different approaches for mixed pigment samples of azurite and orpiment.

Abundance
Measured

Azurite 0.2 0.3 0.4 0.5 0.6 0.7 0.8
RMSE

Orpiment 0.8 0.7 0.6 0.5 0.4 0.3 0.2

Abundance
by FCLS

Azurite 0.0708 0.1556 0.2550 0.3838 0.4262 0.5459 0.6491
0.1458Orpiment 0.9292 0.8444 0.7450 0.6162 0.5738 0.4541 0.3509

Abundance
by FM

Azurite 0.1695 0.2561 0.3647 0.5005 0.5431 0.6499 0.7348
0.0449Orpiment 0.8305 0.7439 0.6353 0.4995 0.4569 0.3501 0.2652

Abundance
by GBM

Azurite 0.1695 0.2561 0.3647 0.4699 0.5155 0.6499 0.7348
0.0520Orpiment 0.8305 0.7439 0.6353 0.5301 0.4845 0.3501 0.2652

Abundance
by PPNM

Azurite 0.3099 0.3644 0.4353 0.5038 0.5443 0.6817 0.7670
0.0561Orpiment 0.6901 0.6356 0.5647 0.4962 0.4557 0.3183 0.2330

Table 5. Abundance estimated by different approaches for mixed pigment samples of cinnabar and orpiment.

Abundance
Measured

Cinnabar 0.2 0.3 0.4 0.5 0.6 0.7 0.8
RMSE

Orpiment 0.8 0.7 0.6 0.5 0.4 0.3 0.2

Abundance
by FCLS

Cinnabar 0.1306 0.1841 0.0171 0 0.0535 0.0923 0.4827
0.4112Orpiment 0.8694 0.8159 0.9829 1 0.9465 0.9077 0.5173

Abundance
by FM

Cinnabar 0.1123 0.0248 0.6521 0.3216 0.5665 0.5679 0.8112
0.1680Orpiment 0.8877 0.9752 0.3479 0.6784 0.4335 0.4321 0.1888

Abundance
by GBM

Cinnabar 0.3191 0.2438 0.2900 0 0.4123 0.4900 0.7344
0.2278Orpiment 0.6809 0.7562 0.7100 1 0.5877 0.5100 0.2656

Abundance
by PPNM

Cinnabar 0.3437 0.2540 0.3288 0.4007 0.4434 0.5102 0.7299
0.1214Orpiment 0.6563 0.7460 0.6712 0.5993 0.5566 0.4898 0.2701
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Table 6. Abundance estimated by different approaches for mixed pigment samples of cinnabar and calcite.

Abundance
Measured

Cinnabar 0.2 0.3 0.4 0.5 0.6 0.7 0.8
RMSE

Calcite 0.8 0.7 0.6 0.5 0.4 0.3 0.2

Abundance
by FCLS

Cinnabar 0.7426 0.6554 0.7025 0.8146 0.9538 0.9462 0.9880
0.3448Calcite 0.2574 0.3446 0.2975 0.1854 0.0462 0.0538 0.0120

Abundance
by FM

Cinnabar 0.5245 0.4617 0.5619 0.7112 0.6461 0.7313 0.7325
0.1732Calcite 0.4755 0.5383 0.4381 0.2888 0.3539 0.2687 0.2675

Abundance
by GBM

Cinnabar 0.5245 0.5083 0.5995 0.6834 0.6461 0.7313 0.7325
0.1812Calcite 0.4755 0.4917 0.4005 0.3166 0.3539 0.2687 0.2675

Abundance
by PPNM

Cinnabar 0.4561 0.5277 0.6065 0.6845 0.6876 0.7680 0.7925
0.1717Calcite 0.5439 0.4723 0.3935 0.3155 0.3124 0.2320 0.2075

Table 7. Abundance estimated by different approaches for mixed pigment samples of orpiment and calcite.

Abundance
Measured

Orpiment 0.2 0.3 0.4 0.5 0.6 0.7 0.8
RMSE

Calcite 0.8 0.7 0.6 0.5 0.4 0.3 0.2

Abundance
by FCLS

Orpiment 1 1 0.9997 1 0.9822 1 1
0.5366Calcite 0 0 0.0003 0 0.0178 0 0

Abundance
by FM

Orpiment 0.6433 0.6991 0.7774 0.7596 0.8599 0.7374 0.7504
0.3017Calcite 0.3567 0.3009 0.2226 0.2404 0.1401 0.2626 0.2496

Abundance
by GBM

Orpiment 1 1 0.7864 1 0.8202 1 1
0.4920Calcite 0 0 0.2136 0 0.1798 0 0

Abundance
by PPNM

Orpiment 0.6355 0.7409 0.7563 0.8501 0.8097 0.8944 0.9008
0.3219Calcite 0.3645 0.2591 0.2437 0.1499 0.1903 0.1056 0.0992

From the abundance inversion results in Tables 3–7, we can observe that the four
algorithms performed differently on the different mixed pigments.

(1) For the five groups of pigment mixture, the spectral mixing characteristics showed a
certain degree of nonlinearity. The result was consistent with the previous research
conclusions on powder pigment mixtures [38]. Furthermore, for the abundance
RMSE obtained by the FCLS, the abundance accuracy of the mixture of azurite and
malachite listed in Table 3 as well as the mixture of azurite and orpiment listed in
Table 4 were much better than that of the other groups of mixtures. The spectral
mixing characteristics of the two groups of mixtures were likely to be simpler and
less nonlinear. For the other mixtures, the abundance accuracy obtained by the four
algorithms was relatively low, especially that obtained by the FCLS. The nonlinearity
of these mixtures was of high intensity.

(2) For the four unmixing algorithms, the FCLS provided poor results while the NLMM
was the best on the study of five groups of mixtures, particularly the PPNM. The
abundance RMSE obtained by the PPNM was almost half of that obtained by the FCLS.
The reason the PPNM achieved the best results may be that it took the interaction
between the same pigment particles into account. Moreover, the FM and GBM might
produce some of the same abundances depending on the parameter γ value. Their
accuracy was also significantly improved compared with the FCLS. Although the
abundances were improved by the NLMM, the error was still a little large, which
indicated that a more effective NLMM should be developed to fit with the pigment
mixing.

(3) For the different component pigments used, the linearity of spectral mixing was better
with the mineral pigments that are color pigments, whose K/S curves are obviously
different. The linear model may be used directly for these kinds of mixtures when the
accuracy requirement is not very strict. On the other hand, when the pigment mixture
is composed of mineral pigments with similar K/S curves or white pigment is one of
the components, the nonlinear mixing characteristic plays a key role in the measured
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spectra. In this case, it was necessary to select the nonlinear model to estimate the
abundances of pigment endmembers in these mixtures.

4.2. Analysis of Reconstructed Mixed Spectra

After calculating the abundances of each pigment in mixtures, we can use the pure
pigments spectra (considered as endmembers) and their abundances to construct a mixed
spectrum by the models of LMM, FM, GBM and PPNM, respectively, which we call the
reconstructed spectrum. For the LMM, the mixed spectrum can be reconstructed directly
based on Equation (4). Likewise, for the other three models, we reconstruct the spectrum
based on Equations (7)–(9). For the GBM and PPNM, the calculated parameters γ and b
would be used. The similarity between the reconstructed and measured spectra of the
corresponding mixed pigments is evaluated by considering the reconstruction error (RE)
and the spectral angle distance (SAD). For each group of mixtures, the RE and SAD can be
given by Equations (11) and (12)

RE =
1
L
||y− ŷ||2, (11)

SAD = arccos
(
〈y, ŷ〉
||y||||ŷ ||

)
, (12)

where y = [y1, y2, . . . , yL]
T is the measured mixed spectrum, ŷ = [ŷ1, ŷ2, . . . , ŷL]

T is the
reconstructed spectrum, and L is the number of spectral bands, ||· || is the usual Euclidean
norm ( ||x|| =

√
xTx ), and arccos(·) is the inverse cosine operator. The smaller the RE and

the SAD, the higher the similarity between the two spectra, and the higher the unmixing ac-
curacy.

The reconstructed spectra were obtained by the linear and nonlinear mixing models.
The performance of different models was evaluated by the mean RE and the mean SAD,
which were averaged over all samples for each group of mixtures. The results for the five
groups of mixed pigment samples—azurite and malachite, azurite and orpiment, cinnabar
and orpiment, cinnabar and calcite, and orpiment and calcite—are listed in Table 8.

Table 8. The mean RE and mean SAD for mixed pigment samples of linear and nonlinear mixing models.

Method

Azurite and
Malachite

Azurite and
Orpiment

Cinnabar and
Orpiment

Cinnabar and
Calcite

Orpiment and
Calcite

RE SAD RE SAD RE SAD RE SAD RE SAD

LMM 0.0042 0.0849 0.0030 0.0812 0.0071 0.0655 0.0128 0.0735 0.0084 0.0555
FM 0.0018 0.0666 0.0009 0.0483 0.0022 0.0564 0.0044 0.0664 0.0029 0.0489

GBM 0.0018 0.0666 0.0009 0.0473 0.0030 0.0516 0.0041 0.0652 0.0078 0.0511
PPNM 0.0008 0.0677 0.0008 0.0472 0.0018 0.0490 0.0025 0.0671 0.0014 0.0467

In Table 8, the results indicated that the similarity between the reconstructed and
measured spectra obtained by the linear model was poorer than that obtained by the
nonlinear models in terms of the mean RE and the mean SAD. Among the four models, the
PPNM provided almost the best results, except for the mean SAD of azurite and malachite
as well as cinnabar and calcite. The accuracy of the FM and GBM was similar, between the
LMM and PPNM. Overall, the nonlinearities occurring in the mixed spectra of different
mineral pigments can be better described by the various nonlinear models, especially
the PPNM.

To investigate the difference in nonlinearity in the spectral bands, we used the mean re-
construction difference (RD) in the lth(l = 1, 2, . . . , L) band RDl . It is given by Equation (13)

RDl =
1
n

n

∑
i=1

(yl − ŷl), (13)
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where yl is the reflectance data of the measured spectrum in the lth band, ŷl is the reflectance
data of the reconstructed spectrum in the lth band, l = 1, 2, . . . , L and L is the number of
spectral bands, n is the number of samples in each group of mixtures (n = 7 in this study).

Based on the spectral dimension, RDl value was calculated and compared between
the above four models for each group of mixtures. The results are given in Figure 7.

Figure 7. The mean reconstruction difference at different spectral bands for the five groups of mixed pigments: (a) azurite
and malachite; (b) azurite and orpiment; (c) cinnabar and orpiment; (d) cinnabar and calcite; (e) orpiment and calcite.

It can be seen from Figure 7 that the RD of the different pigment mixtures in different
spectral bands is different, which reflects the different nonlinear degrees in the bands.
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(1) In Figure 7, the wavelengths of the peaks corresponding to the larger RD by the
LMM in the five groups of mixed pigments are marked. The peaks indicated that
the nonlinear effects were of high intensity around these bands. We also found that
in the visible bands, the RD of the LMM had peaks corresponding to the spectral
characteristics of the component pigments in a mixture. Moreover, after 1500 nm, the
nonlinearity of pigment mixing increased as the wavelength increased.

(2) For all mixed pigment samples, although the spectral characteristics of the nonlinear
mixing in the spectral range 1500–2500 nm were intense, the absolute RD values in
different spectral bands associated with the nonlinear models were relatively smaller
than those by LMM. This indicates that the NLMM can fit the nonlinearities of a
spectral mixture well. In addition, based on the different nonlinear degree of the
entire spectral range, we can develop a suitable method to estimate the proportion of
the pigment in the mixture depending on the wavelength bands.

(3) Note that for the mixture of azurite and malachite, the RD curves of the FM and GBM
in Figure 7a coincided because the abundances estimated by them were the same due
to the parameter γ = 1.

4.3. Nonlinear Unmixing on a Chinese Painting

We extracted the endmembers and calculated their corresponding abundances on the
hyperspectral image of a Chinese painting created in the laboratory to test the applicability
of the PPNM algorithm on the image with more complex pigment mixing.

In this study, we applied an automatic-target-generation process (ATGP) algorithm
to extract the endmembers’ spectra. The ATGP algorithm extracts endmembers by find-
ing the smallest volume simplex containing hyperspectral data, which performs well in
inspection accuracy and computational complexity [39]. In this experiment, the number
of endmembers was set as 15, which was greater than the number of endmembers in the
painting, to ensure that all endmembers in the Chinese painting would be extracted. After
eliminating the similar endmembers, we found nine endmember spectra. Figure 8 shows
the spectral curves of endmembers.

Figure 8. Nine endmember spectral curves for the hyperspectral image of the Chinese painting.

Additionally, spectral matching was carried out between the endmember spectra
and a pure pigment spectral library constructed by the laboratory. The spectral library
contains more than 30 kinds of commonly used painting pigments of red, green, blue,
yellow, black and white. The method of SFF, SAM and BE were combined to calculate
the similarity between the unknown endmember spectral curves and standard pigment
spectral curves. The fitting degree of the three methods was scored, and the final score was
obtained with the weights of 0.5, 0.3 and 0.2, respectively. The higher the score, the higher
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the similarity between the two spectra. The top three spectral matching results and scores
of each pigment are listed in Table 9.

Table 9. The spectral matching and scores for nine endmembers.

Endmember Results of Spectral Matching

1 silver (0.860) ink (0.841) hackmanite (0.840)
2 eosin (0.668) vermilion (0.627) cinnabar (0.600)
3 orpiment (0.697) realgar (0.689) ocher (0.677)
4 malachite (0.583) clam meal (0.511) malachite 3 (0.494)
5 vermilion (0.719) cinnabar (0.705) eosin (0.702)
6 azurite (0.562) azurite 2 (0.524) azurite 1 (0.510)
7 ink (0.722) white lead (0.701) hackmanite (0.701)
8 ink (0.608) hackmanite (0.488) biotite (0.477)
9 clam meal (0.642) malachite (0.553) biotite (0.517)

Comparing the spectral matching results with the reference data, we found that the
endmember of 1, 7, 9 could not be properly identified. It should be noted that the reflectance
data of endmember 8 were low, while endmember 7 data were high. As the reflectance data
of ink were relatively low, we think that endmember 8 was most likely to be the ink. The
spectral matching results of endmember 2–6, 8 were consistent with the recorded pigments.
The vermilion of endmember 5 was a synthetic pigment with the same composition as
cinnabar. We used the highest similarity pigment as the type of endmembers. Therefore,
we selected endmember 2–6, 8 to perform unmixing on the Chinese painting using the
PPNM algorithm. The spatial abundance maps of each pigment are shown in Figure 9.

Figure 9. Abundance maps of different pigment endmembers for the Chinese painting: (a) abundance
map of eosin; (b) abundance map of orpiment; (c) abundance map of malachite; (d) abundance map
of vermilion; (e) abundance map of azurite; (f) abundance map of ink.

As the painting was created based on traditional Chinese painting skills, it is hard
to know the exact proportion of each pigment in each point of the hyperspectral image.
However, the pigment maps in Figure 9 are basically consistent with the visual intensity
of the image. Moreover, the abundance maps in Figure 9b–d,f displayed the spatial
distribution of orpiment, malachite pigment, vermilion and ink. The PPNM could correctly
unmix malachite from the mixture of ocher and malachite on part of the branches as shown
in Figure 9c. However, for the abundance map of eosin shown in Figure 9a, it is hard
to distinguish the pigments in the same color. There is an obvious abundance of eosin
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in the part of petals that was painted with the vermilion pigment. In the case of known
endmember spectra, the PPNM could correctly be used to estimate the abundance of
different pigments from the hyperspectral image of the Chinese painting.

5. Discussion
5.1. Unmixing Based on Continuum Removal Transformation of Reflectance Spectra

Continuum removal has already been utilized in nonlinear spectral unmixing due
to its potential for eliminating nonlinear effects in spectral mixing [40]. The mixing of
different mineral pigments tends to be more complicated, due to its component pigment of
particle size, paint layer, etc. Therefore, we compared the accuracy abundance with and
without continuum removal.

Continuum removal can highlight the absorption and reflectance characteristics of
spectral curves, and normalize the reflectance between 0–1. It is modeled by Equation (14)

CRi =
Ri

RHi
, (14)

where CRi is the normalized reflectance spectrum after continuum removal, Ri is the
measured reflectance spectrum, and RHi is the spectral continuum, which is a convex hull
fitted over the top of the spectrum.

In this study, we performed continuum removal on all measured spectra to study the
nonlinearity of different pigment mixing and verify the effectiveness of continuum removal
on the accuracy of abundance inversion. The reflectance spectra after continuum removal
are shown in Figure 10.

Figure 10. Cont.
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Figure 10. Normalized reflectance spectra of pure pigments and mixed pigments with different mass ratios after continuum
removal: (a) pure pigment normalized reflectance spectra; (b) the mixture of azurite and malachite normalized reflectance
spectra; (c) the mixture of azurite and orpiment normalized reflectance spectra; (d) the mixture of cinnabar and orpiment
normalized reflectance spectra; (e) the mixture of cinnabar and calcite normalized reflectance spectra; (f) the mixture of
orpiment and calcite normalized reflectance spectra.

After performing continuum removal, the FCLS based on the linear mixing model as
well as the FM, GBM, and PPNM based on the nonlinear mixing model, were carried out on
the five groups of mixtures to obtain the abundances. For each mixture, the abundances of
each pigment endmember and their RMSE values were calculated. To intuitively compare
the abundance accuracy with and without continuum removal, the histograms of the RMSE
values of the four algorithms are shown in Figure 11.
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The following points can be seen from Figure 11. First, besides, the abundance
accuracy of all the unmixing algorithms, except the FM, was improved on the five groups
of samples. Second, the RMSE by the FCLS improved significantly with continuum removal.
It was reduced to one-half or even one-third of the RMSE without continuum removal.
Third, RMSE by the FCLS with continuum removal was close to that by the PPNM. For
the mixture of cinnabar and calcite, shown in Figure 11d, the RMSE obtained by the FCLS
with continuum removal was even better than that obtained by the PPNM. The reason for
this may be that continuum removal is a kind of nonlinear transformation, so the nonlinear
mixing effect of the reflectance spectrum for different pigments would be weakened to a
certain extent after continuum removal. This again confirms the existence of the mixing
nonlinearity and provides a way of combining it with the LMM to improve the unmixing
accuracy through the NLMM in the pigment identification field.

5.2. Nonlinear Unmixing by the K-M Theory

The K-M theory has been successfully used to estimate the concentrations of the
components in pigment mixtures. To compare the abundance accuracy obtained by the
four above models with that obtained by the K-M theory, the single-constant K-M theory
has been utilized for pigment unmixing.
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In the case of pigment mixtures, according to the single-constant K-M theory, the K/S
of a mixture can be modeled as a linear combination of the K/S of the component pigments.
It can be given by Equation (15) [22]
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where K is the absorption coefficient, S is the scattering coefficient and n is the number of
component pigments in a mixture (n = 2 in this study). K1, K2, . . . , Kn and S1, S2, . . . , Sn
are the absorption and scattering coefficients of each component pigment, respectively.
c1, c2, . . . , cn are their respective proportions. Kt and St are the absorption and scattering
coefficients of the substrate.

In this study, we used raw rice paper as the substrate. Firstly, the reflectance spectra
of pigment mixtures, pure pigment, and the rice paper were transformed into the K/S.
Secondly, we performed linear unmixing by the FCLS to estimate the abundances based on
Equation (15). The abundances of the five groups of mixed pigment samples—azurite and
malachite, azurite and orpiment, cinnabar and orpiment, cinnabar and calcite, orpiment
and calcite—are listed in Table 10. Their RMSE values are also calculated.

Table 10. Abundance estimated by the K-M theory for five groups of mixed pigment samples.

Mixture Truth
Abundance

0.2 0.3 0.4 0.5 0.6 0.7 0.8
RMSE

0.8 0.7 0.6 0.5 0.4 0.3 0.2

Azurite
Malachite

Azurite 0.5701 0.4936 0.6455 0.6593 0.6923 0.7530 0.8356
0.1974Malachite 0.4299 0.5064 0.3545 0.3407 0.3077 0.2470 0.1644

Azurite
Orpiment

Azurite 0.0479 0.0571 0.0744 0.0980 0.1115 0.1649 0.2344
0.4131Orpiment 0.9521 0.9429 0.9256 0.9020 0.8885 0.8351 0.7656

Cinnabar
Orpiment

Cinnabar 0.0244 0.0343 0 0 0 0.0290 0.1669
0.4961Orpiment 0.9756 0.9657 1 1 1 0.9710 0.8331

Cinnabar
Calcite

Cinnabar 0 0.0016 0.0089 0.0221 0.0264 0.0442 0.0504
0.5115Calcite 1 0.9984 0.9911 0.9779 0.9736 0.9558 0.9496

Orpiment
Calcite

Orpiment 0.1888 0.2964 0.3368 0.4548 0.4308 0.5286 0.5467
0.1354Calcite 0.8112 0.7036 0.6632 0.5452 0.5692 0.4714 0.4533

It can be seen in Table 10 that the abundances estimated by using K/S and the
FCLS after K-M transformation were not good, even worse than those estimated by using
reflectance and the FCLS directly. Therefore, it is necessary to study the differences between
pigments and seek a more suitable nonlinear unmixing method to identify the pigments on
the surface of cultural relics.

6. Conclusions

An experimental approach was developed to investigate the nonlinear degree of
reflectance spectra for the mixture samples formed from five commonly used mineral
pigments, including azurite, malachite, cinnabar, orpiment, and calcite. The reflectance
spectra of these samples were measured and unmixed by different algorithms based on the
LMM and NLMM, respectively. The abundance accuracy of each pigment in the mixed
samples by each algorithm was calculated by each algorithm. The similarity between the
spectra measured by the instrument and that reconstructed by the unmixing results was
also calculated. The accuracy and the similarity were employed together to evaluate the
spectral nonlinearity of the pigment mixing. The following points can be concluded from
the experimental results.

First, the abundance accuracies produced by the algorithms based on the NLMM
were higher than those given by the algorithm based on the LMM for all samples, which
indicates that the spectral mixing of mineral pigments is more in line with the nonlinear
mixing model. On the other hand, the nonlinear degree of different pigments is different.
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The nonlinear mixing characteristics of the specific pigment should be considered when
selecting an appropriate unmixing algorithm.

Second, the nonlinear mixing degree of the reflectance spectrum is related to the
absorption/scattering coefficients and color of the component pigments in a mixture. For
the five mineral pigments, the mixing spectral characteristics of the two pigments in a
mixture were more linear, when the K/S curves between them were significantly different.
Otherwise, the mixing spectral characteristics of the two pigments in a mixture were more
nonlinear, when the K/S curves of them were similar or one of the pigments was white
pigment. It is necessary to consider the nonlinear effect in these mixtures.

Third, the nonlinearity of pigment mixing is also related to the wavelength, which
means that the degree of nonlinearity is different in different bands. The spectral nonlin-
earity of the mixed pigment was relatively high near the wavelength, corresponding to
their colors. Meanwhile, the nonlinearity increased as the wavelength increased in the
shortwave infrared bands, whose wavelength was greater than 1500 nm.

Fourth, as a kind of nonlinear transformation, continuum removal improved the
accuracy of most discussed algorithms, especially the linear unmixing algorithm, because
it could reduce the nonlinear degree of pigment mixing. However, it should be noted that
the accuracy may be reduced for some nonlinear unmixing algorithms after continuum re-
moval.

Finally, it should be noted that the results and conclusions are based on four unmixing
algorithms, and the samples are each composed of two kinds of pigment. The experiments
were conducted on the pigment mixtures with a single paint layer. The pigments mixing
in multilayers is not discussed. We only carried out the pigment unmixing on a Chinese
painting on raw rice paper. These topics are worthy of further study. However, the devel-
oped approach can provide useful ideas for exploring the spectral nonlinear characteristics
of pigment mixtures.
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