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Abstract: The accuracy of data-driven predictive mineral prospectivity models relies heavily on the
training datasets used. These models are usually trained using data for “known” deposit locations
as well as “non-deposit” locations that are based on randomly generated point patterns. In this
study, data related to the Seabridge Gold Inc Iskut project, an epithermal Au deposit in northwestern
British Columbia (BC), Canada, are used to test the utility of data-driven mineral prospectivity
modeling. The input spatial dataset is comprised mostly of publicly available data. Data for 18 vein
and epithermal Au known mineral occurrences (KMO) are obtained from the BC Geological Survey’s
MINFILE repository and selected as training deposit locations. A total of eleven sets of non-deposit
locations (NDL) were also created, including one set of selected non-prospective KMO for Au deposits
from the MINFILE and ten sets of random point patterns. Given the scale of this study, most of the
KMO recorded on the property are of the epithermal deposit type. Hence, they could not be used as
a selection criterion. Data-driven mineral potential models are generated using the random forest
(RF) algorithm and trained on multiple data sets. The comparison of RF models demonstrated that
using non-prospective KMO generates more accurate predictions than the random point pattern.
The produced mineral prospectivity maps delineated multiple areas with higher discovery potential,
which matched viable targets for the Au-Cu epithermal-porphyry system identified through previous
Seabridge Gold Inc. (Toronto, ON, Canada) field reconnaissance and drilling programs.

Keywords: mineral prospectivity mapping; random forest algorithm; machine learning; epithermal
gold; unstructured data

1. Introduction

With new mineral deposits becoming more challenging to find, geoscientists have
focused on development of novel methods to assist with mineral deposit discovery. De-
velopment of the geographic information system (GIS) technology, improved computing
power, and application of data-driven methods, such as machine learning, are enabling the
evolution of quantitative methods of geoscientific data analysis, including mineral potential
mapping (MPM) [1,2]. For instance, in 2018, Goldcorp Inc., Vancouver, BC, Canada (now
part of the Newmont Corporation) and IBM announced a partnership with a goal to utilize
the IBM Watson supercomputer and its artificial intelligence (AI) framework to aid mineral
targeting at the Red Lake Mines in northwestern Ontario, Canada.

MPM consists of combining multiple layers of geoscience data into a map identifying
areas favorable for mineral exploration. The process can be summarized into five main
steps: definition of the exploration model for the type of deposit sought, selection of the
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geospatial dataset to be used, processing of data, creation of the predictor maps, integration
of the predictor maps to create a predictive model [1,2].

There are three main categories of modeling methods using GIS-environment: knowledge-
driven, data-driven and hybrid.

The knowledge-driven approach requires “experts” to assign weights and to as-
sess the relative importance of each evidential layer as they relate to the specific ex-
ploration model being used. This method is subjective but has the advantage of being
well suited for greenfield areas with missing or scarce data and where few deposits are
known [3]. Examples of knowledge-driven approach include Boolean logic [1,2,4], index
overlays [1,2,4,5], fuzzy logic [6–10] and evidential belief [2,6].

The data-driven approach uses the spatial relationship between the geospatial features
and known mineral deposits (training set) to estimate the model parameters. It is well
suited for well-established mining areas where a large number of known mineral deposits
is available to quantify the spatial associations with evidential features and to guarantee the
performance and robustness of the model. Methods such as weights of evidence [4,7,11–13],
logistic regression [11,12], neural networks [11,14,15], support vector machine [15–18] and
random forest [3,13,19–22] are examples of data-driven approaches.

Since 2000, the number of publications on data-driven methods for MPM has largely
increased, especially articles using machine learning algorithms (MLA) [23]. In recent
years, the random forest (RF) algorithm has proven to offer a new approach to MPM.
Contrarily to other MLA, like artificial neural networks or support vector machine, RF is
not a ‘black-box’ algorithm, meaning that the inner workings of the algorithm are known
and can even be represented (i.e., decision trees). It is also simpler to parameterize, more
stable and computationally light [15,22,24,25].

For any data-driven method, the training dataset should contain a sufficient number
of samples to train a given model, and studies showed that RF can be accurate even with a
small training set (i.e., less than 20 deposit locations) [19,20,24,26,27]. Moreover, the train-
ing dataset should be balanced, meaning that the dataset must contain an equal number
of deposits and non-deposit, to avoid results to be biased for one class or the other [19].
Training deposit locations are usually discovered deposits or known mineral occurrences
(KMO) in the study area for the commodity and the type of deposit sought. On the other
hand, non-deposit locations are usually generated by random points following specific crite-
ria [19,20,24,25,27] or random locations in lithologies considered unprospective [3,15,22,26].

In this paper, the relative influence of the non-deposit locations in the training dataset
is assessed by the accuracy of the RF model to MPM. MPM models using the RF algorithm
were created with different training data set. We generated ten sets of the random point
pattern using a three criteria selection that we compared with KMO that were categorized
as non-prospective and distal to every deposit location. In a broader sense, this study is
testing whether non-prospective KMO (for one commodity but can be of similar deposit
type) should be preferably used instead of randomly generated locations in MPM, when
such data set is available.

2. RF Algorithm

The RF algorithm is a collection of decision tree classifiers trained to increase their
diversity and reduce generalization error of the aggregate classifier made of the individual
trees [28]:

{h(x, θk), k = 1, . . . }, (1)

where the {θk} are independent identically distributed random vectors, and each tree
casts a unit vote for the most popular class at input x. A RF can be composed of either
classification or regression trees.

The algorithm uses a modified version of the bagging (or bootstrap aggregating)
technique to create an ensemble of ntree decision trees [29]. This technique increases the
diversity of the trees. In the bagging process, each tree is trained on 2/3 of the input
samples. The training set is sampled randomly from the original dataset with replacement



Minerals 2021, 11, 597 3 of 20

(i.e., no deletion of the data selected from the original dataset for the generation of the next
subset). In other words, to grow a tree, the input data can be used more than once or not at
all. This allows the RF to be more stable and robust to outliers in the input data set, as well
as increasing prediction accuracy [28].

The remaining 1/3 of the training samples are referred to as out-of-bag (OOB) samples.
The OOB samples can be used to evaluate performance, removing the need for cross-
validation. The resulting OOB error is an unbiased estimate of the generalization error and
converges as the number of trees increases; thus, RF does not over-fit the data [28].

Each tree is grown on a random subset of mtry features selected from the input
evidential features. This increases the diversity of trees within the forest and reduces the
correlations between the trees. The RF algorithm does not apply pruning on the grown
trees. The output of the RF is calculated differently depending on the type of decision trees.
For regression trees, the output is the average of the predictions from all the trees, whereas
for classification trees, the output is the majority vote of all the trees. A simplified diagram
of the RF algorithm is presented in Figure 1.

Figure 1. Workflow of the random forest algorithm.

The RF algorithm tries to maximize purity of the tree grown by making each child
nodes ‘purer’ than the parent node. The tree impurity I(T) is defined by [30]:

I(T) = ∑
t∈T

I(t), (2)

where I(t) = i(t)p(t) with p(t) an impurity function and i(t) the node impurity function.
The decision tree search through all candidate splits to find the optimal split to reduce

I(T) or, equivalently, maximizes the information gain [30]:

∆I(s, t) = I(t)− I(tL)− I(tR), (3)
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where I(t) is the impurity of the parent node, I(tL) is the impurity of the left leaf and I(tR)
is the impurity of the right leaf.

The Gini Index (IG) is the impurity function employed in this study. It is defined
as [30]:

IG = 1−
m

∑
j=1

p2
j , (4)

where pj is the proportion of samples that belongs to class m for a particular node and
m the number of classes. The decision tree splitting criterion is based on choosing the
attribute with the lowest Gini impurity index (IG).

The importance of each feature can be evaluated by the RF algorithm. To measure
the importance of the k-th feature, the values of the k-th feature are permuted among the
training data while keeping the rest constant. The OOB error estimation is used to measure
the decrease in accuracy [28].

3. Study Area: Iskut Project

The Iskut project has undergone mineral exploration since the early 1900s. Since the
discovery of the Snip Mine in 1964 (Skeena Resources: https://www.skeenaresources.com/
projects/snip; accessed on 21 October 2019), the property has had relatively systematic
exploration, which has led to the discovery of the Johnny Mountain Mine and the definition
of the Bronson Slope deposit. These discoveries, in conjunction with surface anomalies
across the property, have seen over C$38 million spent on exploration looking for analogs
to these deposits. Seabridge Gold acquired the property in 2016 and has since undertaken
exploration for porphyry and epithermal deposits on the property.

3.1. Geological Setting

The Iskut property is located in northwestern British Columbia (BC), in the metallo-
genically important Stewart-Iskut River area also known as the “Golden Triangle.

The Iskut Project lies on the western margin of the Stikine Terrane (Stikinia). Three
distinct units of the Stikine Terrane ranging in age from Upper Paleozoic to Middle Jurassic
were recognized in the area (Figure 2). The oldest rocks are Upper Paleozoic metamor-
phosed and deformed limestone, clastic sedimentary rocks, and polymodal volcanic rocks
of the Stikine Assemblage [31,32]. Two groups of the Mesozoic arc-related strata are present
in the area: Late Triassic folded marine volcanic and sedimentary arc-related strata with
some degree of alteration and low-grade metamorphism of the Stuhini Group and the Early
to Middle Jurassic subaerial and submarine volcanic and sedimentary rocks of the Hazelton
Group [31]. The two units are separated by a regional angular unconformity. The Bowser
Lake basin sedimentary rocks unconformably overly the Jurassic strata and cover mineral
deposits to the East of the study area. Quaternary basalts and local volcanism are observed
to the North and Northeast of the property along the Iskut river.

There are three major intrusive suites mapped on the property. Two of these are major
regional metallogenic events that occur in Stikinia during the late Triassic and over an
extended period from Early to Middle Jurassic [31,33]. The Stikine Plutonic Suite emerged
from a pulse of arc growth in the Late Triassic (221–236 Ma; [33]) and is coeval with the
Stuhini Group strata [31,33]. This intrusion is coincident with emplacement of Cu-Au-Ag
enriched pluton, an important metallogenic event within the Cordillera [31,33].

https://www.skeenaresources.com/projects/snip
https://www.skeenaresources.com/projects/snip
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Figure 2. Regional geology of the Iskut River area with the study area outlined in black from BC digital geology data repository.

Two magmatic events occurred between Early to Middle Jurassic and are associated
with two different mineralization styles. The first event, in Early Jurassic (187–195 Ma; [33]),
is associated with porphyry deposits (e.g., Kerr-Sulphurets-Mitchell, Galore Creek and Red
Chris) and epithermal gold-veins (e.g., Brucejack) that tend to occur in lower Hazelton
Group volcanic rocks [31,33]. The second event is associated with exhalative mineralization
(Eskay Camp deposits) and characterized by bimodal volcanic rocks coeval with the upper
volcanic sequence of the Hazelton Group [31]. These form as exhalative deposits within a
deep marine oceanic crust setting.

3.2. Au Mineralization

The Iskut project lies in the metallogenic rich “Golden Triangle” area. Two formerly
producing mines and a well defined mining project are located in the study area: the
Johnny Mountain mine, a vein hosted gold deposit with a production of 92,300 oz gold,
145,000 oz silver, 2,270,000 lbs copper, the Snip mine, a shear-vein gold deposit with a
production of 1,032,000 oz gold, 390,000 oz silver, 550,000 lbs copper and the copper-gold
Bronson Slope deposit (190Mt@0.36 g/t Au, 0.122% Cu) (Richards, 2005, unpublished).

Mineralization in the area is principally shear-hosted gold and base metal veins de-
posits like the Snip, Johnny Mountain (Stonehouse) or Inel deposits. They are associated
with brittle-ductile deformation and porphyritic stock and intrusion of the Early Jurassic
Texas Creek Plutonic Suite [31,33]. The structural style may be host-rock dependent: miner-
alized shear-veins are hosted by a clastic sequence of the Stuhini Group at the Snip and
the Inel deposits, while dilatant quartz-sulfide veins are hosted by Jurassic coarse volcanic
and intrusive rocks at the Stonehouse deposit (but are also present at the Snip and the Inel
deposits) [34]. From a comparison between the Stonehouse and the Snip deposit, Rhys [35]
suggests that intrusion, semi-brittle deformation, and a mineralizing hydrothermal system
were closely related temporally and genetically and that gold was deposited during the
formation of the vein and not by later mineralization or remobilization.
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3.3. Conceptual Exploration Model

Since epithermal ore deposits are formed by tectonic scale earth process systems that
concentrate hydrothermal fluids, the exploration model presented below accounts for
processes critical to the formation of that type of deposit: source-pathway-trap (physical
and/or chemical)-preservation. Based on the mineral system approach to exploration
targeting, Seabridge Gold defines the conceptual exploration model at a district-scale for
epithermal Au deposits at the Iskut project with the following criteria:

• Proximity to mineralized porphyritic intrusions;
• Proximity to faults;
• Presence of hydrothermal alteration zones;
• Geochemical enrichment in gold and associated pathfinder elements;
• Viability of host rock.

The most probable source of gold-bearing fluids in the area are the porphyry intrusives
of Texas Creek Plutonic Suite and Stikine Plutonic Suite. Mineralization is synchronic
with brittle-ductile deformation (i.e., faulting, folding, and shearing) characterized by
mineralized dikes and veins having similar orientation as tectonic structures. Faults and
fractures can serve two functions; they can be the both conduits taken by metal-rich
fluids and physical traps to those fluids. Lithologies from the Stuhini Group and the
Hazelton Group are the host lithologies of the known deposits in the area (e.g., Stonehouse,
Inel, Bronson slope). They can be considered chemical traps, due to a change in RedOx
conditions or geochemical assemblage for instance, as well as physical traps, because of a
change in density for example. Hydrothermal alteration and geochemical enrichment in
gold and associated pathfinder elements are evidence of chemical traps as the reaction of
the mineralized hydrothermal fluids with wall rock.

4. Methods
4.1. Spatial Data Input
4.1.1. Target Variable

For deposit location, we selected 18 vein and epithermal gold deposit locations (i.e.,
past producers and prospects) from the KMO depository (https://catalogue.data.gov.bc.
ca/dataset/minfile-mineral-occurrence-database), (accessed on 25 March 2019) a public
online data repository hosted at Data Catalogue by the Government of British Columbia)
(MINFILE) by the BC Geological Survey (See Appendix A).

For NDL, three selection criteria are used. First, all sets should have an equal number
of NDL to that of the deposit locations. Second, the NDL should be located far from
any known deposit to ensure different geospatial characteristics to nearby deposits [2,19].
The third criteria depend on the nature of the data: random locations or KMO.

Point pattern analysis was applied to define a buffer distance from every deposit
location. That buffer represents the distance beyond which there is a 100% probability of
finding another deposit from any deposit. In the study area given the selected deposits,
that distance is 8000 m (Figure 3). However, this length is too restrictive for this study,
as it would exclude more than half of the study area. Instead, a buffer distance of 2000 m,
representing a 78% probability of finding a neighboring deposit from that distance. Hence,
NDL are to be selected in the study area excluding a 2000 m buffer from every deposit
location (Figure 4).

https://catalogue.data.gov.bc.ca/dataset/minfile-mineral-occurrence-database
https://catalogue.data.gov.bc.ca/dataset/minfile-mineral-occurrence-database
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Figure 3. Result of point pattern analysis showing probability of finding another Au deposit from any given deposit for
different distances.

Figure 4. Location of deposits showing the buffer zone (in grey).
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Unlike deposit locations, which are ‘rare’ events and tend to cluster, the NDL should
be distributed randomly through the study area as they should not be representative of
any particular geological process [2]. Therefore, we generated ten sets of the random point
pattern containing 18 independent points, that we generated using the rpoint function
from the spatstat (v1.61-0) library in R software (R version 3.5.3 (Great Truth), released on
11 March 2019. Retrieved from R project website: (available online: https://www.r-project.
org/; accessed on 18 March 2019). The number of sets generated was chosen arbitrarily so
that the different models could be easily plotted and compared. The number of points was
chosen to be equal to the number of deposit locations, to obtain a balanced dataset (i.e.,
equal number of deposit to non-deposit location).

The second set of NDL constitutes of selected KMO from the MINFILE depository that
were considered non-prospective for the Au deposit. Every occurrence that has gold listed
as one of their first three listed commodities was discarded. A total of 19 locations were left
after this selection process (see Appendix A). However, due to the scale of the study area
(i.e., project-scale), the majority of the KMO in the area are related either to an epithermal
or a porphyry system. Therefore, the deposit type could not be used as a selection criterion
as it would have been too restrictive (i.e., not enough samples to conduct this study). Thus,
some selected non-prospective KMO can be pre or post-dating the selected prospective
KMO and have a similar geospatial signature (e.g., similar pathways, similar traps). It is
assumed that the source of fluids is different, which would explain the difference in metals
association between the prospective and non-prospective KMO (i.e., with or without Au).

Each sample in our training sets is attributed to a binary variable such as 1 s for
prospective locations and 0 s for non-prospective location.

4.1.2. Predictor Maps

The geospatial dataset for this study is selected based on availability of the data and
its usefulness to be used as proxy for our conceptual exploration model.

Geological data were derived from 1:50,000 British Columbia digital geology data
compilation that was last updated on 5 April 2018 [36] (original dataset related to this
article can be found at https://catalogue.data.gov.bc.ca/dataset/bedrock-geology, a public
online data repository hosted at Data Catalogue by the Government of British Columbia;
accessed on 25 March 2019). In the study area, Au-hydrothermal deposits are strongly cor-
related with intrusions from the Late Triassic-Early Jurassic and structurally controlled [34].
Therefore, we created predictor maps of distances to Texas Creek Plutonic Suite and Stikine
Plutonic Suite intrusions and distance to fault traces at 500 m intervals. Moreover, reactive
lithologies can act as a chemical trap for Au deposition. As such, reactive lithologies of the
Stuhini Group and the Hazelton Group were categorized as ‘favorable’ host-rock while the
other lithologies present in the study area were categorized as ‘non-favorable’ host-rock.

The geochemical data comes from a compiled database of soil samples from historic
geochemical surveys conducted by private companies from 1981 to 2011. The elements
analyzed and the analytical methods used in each survey varied and were not always ade-
quately reported. Exploration efforts focused on areas surrounding known prospects, thus
do not cover the entire study area. Only the twelve most present elements in the database
were kept for further analysis: Ag, Au, As, Ba, Co, Cu, Fe, Mn, Mo, Pb, Sb, Zn. Values
below the lower detection limit were replace by half the detection limit. No imputation was
performed on the missing data. Hence, our geochemical dataset contains some missing
data. The dataset was transformed using centered log-ratio (clr) [37]. Then, principal
component analysis (PCA) is applied to the transformed dataset. Principal components can
be interpreted as describing separate geological processes (i.e., differentiation, alteration,
mineralization, weathering) [38]. In this study, only PC1 and PC2 were kept as the varia-
tion between the loadings of the different elements decreased as the number of principal
components increased. They account for 34% and 14% of the variance respectively. Based
on the loadings of the different elements (Table 1), PC1 and PC2 seem to represent potential
metal associations (e.g., Ag-Au-Sb), and enrichment or depletion. The clr-transformed

https://www.r-project.org/
https://www.r-project.org/
https://catalogue.data.gov.bc.ca/dataset/bedrock-geology
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Au values and the PC1 and PC2 were interpolated using the Inverse Distance Weighted
(IDW) algorithm.

Table 1. Rotated component matrix of principal component analysis of clr-transformed soil samples.
Significant loadings (bolded values) are based on the absolute threshold of value 0.3.

Ag Au As Ba Co Cu Fe Mn Mo Pb Sb Zn

PC1 −0.41 −0.39 0.21 0.28 0.04 0.12 −0.26 0.35 −0.24 0.25 −0.29 0.39
PC2 0.09 0.28 0 0.21 0.1 −0.38 −0.38 0.40 −0.15 −0.46 −0.29 −0.30

The geophysical data consists of magnetic data only, as it was the only available
data in the area with a relatively small spatial resolution (200 m × 200 m) and was down-
loaded from the Canadian Aeromagnetic data base. Only processed data was available
for download, and we chose to use the first vertical derivative as it is useful to enhance
near-surface structure.

For remote sensing data, we used ASTER Level 1 Precision Terrain Corrected Reg-
istered At-Sensor Radiance (L1T) data, with a spatial resolution of 15 m, 30 m, and 90 m
for the NIR, SWIR and TIR bands respectively. The SWIR and TIR band images were
re-sampled to the VNIR band images resolution. The project study area is densely veg-
etated in the valleys but vegetation becomes scarce with altitude. The area is covered
by snow from October to April with presence of multiple glaciers. In order to maximize
bedrock exposure, we selected scenes acquired in summer to minimize snow cover and
with minimum cloud cover (Figure 5). The ASTER data was atmospherically corrected
and converted to relative reflectance using the Semi-Automatic Classification Plugin in
QGIS software.

Figure 5. False color ASTER image derived from Band 2, Band 4 and Band 7 as RGB color combination showing the glacier
and water (blue), vegetation (green) and exposed bedrock and sediments (yellow).
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Hydrothermal alteration can effectively be mapped with ASTER data [39–41]. Band
ratio (BR) and relative absorption band depth (RBD) methods are useful to enhance the
absorption feature of some characteristic alteration minerals [42,43]. In this study, the fol-
lowing ratios to map the main alteration present in a hydrothermal system are used [44,45]:

Argilic =
b4 + b6

b5
(5)

Ironoxides =
b4
b2

(6)

Phyllic =
b5 + b7

b6
(7)

Propylitic =
b7 + b9

b8
(8)

Silica =
b11
b12

(9)

A total of twelve predictor maps are generated to map the mineral potential of ep-
ithermal Au in the study area (Figures 6 and 7).

(a) (b)

(c) (d)

Figure 6. Cont.
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(e) (f)

Figure 6. Predictor maps of (a) distance to intrusions, (b) distance to fault, (c) favorable host-rock, (d) Au geochemical
anomaly, (e) PC1, and (f) PC2.

(a) (b)

(c) (d)

Figure 7. Cont.
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(e) (f)

Figure 7. Predictor maps of (a) magnetic first vertical derivative, (b) argillic alteration, (c) iron oxides alteration, (d) phyllic
alteration, (e) propylitic alteration and (f) silica alteration.

4.1.3. Cell Size

Using the methodology laid out by Carranza [46], the unit cell size is determined
using point pattern analysis. First, the higher limit of a set of suitable cell size is determined
by finding the distance where the likelihood of finding deposits located next to one another
is null. That distance is 515 m. The lower limit depends on the predictor map with the
smallest scale and can be estimated using the following formula [47]:

x = MS× 0.00025, (10)

where MS is the map scale factor. In this study, the predictor maps were derived from
1:50,000 geological map and ASTER images (resolution of 15 m, 30 m, 90 m for the NIR,
SWIR and TIR bands respectively). Thus, 12.5 m is the lower limit. The most suitable cell-
size can be determined by fitting straight lines to the log-log plot of the rate of increase of the
ratio [N(D)] : [N(T)− N(D)] based on a cell-size to the next coarser cell-size, with [N(T)]
being the total number of cells and [N(D)] being the number of cells containing one
deposit [46]. The most suitable cell size for our study area is defined by the intersection of
the two straight lines fitted to the log-log plot (Figure 8); thus, we selected a 50 m cell size.

4.2. RF Algorithm Parameters

As presented in Section 2, RF requires only two essential parameters: k and mtry. The k
parameter represents the number of trees in the ensemble and mtry is the number of input
features selected to do the splitting at each node of a tree. In this study, various values of k
(from 500 to 5000) and selected k = 1000 as the generalization error started to converge
from k ≥ 1000. The lowest RMSE on the OOB samples was used to select the optimal value
of mtry.
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Figure 8. Log− log plot of rates (in %) of increase in the ratio [N(D)] : [N(T)N(D)] as a function of unit cell size.

4.3. Model Evaluation

After optimization of the RF parameter, the performance of the best-fit models
was comprehensively evaluated using confusion matrix, indices of predictive accuracy,
and success-rate curves.

A series of statistical indices are calculated from the confusion matrix and permit to
evaluate the predictive performance of the trained model:

Sensitivity =
TP

TP + FN
(11)

Speci f icity =
TN

TN + FP
(12)

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

Kappa =
(TP + TN)− (TP+FN)(TP+FP)+(FP+TN)(FN+TN)

(TP+FP+TN+FN)

(TP + FP + TN + FN)− (TP+FN)(TP+FP)+(FP+TN)(FN+TN)
(TP+FP+TN+FN),

(14)

where TP is True Positive, TN is True Negative, FN is False Negative, and FP is False Positive.
The kappa index measures the fit between the predictor maps and the training

dataset [48], the sensitivity and specificity indicate whether the deposit cells or non-deposit
cells are correctly classified to their corresponding class respectively. Success-rate curves
can be employed to evaluate the overall performance of the models. The curve is generated
by calculating the percentage of correctly delineated training deposit in a prospective area
for a given threshold with an increment of 5-percentile of the likelihood value [22].
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5. Results
5.1. Relative Importance of Predictor Maps

As explained in Section 2, the RF algorithm measures the importance of each predictor
maps which provides insights on the best proxies for mineralization in the study area
(Figure 9).

Figure 9. Sum of the relative importance percentage of each predictor map from models gen-
erated with different set of random point pattern non-deposit location (R1 to R10) and selected
non-prospective KMO (Sel).

Overall, the five most important predictors are PC2, intrusion, host rock, fault, and Au
in respective order from higher to lower cumulated percentage. These features represent
the principal components of any epithermal Au exploration: source, pathway, physical
trap, and chemical trap.

The source of the mineralized hydrothermal fluids is represented by the proximity to
porphyritic intrusive bodies of Late Triassic to Early Jurassic age. The faults correspond
to the pathway taken by gold-bearing fluids and they can also act as physical traps for
those fluids. Lithologies from the Stuhini and Hazelton Group can act as a chemical
trap for mineralized fluids. Geochemical anomalies of Au and other pathfinder elements,
represented by Au and PC2 predictor maps, are also proxies of a chemical trap.

Among the different hydrothermal alteration mapped using the ASTER images,
the phyllic and silica alteration have the highest cumulated percentage.

5.2. Predictive Accuracy of the Model

The predicted values range between 0 and 1 and symbolize the probability of oc-
currence of Au mineral deposit. A threshold of 0.5 was used to classify predictions and
to calculate the statistical indices in Tables 2 and 3. Cells with a value higher than the
threshold are considered prospective, whereas values below the threshold are consid-
ered non-prospective.



Minerals 2021, 11, 597 15 of 20

Table 2. Accuracy of models generated with different sets of random point pattern NDL (R1 to R10).

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Accuracy 88% 67% 72% 78% 75% 81% 83% 83% 81% 72%
Kappa 78% 33% 44% 56% 50% 61% 67% 67% 61% 44%

Sensitivity 94% 61% 67% 78% 78% 78% 89% 83% 78% 67%
Specificity 83% 72% 78% 78% 72% 83% 78% 83% 83% 78%

Table 3. Accuracy of models generated with selected non-prospective KMO NDL and the mean
and standard deviation of accuracy indices of models generated with different sets of random point
pattern NDL.

Selected Mean Sd

Accuracy 84% 78% 6%
Kappa 67% 56% 13%

Sensitivity 79% 77% 10%
Specificity 89% 79% 4%

The average accuracy of the random models is lower than the selected model, with 78%
and 84%, respectively. The kappa values of 56% and 67% of the averaged random models
and the selected model respectively indicate that both models have a moderate fit between
the predictor maps and the training datasets [48].

Of all the random models, only R1 yields better results than the selected model,
but overall, the selected model is more accurate than the random models. Although the
results indicate that all models can capture the spatial relationship between the predictor
maps and the training datasets, the selected model is the most accurate.

5.3. Performance of RF Modelling

In the previous section, the predictive accuracy of each model is reviewed. However,
the models are not evaluated in a spatial context. For that purpose, success-rate curves,
describing the performance of the RF modeling based on the resulting predictive maps, are
used (Figure 10).

Figure 10. Success-rate curves of predictive map of Au prospectivity obtained by using training set
with random non-deposit location (R1–R10) and with selected non-prospective KMO.



Minerals 2021, 11, 597 16 of 20

Of the eleven mineral prospectivity maps, the worst performing model is the R1 model
which requires 35% of the study area to delineate all of the training deposits. In contrast,
the best performing maps capture all of the training deposits in 15% of the study area.
Those maps are obtained with the Sel, R6 and R9 models (Figures 11–13).

(a) (b)

Figure 11. Mineral prospectivity map with Sel model (a) and delineated prospective area (b).

(a) (b)

Figure 12. Mineral prospectivity map with R6 model (a) and delineated prospective area (b).



Minerals 2021, 11, 597 17 of 20

(a) (b)

Figure 13. Mineral prospectivity map with R9 model (a) and delineated prospective area (b).

6. Conclusions

In this study, different training sets using selected non-prospective KMO and ten sets
of randomly generated non-deposit location are compared. The type of deposit could
not be used as a selection criterion to select the KMO because the area is an extensive
epithermal system. Hence, some of the non-prospective KMO can have a similar geospatial
signature as our deposit training data set and introduce bias.

Across all the models, the five predictor maps with the highest cumulated relative
importance are representative of the source, pathway, and both physical and chemical traps
of an epithermal Au deposit. The different model predictive accuracy are compared and it
is found that the model using selected non-prospective KMO has higher accuracy than the
average accuracy of the models using random NDL with 84% and 78%, respectively. Thus,
using the listed commodities as a discriminant to select non-prospective KMO is enough to
have an accurate resulting model.

The predictive maps are evaluated using success-rate curves. The best mineral prospec-
tivity maps are obtained with the R6, R9,and Sel training sets that capture 100% training
deposits in 15% of the prospective area. Therefore, when available, it is recommended using
KMO classified as ‘non-prospective’ for the commodity sought rather than the randomly
generated non-deposit training set. However, for the larger study area were a diversity of
deposit types is present, it is recommended to use the commodities and the deposit type as
selection criteria to strengthen the predictive accuracy of the model further.

As found in this study, MPM using RF can be used in early stages of an exploration
project when only public data are available. By analyzing and interpreting the response of
the target variable to a set of predictor variables, RF is very similar to other knowledge-
guided data-driven methods such as evidential belief and weights of evidence modeling.
RF can also impute missing values, both continuous and categorical data, particularly when
handling heterogeneous datasets, which is the case in this study. This yields an out-of-bag
imputation error estimate without the need of a test set or elaborate cross-validation. These
characteristics make RF a non-black-box exploration method, which is more suitable for
mineral prospectivity modeling than other currently used machine learning approaches.
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Appendix A

Table A1. Deposit locations from the mineral occurrences depository (MINFILE). The coordinates
are in Universal Transverse Mercator (UTM) coordinate system (NAD83/zone 9N).

MINFILE # NAME STATUS DEPOSIT TYPE UTM NORTH UTM EAST

104B 077 BRONSON SLOPE Developed Prospect High-sulfidation epithermal 6,282,211 371,642
104B 089 SNIP NORTH - EAST ZONE Prospect Massive sulphide Cu-Pb-Zn 6,286,850 370,775
104B 107 JOHNNY MOUNTAIN Past Producer Subaqueous hot spring Ag-Au 6,277,401 373,149
104B 113 INEL Developed Prospect Massive sulphide Cu-Zn 6,275,679 380,178
104B 116 TAMI (BLUE RIBBON) Prospect Alkalic porphyry Cu-Au 6,272,714 384,430
104B 138 KHYBER PASS Prospect Massive sulphide Cu-Zn 6,273,715 379,627
104B 204 WARATAH 6 Prospect Au pyrrhotite veins 6,283,926 378,489
104B 250 SNIP Past Producer Au pyrrhotite veins 6,282,486 370,764
104B 264 C3 (REG) Prospect Au pyrrhotite veins 6,280,600 370,900
104B 300 BRONSON Prospect Au pyrrhotite veins 6,281,374 373,763
104B 356 GORGE Prospect Vein 6,287,500 369,050
104B 357 GREGOR Prospect Unspecified 6,288,962 369,467
104B 537 MYSTERY Prospect Au pyrrhotite veins 6,281,200 387,150
104B 557 AK Prospect Subaqueous hot spring Ag-Au 6,276,200 380,500
104B 563 CE CONTACT Prospect Au pyrrhotite veins 6,280,800 373,000
104B 567 SMC Prospect Massive sulphide Cu-Pb-Zn 6,280,450 369,850
104B 571 CE Prospect Au pyrrhotite veins 6,280,829 373,529
104B 685 KHYBER WEST Prospect Unspecified 6,273,802 378,627

Table A2. Selected non-deposit location from the mineral occurrences depository (MINFILE). The co-
ordinates are in Universal Transverse Mercator (UTM) coordinate system (NAD83/zone 9N).

MINFILE # NAME STATUS DEPOSIT TYPE UTM NORTH UTM EAST

104B 005 CRAIG RIVER Showing Cu skarn 6,2761,77 366,697
104B 205 HANDEL Showing Polymetallic veins 6,281,905 376,693
104B 206 WOLVERINE Showing Polymetallic veins Ag-Pb-Zn 6,277,250 377,150
104B 256 WOLVERINE (INEL) Showing Cu skarn 6,277,063 383,766
104B 268 HANGOVER TRENCH Showing Polymetallic veins Ag-Pb-Zn 6,275,185 369738
104B 272 DAN 2 Showing Polymetallic veins Ag-Pb-Zn 6,271,824 375,475
104B 292 GIM (ZONE 1) Showing Polymetallic veins Ag-Pb-Zn 6,281,770 383,605
104B 305 MILL Showing Porphyry Cu-Mo-Au 6,272,879 363,417
104B 306 NORTH CREEK Showing Polymetallic veins Ag-Pb-Zn 6,275,031 368,709
104B 324 IAN 4 Showing Cu-Ag quartz veins 6,286,725 379,485
104B 326 CAM 9 Showing Cu skarn 6,279,635 391,709
104B 327 CAM SOUTH Showing Polymetallic veins Ag-Pb-Zn 6,279,579 392,696
104B 331 IAN 8 Showing Cu skarn 6,286,038 383,655
104B 362 KIRK MAGNETITE Showing Fe skarn 6,276,565 389,635
104B 368 ELMER Showing Fe skarn 6,275,780 391,286
104B 377 ROCK AND ROLL Developed Prospect Massive sulphide Cu-Zn 6,288,261 363,286
104B 416 IAN 6 SOUTH Showing Massive sulphide Cu-Pb-Zn 6,286,900 382,200
104B 500 KRL-FORREST Showing Vein 6,288,950 393,400
104B 536 ANDY Showing Pb-Zn skarn 6,278,300 385,825
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