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Abstract: Total metal content is not representing its availability and thus does not provide the
details about potential environmental hazards, including the impact on soil enzyme activities. To
understand metal availability, chemical fractions must be considered. The goal of this study was
to evaluate the influence of Ni, Cr, and Pb fractions on the enzymatic activity of soils cultivated
by the simplified method, which is rare not only in Poland. The percentage of studied metals in
fractions was determined according to the Community Bureau of Reference (BCR) method. Four
fractions were extracted: acid soluble and exchangeable (F1), reducible (F2), oxidizable (F3), and
residual (F4). The highest Ni and Cr percentages were noted in fraction F4, and for Pb, they were
noted in fraction F2. The smallest Ni and Pb percentages were observed in fraction F1 (most mobile)
and for Cr, they were observed in fraction F2. In soil samples collected in spring, the significant
relationship was stated between F1/Ni/dehydrogenase, F2/Pb/dehydrogenase, and F2/Pb/urease.
Such dependence occurred between F1/Ni/phosphatase and F4/Ni/urease during summer as well
as between F1/Ni/phosphatase and F4/Ni/dehydrogenase in autumn. F1/Pb caused a drop in
phosphatase activity, whereas F4/Cr influenced its increase. The study results indicated that metal
fractions influenced phosphatase activity the most, while protease activity in the soil was not affected.

Keywords: metal fraction; enzyme activity; heavy metal; arable soil; BCR method

1. Introduction

Soil is a very important part of the ecosystem. Heavy metals in soil represent de-
structive and potent environmental hazards [1]. They are a source of concern because
of their potential reactivity, toxicity, and mobility [2,3]. High concentrations of metals in
soil can cause the limitation of vegetation [4]. According to Xia et al. [5], nickel toxicity
toward microorganisms in soil appears at concentrations higher than 100 mg kg−1, causing
the decrease of microbial biomass carbon and soil basal respiration. As to lead, the toxic
level is 150 mg kg−1 for microbial biomass carbon and 100 mg kg−1 for microbial biomass
nitrogen [6]. Chromium belongs to the metals that are extremely harmful to microbes. In
the environment, only trivalent and hexavalent forms of chromium are prevalent. They are
differentiated in terms of biological reactivity and physicochemical properties. Hexavalent
ions are more toxic due to the high mobility in biological systems [7]. As stated by ul
Hassan et al. [8], the 50% reduction in overall microbial soil activity is observed at a total
chromium concentration of 263 g kg−1. The toxicity of heavy metals to plants is dependent
on soil composition, plant species, metal concentration, soil pH, and the chemical form of
the metal [9]. Critical concentrations in soil are within the range of 10–100, 30–300, and
5–30 mg·kg−1 for Ni, Pb, and Cr, respectively [10]. The persistence of enzymes in the soil
is influenced by parameters such as soil temperature, depth, organic matter, acidity, and
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granulometric composition. It ranges from a few days to several years [11]. Studies investi-
gating enzyme activities are the source of details about the soil biochemical processes [12].
In this study, we investigated the activities of four enzymes, namely dehydrogenase, phos-
phatase, urease, and protease, because they are commonly used as indicators of the soil
overall microbial activity. Dehydrogenase is one of the most important enzymes in this
context, as it exists in active form only inside the living cells [13]. It is involved in C-cycling
and microbial oxidative activity. Other studied enzymes take part in the transformation
of phosphorus compounds (phosphatase) and N-cycling (urease and protease). Research
on the decreased enzyme activities in the presence of heavy metals is a useful tool for the
assessment of soil degradation [1]. The high level of heavy metals that act as micronutrients
and low concentration of nonessential metals has a negative influence on bacteria in the
soil [14]. A decrease in the number and activity of soil microorganisms imposes an impact
on soil enzymes. The influence of heavy metals on enzymatic reactions is mainly related
to binding to the enzyme active sites, complexation of substrate, and reacting with the
enzyme–substrate complex.

Study results show that activities of dehydrogenase, urease, catalase, acid and neutral
phosphatase, and sucrose can be reduced by heavy metals [15]. Donderski and Swiontek
Brzezinska [16] observed that Cu, Zn, Ni, Pb, Cd, and Cr could inhibit the activity of
alkaline phosphatase. The above-mentioned research, and many more [17–20], have
referred to the total form of metal. However, the impact of metal fractions on the soil
enzymatic activity was investigated to a small degree. It is an important issue, since even
the low level of metal that occurs in unpolluted soil can affect the soil microbial activity
and the soil enzyme activities. We must know which part of the total metal content can
interact with the soil microorganisms and enzymes. Fractional metal composition gives us
this knowledge.

The aim of the study was estimation of the fractional composition of nickel, lead,
and chromium and its influence on enzymatic activity (protease, dehydrogenase, urease,
alkaline phosphatase) of arable soils cultivated by the simplified method.

2. Materials and Methods
2.1. Collection of Soil Samples

Nine samples of agricultural soils (Albic Luvisols) were taken from the arable layer
(0–25 cm) in the area located in northeastern Poland, around Gawliki Wielkie (P1) and
Radzie (P2) (Figure 1). Each sample (about 6 kg) was obtained from a different field in six
replicates and mixed the same day (see Figure S1 in Supplementary Materials). They were
collected three times in 2015 (April, July, October) during the growing season. Soils in this
region have mostly boulder clay origin. In the study area, for the last five years, no-till
farming was used. Winter wheat was cultivated in site P1, while broad bean was cultivated
in area P2. The following N/P/S/CaO fertilization rates were used: 287.5, 75, 30, 120/45,
75, 8, 120 kg·ha−1 in areas P1/P2, respectively.

Monthly rainfall and temperatures in the study area, provided by the Institute of
Meteorology and Water Management-National Research Institute [21], are shown in Table 1.
Rainfall data come from the weather station located in Siedliska and temperatures come
from Olecko.

2.2. Physicochemical Analysis

Soil samples were dried at room temperature, sieved through a 2 mm sieve, and
stored at 4 ◦C for analysis. The following determinations were performed: organic carbon
content by oxidation with potassium dichromate (VI) in the presence of sulfuric (VI) acid
according to the PN-ISO 14235:2003 [22]; pH in 1 mol/dm3 KCl by the potentiometric
method based on PN-ISO 10390:1997 [23] and Kjeldahl nitrogen by the steam distillation
with titration for quantification the amount of ammonia, using an Omnilab FoodAlyt D5000
apparatus, after previous sample digestion in concentrated sulfuric (VI) acid according
to the PN-ISO 11261:2002 [24]. The soil granulometric composition was determined by
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the sieve method in accordance with the Polish regulations: PN-R-04032:1998 [25] and
PN-R 04033:1998 [26]. The total content of Ni, Pb, and Cr was determined by the flame
atomic absorption spectrometry (FAAS) method, after previous digestion with aqua regia
according to the PN-ISO 11466:2002 [27] using the Ethos Easy microwave digestion system
(Milestone, Sorisole, Italy). The content of metals in fractions was assayed by means
of graphite furnace atomic absorption spectrometry (GFAAS). In both cases, iCE 3500
apparatus (Thermo Scientific, Waltham, MA, USA) was used. The percentage of each
fraction in the total metal content was calculated.

Figure 1. Sampling site location. P1—Gawliki Wielkie, P2—Radzie (sample numbers in parentheses).

Table 1. Monthly rainfall and temperatures in the year 2015, in the study area.

Month

1 2 3 4 5 6 7 8 9 10 11 12

Rainfall Summary,
mm 64.2 18.9 52.0 36.1 49.3 32.6 70.1 12.9 84.1 14.9 118.4 54.5

Average
Temperature, ◦C − 0.7 − 1.0 4.2 6.8 11.3 15.4 17.6 20.3 14.0 6.1 4.2 2.6

1—January, 2—February, 3—March, 4—April, 5—May, 6—June, 7—July, 8—August, 9—September, 10—October, 11—November,
12—December.

Detection limits for Ni, Pb, and Cr during FAAS analysis were 7.5, 12.7, and 8.4 µg·L−1,
respectively. The certified reference material CRM BCR-701 (sediment, LGC Standards,
Poland) was used for a quality control of the BCR method. In addition, the recovery rates
for metals in the soil samples were evaluated using the following formula: ((F1 + F2 + F3 +
F4)/total content) × 100. For Ni, recovery ranged from 84% to 139%; for Pb, it ranged from
88% to 123%, and for Cr, it ranged from 112% to 147%.

The fractional composition of Ni, Pb, and Cr in soil samples was determined with the
ultrasound accelerated Community Bureau of Reference (BCR) method, which consisted of
four stages [28] (Scheme 1).
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Scheme 1. The ultrasound accelerated Community Bureau of Reference (BCR) sequential extraction
scheme for metal partitioning.

2.3. Enzyme Activities

Dehydrogenase activity was evaluated by spectrophotometry at a wavelength of
485 nm [29] after 24 h incubation at 30 ◦C using as a substrate 1% triphenylotetrazole
chloride (TTC) and expressed in µg of triphenylformazan (TPF) g−1 DM 24h−1. Alkaline
phosphatase was analyzed according to the procedure by Tabatabai and Bremner [30].
Protease activity was assayed using azo-casein according to the method of Macura and
Vágnerová [31], and urease activity was assayed according to the method of Hoffmann and
Teicher [32]. A more comprehensive description of the determination of enzyme activities
was given in our previous paper [33].

2.4. Statistical Analysis

Analysis of variance (ANOVA) performed by using Statistica 13.1 software (TIBCO
Software, Palo Alto, CA, USA) was calculated based on all the results (except soil gran-
ulometric composition). To evaluate the significant differences among the means of Ni,
Pb, and Cr fractions, soil enzyme activities, and soil physicochemical properties, we used
the least significant difference test. Statistica 12.5 software (TIBCO Software) was used
to calculate the correlations between studied parameters (Pearson’s correlation factor for
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P ≤ 0.05). Two versions of the same software were used due to the expiration of Statistica
12.5 licence.

3. Results
3.1. Physicochemical Properties of Studied Soils

The studied soils represented three textural classes: loam, clay loam, and sandy loam
(Table 2). They were slightly acidic and acidic according to pH values. Most of them had
high organic carbon and nitrogen content. The level of enzyme activities was differentiated,
and for dehydrogenase, it amounted to 0.02 to 0.60 µg·TPF·g−1·DM·24·h−1; for alkaline
phosphatase, it was 0.32–2.88 mM·pNP g−1·h−1; for protease, it was 18.29–34.15 mg azo-
casein·g−1·h−1; and for urease, it was 4.12–8.90 µgN·g−1·DM h−1. The average enzyme
activities are shown in Table 2.

Table 2. Characteristics of studied soils (mean ± standard deviation). Values refer to the average from all sampling [33];
sand (2–0.05 mm), silt (0.05–0.002 mm), clay (<0.002 mm).

Sampling Site

1 2 3 4 5 6 7 8 9

Protease mg
azo-casein

g−1·h−1
24.26 ± 2.07 22.27 ± 1.91 21.04 ± 2.05 24.27 ± 0.72 22.40 ± 1.64 21.08 ± 1.91 26.68 ± 5.56 22.43 ± 1.55 24.39 ± 1.78

Phosphatase
mM pNP
g−1·h−1

0.89 ± 0.24 1.66 ± 0.17 0.96 ± 0.29 0.93 ± 0.21 1.66 ± 0.88 0.72 ± 0.27 1.41 ± 0.80 1.07 ± 0.61 0.38 ± 0.05

Dehydrogenase
µg TPF g−1

DM 24h−1
0.11 ± 0.05 0.11 ± 0.01 0.22 ± 0.12 0.34 ± 0.18 0.23 ± 0.14 0.18 ± 0.11 0.19 ± 0.15 0.16 ± 0.15 0.04 ± 0.02

Urease
µgN g−1

DM h−1
7.36 ± 0.83 8.43 ± 0.41 6.38 ± 0.92 5.09 ± 1.28 5.65 ± 0.52 6.61 ± 1.76 7.43 ± 1.23 6.40 ± 0.68 6.18 ± 1.12

pH 6.5 ± 0.3 5.7 ± 0.7 4.9 ± 0.7 6.5 ± 0.9 5.7 ± 0.7 5.2 ± 0.9 5.7 ± 0.1 5.9 ± 1.2 5.1 ± 1.8

Organic C,
% 1.87 ± 1.68 2.05 ± 0.35 2.02 ± 0.21 2.37 ± 1.52 2.25 ± 0.30 1.19 ± 0.33 3.36 ± 2.68 1.48 ± 0.35 1.12 ± 0.27

N, % 0.31 ± 0.02 0.19 ± 0.01 0.27 ± 0.03 0.32 ± 0.13 0.31 ± 0.15 0.22 ± 0.05 0.23 ± 0.04 0.28 ± 0.07 0.21 ± 0.02

Sand, % 20.9 ± 14.5 21.9 ± 1.1 22.4 ± 6.6 27.2 ± 9.1 23.4 ± 0.7 39.0 ± 11.6 22.1 ± 1.8 36.2 ± 24.2 56.1 ± 8.3

Silt, % 25.0 ± 9.0 15.6 ± 4.9 24.6 ± 4.7 29.9 ± 1.9 22.7 ± 5.2 32.0 ± 4.6 30.1 ± 3.9 31.5 ± 2.4 16.5 ± 1.3

Clay, % 27.6 ± 4.1 27.4 ± 2.0 30.7 ± 5.2 7.6 ± 0.9 31.4 ± 3.5 8.2 ± 1.5 29.6 ± 3.8 7.3 ± 2.1 8.3 ± 1.4

Ni, mg kg−1 13.0 ± 6.2 21.9 ± 2.2 17.1 ± 4.0 9.5 ± 2.6 13.0 ± 7.7 10.2 ± 6.0 10.5 ± 3.7 8.1 ± 3.1 10.3 ± 9.4

Pb, mg kg−1 11.7 ± 4.7 16.6 ± 2.0 13.8 ± 2.5 12.2 ± 5.2 15.8 ± 9.2 10.1 ± 1.8 13.8 ± 6.0 11.0 ± 0.4 7.1 ± 1.9

Cr, mg kg−1 28.8 ± 13.7 45.6 ± 3.8 35.3 ± 10.0 22.0 ± 5.7 27.8 ± 13.1 24.9 ± 14.4 19.1 ± 3.5 21.5 ± 2.9 12.6 ± 3.1

Only the activities of protease and dehydrogenase were seasonally differentiated. The
activity of protease in April was the highest and significantly higher than that in July
(Figure 2). Similarly, the activities of all other enzymes were also the highest during the
spring. Dehydrogenase activity was clearly differentiated between April and October.
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Figure 2. Seasonal changes of enzyme activities. Different letters above bars (mean ± standard deviation ) indicate
significant difference (P < 0.05).

We have not found strong correlations between the physicochemical properties of the
studied soils—such as pH, organic C, N, and granulometric composition—and enzyme
activities (Table 3).

Table 3. Correlations between enzyme activities and characteristics of studied soils [33]; sand
(2–0.05 mm), silt (0.05–0.002 mm), clay (<0.002 mm); n = 27.

pH Organic C N Sand Silt Clay

Protease 0.253 0.139 0.001 −0.124 0.047 −0.030
Phosphatase −0.204 0.035 −0.044 −0.306 −0.149 0.200
Dehydrogenase −0.240 −0.299 0.290 −0.061 0.038 −0.154

Urease 0.070 0.022 −0.283 −0.341 −0.168 0.266

In the case of Ni, the positive correlation between fraction F1 and sand (r = 0.667)
as well as negative correlation between this fraction and clay (−0.497) was observed
(Table 4). A significant relationship between F1/Pb and sand (0.628) was also stated. The
same fraction correlated negatively with clay (−0.487). F4/Pb negatively influenced silt
content (−0.482). Most of the dependences were noted between fractions of Cr and the
characteristics of the studied soils. Sand content influenced positively F1/Cr (0.398) and
organic carbon F3/Cr (0.524). Negative correlation between F4/Cr and sand (−0.499) as
well as silt (−0.390) was also noted.
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Table 4. Correlation coefficients between characteristics of studied soils and fractions of Ni, Pb, Cr; sand (2–0.05 mm), silt
(0.05–0.002 mm), clay (<0.002 mm); n = 27.

Ni Pb Cr

F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4

pH 0.080 0.037 −0.070 −0.022 0.326 −0.135 0.002 −0.142 −0.115 −0.266 0.120 −0.149
Organic

C 0.299 0.099 0.054 −0.277 0.293 −0.264 0.117 −0.328 −0.009 0.197 0.524 * −0.301

Sand 0.667 * −0.050 0.082 −0.209 0.628 * −0.312 −0.184 −0.254 0.398 * 0.244 0.224 −0.499 *
Silt 0.271 0.312 0.331 −0.079 0.184 0.249 −0.121 −0.482 * 0.100 0.276 0.129 −0.390 *

Clay −0.497 * −0.282 −0.124 0.209 −0.487 * 0.228 −0.098 0.044 −0.352 −0.272 −0.177 0.298

* significant for P < 0.05.

3.2. Total Metal Content and Fractions

Total metal content was characteristic for noncontaminated arable soils and ranged
8.1–21.9, 7.1–16.6, 12.6–45.6 mg kg−1 on average for Ni, Pb, and Cr, respectively. The
highest amount of Ni was observed in fraction F4 (66.2% of total content on average) and
the lowest was observed in fraction F1 (15.0%). Fractions F2 and F3 constituted 15.3%
and 16.0% of total Ni, respectively. In the case of Pb, the highest percentage was stated
in fraction F2 (44.0%) and the lowest was stated in fraction F1 (10.8%). Fractions F3 and
F4 had 31.0% and 26.4% total Pb, respectively. Fraction F2 gathered the lowest amount
of Cr (5.3%). Its highest content (67.3%) was observed in fraction F4. Fractions F1 and F3
constituted 11.3% and 42.6% of total Cr, respectively. Fraction F1 gathered the most of
Ni in the autumn (Figure 3). It was significantly more than in the summer. In the case of
Cr/F2, we have noted the same dependence. The percentage of Pb/F4 clearly decreased in
October in comparison with July.

Figure 3. Seasonal changes of fractional composition of metals. Different letters above bars (mean ± standard deviation)
indicate significant difference (P < 0.05).
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3.3. Impact of Metal Fractions on Enzyme Activities

The influence of metal fractions on enzyme activities was varied in sampling dates
(Table 5). Phosphatase activity was moderately influenced by F1/Ni during the summer
(−0.688) and strongly correlated with the same fraction in the autumn (−0.731). In October,
we have also stated significant correlations between phosphatase and F1/Pb (−0.702) as
well as F4/Cr (0.708). Dehydrogenase was affected in April by F1/Ni (r = 0.806) and F2/Pb
(0.742). Its activity correlated negatively with F4/Ni (−0.772) during the autumn. Urease
activity was correlated with F2/Pb in April (−0.843) and F4/Ni (0.707) in July. We did not
notice any impact of metal fractions on protease activity during the study.

Table 5. Correlation coefficients between pH, organic carbon, enzyme activities, and fractions of Ni, Pb, and Cr in seasons
(n = 27).

Ni Pb Cr

Soil Sampling in April

F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4

pH −0.420 −0.289 −0.201 −0.096 −0.291 −0.394 0.124 −0.100 −0.237 −0.261 −0.278 0.037
Organic C −0.177 −0.001 0.297 −0.806 * −0.091 −0.043 0.832 * −0.640 0.330 0.292 0.783 * −0.261
Protease −0.291 −0.263 0.103 0.058 −0.325 −0.101 −0.011 −0.171 −0.107 −0.137 −0.093 0.002

Phosphatase −0.033 0.087 −0.050 −0.650 −0.047 0.047 0.491 −0.505 0.354 0.181 0.508 −0.379
Dehydrogenase 0.806 * 0.441 0.527 0.130 0.570 0.742 * −0.416 −0.008 0.464 0.595 0.166 −0.473

Urease −0.641 −0.165 −0.057 0.124 −0.235 −0.843 * 0.419 0.234 −0.271 −0.356 −0.134 0.438

Soil Sampling in July

pH 0.611 0.515 0.177 −0.305 0.600 0.206 0.453 0.275 0.521 0.214 0.448 −0.139
Organic C −0.498 −0.330 −0.478 −0.331 0.220 −0.501 0.558 −0.191 0.628 −0.263 0.405 −0.003
Protease 0.637 0.653 0.263 −0.360 0.490 0.260 0.210 0.266 0.218 0.121 0.182 −0.024

Phosphatase −0.688 * −0.378 −0.602 −0.284 0.355 −0.387 0.316 −0.310 0.422 −0.435 0.258 −0.201
Dehydrogenase 0.564 0.532 0.346 −0.094 0.040 0.146 −0.007 0.080 0.195 0.057 −0.083 0.015

Urease −0.202 −0.427 0.290 0.707 * −0.262 0.324 −0.374 −0.453 −0.462 −0.053 −0.093 −0.574

Soil Sampling in October

pH 0.047 0.113 −0.107 −0.022 0.433 −0.056 −0.087 0.118 −0.502 −0.543 −0.116 −0.195
Organic C 0.342 0.247 −0.101 −0.191 0.517 −0.238 0.038 −0.098 −0.324 0.142 0.545 −0.348
Protease 0.003 0.022 −0.152 0.366 0.417 −0.038 −0.120 0.567 −0.183 0.036 0.261 0.146

Phosphatase −0.731 * 0.058 −0.423 0.242 −0.702 * 0.207 −0.233 0.134 −0.464 −0.632 −0.473 0.708 *
Dehydrogenase −0.356 −0.248 0.392 −0.772 * −0.266 0.544 0.518 −0.241 −0.279 −0.291 0.053 −0.382

Urease −0.437 −0.118 −0.360 −0.471 −0.089 0.522 0.029 0.282 −0.497 −0.622 −0.282 0.103

* significant for P < 0.05.

4. Discussion
4.1. Distribution of Heavy Metals in Chemical Fractions

The total metal content provides incomplete information about its bioavailability
and possible environmental threats [34], including the effect on soil enzyme activities.
More valuable results can be achieved studying metal fractions in the soil. We used the
BCR method to evaluate the fractional composition of the studied elements and thus
their mobility and bioavailability, which are the essential factors affecting the impact of
metal on the enzymatic activity of soil [35]. This extraction method, among others, is well
standardized, which is its great advantage [36]. Metal fractions obtained with this method
are considered as operationally defined [37]. It means that the extraction scheme reflects
the natural processes that lead to heavy metals fractionation in the environment, which
can cause their mobilization [38].

We have stated 66.2% and 15.0% Ni on average in fractions F4 and F1, respectively.
The same dependence was noted by Zeiner et al. [39]. In the orchard soils, they have found
in fraction F4 the most Ni (40.6%) and the least in fraction F1 (6.36%). Cheng et al. [40] also
reported that fraction F1 comprised the lowest amount of Ni (about 7% of total content) in
garden soils. This fraction corresponds to the part of metal that is bound to the soil matrix
with weak bonds and thus is highly mobile [41]. Pb in the studied soils was present mainly
in fraction F2 (44.0%), which is in accordance with the results of Boughattas et al. [36]. The
authors stated in fraction F2 of control soil approximately 95% of the discussed element.
Most of Cr (67.3%) was in fraction F4. Gattullo et al. [42] observed in unpolluted soil,



Minerals 2021, 11, 584 9 of 12

in fraction F4, even more Cr (90%). Fraction F4 is considered as stable under natural
conditions, which means low mobility and accessibility to soil microorganisms. Metals in
this fraction are embedded in the crystalline structure of the minerals [43].

The first three fractions obtained according to the BCR method are considered as
mobile. They describe the extractability of metals [41]. Our results show that the mobile
pool of Pb amounted to 85.7%, which means that Pb was characterized by the highest
extractability, while Ni was characterized by the lowest (46.3%).

4.2. Correlations between Soil Characteristics and Heavy Metal Fractions

Generally, the distribution of studied metals in fractions was not influenced by the
physicochemical properties of the soil. Most of the correlations we have noted are between
fraction F1 and granulometric composition. The relationship between that fraction and
clay content, which in the case of Ni and Pb is statistically significant, reflects the high
affinity of metal to the smallest soil particles, which makes the extraction more difficult.
Zong et al. [44], studying urban soils, found most of the heavy metals exactly in the fraction
of <2 µm. According to the authors, it is related to the clay properties, since this soil fraction
is characterized by a negative charge, large surface area, and high content of organic matter,
which has the ability to absorb the metals very easily.

4.3. Effect of Heavy Metal Fractions on Soil Enzyme Activities

The activity of soil enzymes can be considered as indicators, since it depends on
the content of pollutants, including heavy metals [45]. Among soil enzymes, dehydroge-
nase seems to be the best indicator, which is characterized by the highest sensitivity [46].
Wyszkowska et al. [47] observed that enzymes may be arranged according to the metal
sensitivity in the following order: dehydrogenase > urease > alkaline phosphatase > acid
phosphatase. The negative correlation between total metal contents in the soil and enzy-
matic activities was reported many times [46], but the bibliography on the relationship
between soil enzymatic activity and fractional metal composition is very poor.

Surprisingly, we observed a high correlation of some enzyme activities with fraction
F4, which is considered as almost unavailable, as mentioned before. A strong positive
correlation (0.86) between urease activity and F4/Ni was reported by Miśkowiec and
Olech [48]. According to the authors, part of this enzyme can be strongly adsorbed on
the clay minerals in a functioning and stable form. They also emphasized that Ni could
be an indicator of urease activity and the quality of unpolluted soils, independently of
land management practices. The negative correlation between F4/Ni and dehydrogenase
activity observed in our research seems to prove the fact that it is an essential trace element
for dehydrogenase [49], since the increase of F4 fraction leads to the decrease of its overall
availability. It is unclear why all the significant correlations between enzyme activities
and residual metals have not occurred in all three sampling dates. It may be related to
the differentiated climatic conditions between the seasons. We can assume that rainfall
and temperature changes (Table 1) influenced to some degree the enzyme activities and
fractionation of the studied metals. Apart from fraction F4, fraction F1 affected the activity
of enzymes the most. We have noted a negative and significant influence of Ni and
Pb accumulated in this fraction on the activity of phosphatase. The discussed fraction
accumulated most of the Pb in October, which was the cause of such dependence in this
month. In the case of Ni, spring was the only time that fraction F1 did not correlate strongly
with phosphatase activity. It could be the result of the rainfall and simultaneously the low
temperature in April. It is confirmed by the largest phosphatase activity in this season
as compared to the summer and autumn, since its activity increases with increasing soil
moisture content [50]. We have also stated strong correlations between F2/Pb and the
activity of two enzymes, but only in spring. It could be ascribed, once again, to the high soil
water content. Firstly, it contributed to the highest dehydrogenase activity in this season,
thus neutralizing the adverse impact of F2/Pb on its activity. Secondly, it enhanced the
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negative effect of Pb contained in fraction F2 on urease activity, since extremely high soil
moisture may lead to an inhibition of urease activity [51].

4.4. Impact of Sampling Date on Enzyme Activities and Fractional Composition of Heavy Metals

The activities of protease and dehydrogenase were seasonally significantly differenti-
ated, which was probably due to the weather conditions. The climate influences the soil
enzymatic activities, which is a well-known fact [52–54]. Substantial differences between
sampling dates were also obtained for some metal fractions. In the case of Ni and Cr, it
was related to the redistribution. For Ni, it was shifting from fraction F4 to F1, and for Cr, it
was shifting from F4 to F2 and F3. Heavy metal release from fraction F4 can be observed
due to the changes of soil reaction [34] or microbial activity [55]. In this case, it could be the
second reason, since significant pH changes were not stated during the study. The activity
of microorganisms probably caused also the significant change of Pb percentage in the
fraction F4.

5. Conclusions

According to our knowledge, this is the first study regarding the impact of Ni, Pb, and
Cr fractions on the enzyme activities of arable soils cultivated by the simplified method,
depending on season. We have observed that nickel fractions (F1 and F4) had the greatest
impact on enzyme activities. It was most evident in the case of phosphatase, where the
inhibitory effect of F1/Ni was confirmed by correlation coefficients, which were significant
in the summer and autumn. It is essential, since this fraction comprised the smallest part of
the total Ni content, and nevertheless, it influenced very clearly the activity of phosphatase.
As a result, the availability of phosphorus for plants was in some degree lowered, because
phosphatase is controlling the decomposition of organic matter, which is its main source.
This could be a limiting factor for the plant growth. Phosphatase was the most sensitive to
the metal fractions, since Pb and Cr also influenced its activity.

It is important to say that the significant impact of residual Ni on the urease and dehy-
drogenase activities can be related to the presence of abiontic enzymes, which are enzymes
that are immobilized in the soil matrix but remain active. We can say the same about F4/Cr
and phosphatase activity. Currently, it is not possible to determine conclusively the degree
of participation of abiontic enzymes (not connected with viable cells) and viable cells in the
soil enzymatic activity. This issue requires further research.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/min11060584/s1, Figure S1: Sampling protocol. Six subsumples (about 1 kg each) from every
field were collected using Egner’s stick.
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