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Abstract: Online measurement of particle size distribution in the crushing process is critical to
reduce particle obstruction and to reduce energy consumption. Nevertheless, commercial systems
to determine size distribution do not accurately identify large particles (20–250 mm), leading to
particle obstruction, increasing energy consumption, and reducing equipment availability. To solve
this problem, an online sensor prototype was designed, implemented, and validated in a copper ore
plant. The sensor is based on 2D images and specific detection algorithms. The system consists of a
camera (1024 p) mounted on the conveyor belt and image processing software, which improves the
detection of large particle edges. The algorithms determine the geometry of each particle, from a
sequence of digital photographs. For the development of the software, noise reduction algorithms
were evaluated and selected, and a routine was designed to incorporate morphological mathematics
(erosion, dilation, opening, lock) and segmentation algorithms (Roberts, Prewitt, Sobel, Laplacian–
Gaussian, Canny, watershed, geodesic transform). The software was implemented (in MatLab Image
Processing Toolbox) based on the 3D equivalent diameter (using major and minor axes, assuming an
oblate spheroid). The size distribution adjusted to the Rosin Rammler function in the major axis. To
test the sensor capabilities, laboratory images were used, where the results show a precision of 5%
in Rosin Rambler model fitting. To validate the large particle detection algorithms, a pilot test was
implemented in a large mining company in Chile. The accuracy of large particle detection was 60%
to 67% depending on the crushing stage. In conclusion, it is shown that the prototype and software
allow online measurement of large particle sizes, which provides useful information for screening
equipment maintenance and control of crushers’ open size setting, reducing the obstruction risk and
increasing operational availability.

Keywords: comminution; image analysis

1. Introduction

The field of image analysis is a key area for the implementation of solutions that
improve quality within industrial automation processes, where different digital image
processing techniques are used [1]. The use of this technology carries with it a competitive
advantage within the companies that use it, being able to have an increase in produc-
tion, improvement in the quality of the products, and a reduction in production and
manufacturing costs [2].

One of the main lines of image analysis research is the automatic particle recognition
process. Automation allows establishing precise and objective forms of control, whereas
manual systems are subject to exhaustion and routine on the part of the operator, causing
poor or inconsistent control [3–5]. Image analysis applications can be found in areas such
as PCB (printed circuit boards) fault detection, food, silicon foil, and granulometry, to name
a few. However, it should be noted that each analysis is directly associated with the type of
application in which it is desired to occupy.
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A method designed for face pattern recognition, for example, can hardly be applied to
that of printed circuits [6–8].

There are two basic conditions that a system must meet to improve the quality of
processes: the first case is efficiency, which is related to the least number of false positives
and negatives; the second is speed: the idea is that the production process is not affected by
the time it takes for the inspection and therefore increases or maintains, at least, the speed
of production.

Segmentation is one of the initial stages in the image analysis process; however, its
application allows separating and detecting, in a first phase, the regions of interest, which
are later classified. Segmentation is commonly considered one of the most complex tasks
in image processing [2,9]. Research in this area is extensive, but it is specific in relation
to the material being analyzed. To have a better control in the crushing process, taking
images of the conveyor belts, it is sought to design and implement an algorithm that allows
determining all the regions with particles, particularly large particles (20–250 mm), from
which their geometric properties can be extracted, through analysis of digital images, and
the size distribution of these particles can be determined. The quality in the detection
of particles is a fundamental point in the construction of a solution, for which it must be
quantifiable. To do this, a comparison algorithm must be used that effectively specifies the
number of false positives and false negatives found in the detection of particles.

In the development of this research, segmentation strategies such as the use of the
Canny method [10,11] for edge detection (a comparison study [12] showed that, among the
different types of edge detection algorithms, the Canny filter is the algorithm with the best
performance) and the use of the distance transform [13] to complement watershed segmen-
tation [14,15], which has been studied and improved throughout various studies [16–23],
will be analyzed, in addition to other digital processing techniques for noise reduction
such as the median filter, the Gaussian filter, and the average filter, in order to evaluate
the developed solution. To develop the watershed, the algorithm proposed in Vincent’s
research [24] is the one with the best quality and performance, and it is also integrated
with the MATLAB software. This type of system also presents an opportunity for the
implementation of deep learning, as shown in other investigation works [25].

In Chile, there are many mining deposits in which sensors and analyzers are required
to help their production processes. In particular, the crushing and grinding process is
where energy consumption requires the greatest attention. An alternative for controlling
the process is measuring and analyzing the particle size distribution in the feed, in the same
way as for the milling stage, where particle size distribution sensors do not demonstrate
sufficient robustness in operation, particularly for large particle sizes (above 20 mm). A
large particle size is a consequence of operational problems in the classification stage
(screening), i.e., screen rupture, which requires prompt maintenance in order to reduce
major problems in downstream stages. The presence of oversized particles may produce
equipment plugging or obstruction. This condition limits the operational time availability.
This situation motivates the development of particle size analyzers. To carry out this
control, it is necessary to stop a part of the production to obtain samples and send them to
a laboratory for a granulometric analysis. This, in addition to causing production losses
due to stopped time, is not a representative measure due to the volume of transport that
the conveyor belts have.

The solution consists of a device together with online image processing software
that allows the determination of particle sizes with statistical significance for 2D images
from a 3D sample. Alternative technologies based on images, X-ray diffraction, and laser
diffraction have been developed for particle size measurement at a range below 50 mm,
which is not the required range for primary to tertiary crushing. In addition, commercial
devices such as CAMSIZER or QCPIC are for bench-scale applications. A complete review
of particle size technologies is described in [26].

This solution contemplates a set of image analysis processing techniques, separated
into independent phases. This makes it possible to analyze and quantify the quality in each
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phase in such a way that, if an adjustment is required at any point in the process, it is not
necessary to modify the entire algorithm; only the variable which controls that phase is
altered, allowing a change in the overall result.

2. Materials and Methodology
2.1. Software and Hardware Tools Used

The main software tool used was MATLAB R2008a (The MathWorks, Portola Valley,
CA, USA), version 7.6.0.12063a, “Toolbox” (The MathWorks, Portola Valley, CA, USA)
for image processing version 6.1, and “Toolbox” for image acquisition 3.1. The operating
system used was Microsoft Windows XP (Microsoft, Redmond, Washington, DC, USA)
Professional version 5.1.804013 SP3.

Within the laboratory hardware, an Intel Pentium core 2 processor with a 2.2 GHZ
clock frequency was included, with 2 GB of DDR3 RAM memory with a 600 MHZ bus. The
hard drive was 160 GB with a speed of 7200 RPM SATA.

For taking and testing, an Intel Pentium III processor with a clock frequency of
600 MHz, 128 Mb of RAM, and a 10 GB hard drive was used. The standard USB 1.1 port
was used to connect the cameras (IP camera 1024 p, shutter speed 1/2000 s).

The system is composed of a set of stages, where each of them is analyzed indepen-
dently, allowing quantifying and analyzing the advantages and disadvantages of its use.
In Figure 1, a general diagram of the proposed segmentation process is presented, without
specifically considering the filters to be used in each stage.
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Figure 1. General segmentation process.

In addition to analyzing the different strategies for each of the stages, two segmen-
tation methods were developed, used for the process of each of them [27]. The first was
composed by using the Canny method, and the second method used the watershed trans-
form. The difference between the procedures lies in the edge detection method to be
used since, in the case of Canny, it is necessary to perform derivative operations to obtain
the regions with particles. On the other hand, in the case of the watershed transform, it
is necessary to carry out a procedure that eliminates the noise appended to the binary
image product of the selected threshold level [28]. There are different types of noise in an
image, such as Gaussian, impulsive, frequency, and multiplicative noise [29], which makes
reduction difficult.

2.2. Processing and Noise Reduction

It has been experimentally determined that the median filter [30] has a better perfor-
mance compared to the Gaussian filter and the average filter, mainly due to the elimination
of a large part of the noise, in addition to preserving the edges of the particles, as seen in
Figure 2.
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Figure 2. (a) Original image; (b) application of 3 × 3 median filter; (c) application of 9 × 9 Gaussian filter with σ = 1;
(d) application of 9 × 9 average filter; (e–g) binarized images (using Otssu algorithm) and contour by subtraction of
original image.

In Figure 2b, the median filter is applied, using the original image, shown in Figure 2a,
as the input image, observing that the edges of the structures are not preserved (Figure 2e).
The Gaussian filter is used in Figure 2c, where the blurring of the particles is combined with
the surrounding regions, determining the possible edges of particles (Figure 2e). Finally, in
Figure 2d, the application of the average filter (9 × 9 window) depicts clear borders. The
Figure 2e–g are binarized images (using Otssu algorithm) from Figure 2a–c respectively.
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2.3. Edge Detection
2.3.1. Sobel Operator

The Sobel operator is a discrete differential that calculates an approximation to the
gradient of the intensity function of an image. As it can be seen in Figure 3b, applying
the Sobel operator to Figure 3a is not sufficient for edge detection. While it denotes easily
visible edges more vividly, it also shows edges that are the result of noise, drift, and the
irregular shape of the image. With the help of the minimum elimination operation together
with the Sobel function, it is possible to eliminate areas where hypothetical particles will
not be found.
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2.3.2. Canny Operator

The Canny method more accurately detects the edges of structures because it is less
sensitive to noise since it uses a Gaussian filter to reduce it. However, it generates many
open edges, which is why it is necessary to carry out the dilation, filling, and erosion process.
Before applying the Canny operator on the image, unnecessary areas were eliminated by
multiplying the binarization of the original image. With the discretized image of Figure 4a
and with the 16 discrete values shown in Figure 4b, the result is Figure 4c, which allows the
Canny operator to help find the edges of the particles. This results in Figure 4d, where an
improvement in the detection of the edges is appreciated, in comparison to the Gaussian
filter and Otssu binarization (Figure 2g), as well as a decrease in false edges or those
introduced by noise.
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2.4. Cutting of Regions

Once the binarization and the detection of the edges have been obtained, the regions
of interest are generated, in which it is possible to find hypothetical particles. To do this,
the original binarized image shown in Figure 5a was smoothed, using the opening and
closing morphological operators, generating smoother edges, as seen in Figure 5b. This
operation tends to increase the internal details of the threshold regions.
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Figure 5. (a) Binary image; (b) smoothed binary image.

As it can be appreciated in the red circles in Figure 5, the internal details are exalted for
a better fit with the edges. Subsequently, this image was eroded, and the gaps were filled
(Figure 6a), in order to then expand the edges generated by Canny (Figure 4d) and subtract
them from this image, generating regions in which it is possible to find the hypothetical
particles, as shown in Figure 6b.
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Figure 6. (a) Filled and eroded image; (b) binary image subtraction and Canny’s dilated edge.

2.5. Elimination of Over-Segmentation

Gray scale images can be transformed into 3D space. In this type of image, each pixel
is transformed into a 3D shape using its coordinate (x, y) as the position and its gray level
as the elevation. The 3D representation applied to the original image (Figure 4a) with a
gray level between 0 and 255 can be seen in Figure 7. The areas that represent peaks are
the regions where the hypothetical particles can be found, and the valleys or low areas are
regions where there is no interest for the meeting of particles. This interpretation can be
used to eliminate over-segmentation, since, as seen in the peaks, there are also valleys, but
they are clearly areas where it is possible to find a particle.
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Figure 7. 3D representation of an image.

An image contains multiple local minimum or maximum regions, but only one global
minimum and maximum. These maximum and minimum values are used for a morpho-
logical reconstruction, segmenting the image through the watershed transform.

To find these minima, the edges found by Sobel (Figure 8a, from Figure 3b) were used,
and the image segmented by Canny (Figure 6b) was used as a mask, resulting in Figure 8b.
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2.6. Watershed Transform

After applying the edge detection and over-segmentation elimination methods, with
the search for minima, the watershed transform was applied. To improve the performance
of the found regions, one of the advantages of this transform is that it only segments the
regions based on the images generated by the previous processes.

The watershed transform generates regions which are the limits or edges of the
“floods” that it affects. A clear example can be seen in Figure 9b, where the transform is
applied to Figure 9a, from Figure 8b.
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Figure 9. (a) Gradient image; (b) watershed transform.

As it can be seen in Figure 9b, there is already a first approximation of hypothetical
particles. However, it is still necessary to determine, in a better way, the shapes of the
regions. For this purpose, the resulting image was complemented (Figure 9b), and the
previous segmented image was subtracted (Figure 6a), generating new regions with a closer
approximation to the hypothetical particles to be characterized, as shown in Figure 10b.
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Figure 10. (a) Watershed result; (b) subtraction result.

In order to further refine the segmentation process, the watershed transform was
applied to the maxima found in the image resulting from the subtraction (Figure 10b), in
order to know, with a wide margin, the probable regions where a possible hypothetical
particle can be found, as seen in Figure 11.
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Figure 11. Watershed segmentation to establish regions of possible particles.

The resulting segmentation was multiplied with the previous resulting image (Figure 10b),
and the final segmentation was generated to process and extract the characteristic properties
(Figure 12a), coloring them for better identification (Figure 12b).
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2.7. Property Extraction

Once each of the hypothetical particle regions was segmented and extracted, we
proceeded to extract the characteristic properties of each of these regions. To do this, the
“region props” function was used, which was implemented in the Matlab image analysis
“Toolbox”. Each of these characteristics returns one or more values that correspond to the
measurements carried out, providing the pixels as a reference. In addition, each of these
measurements is multiplied by a conversion factor which indicates the measurement to be
calculated by the number of pixels.

2.8. Comparison Strategy

A quite complex problem when proposing algorithms that perform image processing
is to have a quantitative measurement of their performance, not only in terms of processing
time, which can be a relevant factor, but also in terms of the quality of the processing.

In addition, segregation occurs while particles are transported, as a consequence of
the conveyor belt vibrations. This phenomenon is well known from plant experience, and
it has recently been modeled and studied [31]. This particle segregation settles down small
particle sizes, while larger particles emerge to the surface of the bed, as shown in Figure 13.
This bias in the sampling procedure (2D imaging) oversamples large particles. This bias
allows a better characterization of larger particles, which is the main objective of the
technology, in order to detect classification failures (screening) and to reduce subsequent
operational problems downstream due to particle plunging in the secondary or tertiary
crushing stage.
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The problem validation is, fundamentally, in having something to compare the perfor-
mance with, that is, an ideal of the treated image, since, as shown many times, that does
not exist unless a person conducts it manually, for example, marking with a specific color
in the case of touching objects, as shown in Figure 13.

Figure 13 represents the conveyor belt in operation. To evaluate the performance
achieved by the segmentation, it is measured by classifying 2 classes of tests that help
measure the performance of the system [30]. These classes are constituted by the set of
segmented regions with defects, and those free of defects or that are regular; for this, the
“sensitivity” and “1-specificity” tests must be determined.

For each of the comparison cases, it is expected to obtain the following:

• FP: False positives. The number of points where a particle was found but it should
not have been.

• FN: False negatives. The number of points where a particle was not found but it
should have been.

• VP: True positives. The number of points in successful particles.
• VN: True negatives. The number of points that are not part of a particle but are

correctly detected.

These four parameters were used to conduct the sensitivity test, where its equation is:

Sn =
VP

VP + FN
(1)

Additionally, for the “1-specificity” test, the representative equation is:

1 − Sp =
FP

VN + FP
(2)

The first of the Sn indicators takes the value 1 in the case of recognition of all particle
points, and 0 in the case of not recognizing any particle points. This indicator shows if the
particles that are being searched were found or not, that is, it provides a measure for the
sensitivity of the algorithm that is being measured to the test case that is being applied.

The indicator 1 − Sp takes the value 0 in the case of a perfect recognition of the edge
points, varying up to 1 in the case of detecting any false positives correctly. Unlike the first
indicator, this shows the relative number of points that failed to be detected as edge points,
that is, it shows the precision of an algorithm in the test case that it is measuring.

This way of comparing can be questioned since, as shown many times, an algorithm,
in general, tends to partially fail, or, sometimes, it is not totally successful but works badly
in parts. In any case, this way of comparing is a practical and repeatable technique.

Figure 14 presents an example of the comparison method used to calculate the vari-
ables VP, VN, FP, and FN. In this way, the “sensitivity” and “1-specificity” can be calculated
when the values of each pixel of the two images are analyzed, and the comparison can
be conducted.
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2.9. Industrial testing

During the commercial validation period, an ANALITA sample prototype was in-
stalled to analyze the material carried by the conveyor belt E-135 of the secondary and
tertiary crushing plant. This belt is the intermediate point between the 2 crushers; therefore,
it is an important point of reference on the size and quality of the transported material.

It is worth mentioning that the tests were conducted with an old USB 1.0 data com-
munication standard, which does not provide all the features that its successors bring.
However, for test analysis, it is sufficient to see the behavior of the sensor in industrial sites.

Around 215 samples of photographic images were taken for a period of 30 min, which
provided an average material of 300 tons, as seen in Figure 15, which were analyzed and
compared with the curves of the percentage passing by weight of such belt.
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The revision of the tests carried out made it possible to formulate the observations
detailed in the following points.

2.10. Global Observations of the Test

The tests were compared against the results of historical samples, since, due to the
very nature of the mining operation, it was not possible to obtain a real contrast of the same
analyzed material (counter-sample).

It should be mentioned that the test methods differ in the way of obtaining the different
classes of material, mainly because of the sampling method with Tyler meshes. Although
they classify the material according to a diameter established by each type of mesh, its
representation of the passing percentage is based on the total weight of the particles,
retained by said mesh, contrary to how the classification is conducted by means of image
analysis, since this is carried out with respect to the amount that is retained by a certain
limit, with the number of total particles. For reasons of the density of the material under
study, the results obtained vary according to the margins of this.

To determine the distributions, 2 different classification methods were carried out.
First, the characteristic size that defines the ISO standard for granulometric sizes was
taken as a reference, and the passing percentages were counted according to the amount
under that size with respect to the total amount of particles. For the second method, the
percentiles were counted, and the corresponding sizes were derived.

The tests were carried out together with the same conveyor belt, without extracting
data from the control room or other PLC (programmable logic controller) control equipment.

3. Results and Discussions
3.1. Rosin Rammler Model Fitting

From a sequence of images collected from the conveyor belt (Figure 15), particles
were detected based on the algorithm proposed in this communication. The detection
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accuracy is 60–67%, as described and analyzed in Section 3.3. Geometrical properties were
determined for each detected particle, and size classification for the maximum length was
performed based on the geometric progression (Tyler mesh), with a size between 2000 and
100,000 microns. The particle size distribution was obtained by adjusting a mathematical
model representing the phenomenology of the crushing process. The Rosin Rammler
distribution model is the most accurate model for comminution processes in the case of
large particle sizes (crushers). The model was adjusted by applying minimum least squares
to the residual (model and maximum particle length frequency). The results for two types
of crushing stages (shown in Figure 15) are plotted in Figure 16.
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From this plot, the precision of the adjusted model shows that particle detection and
classification correspond to a phenomenon of particle comminution. The mean adjusting
error in Figure 16a is 1.6%, while in Figure 16b, it is 4.8%. The deviation in the range of
small particles, under 6000 microns, is a consequence of the limited detection capability for
6.35 mm particles. The lower detection capability can be fixed by increasing the camera
resolution. However, the main objective of this technology is to detect large particles sizes,
not the whole distribution. In this case, for large particles, the error of model fitting is lower
and suitable for application in troubleshooting detection.

3.2. Statistical Analysis

As it can be seen in Table 1, the correlation analysis of Analita vs. the sample average
reaches a correlation of 99.71% within the 100% and 20% range, which shows a very good
precision in size determinations within that range.

Table 1. Correlation between % passing weight and % passing amount.

- Analita Sample Average

Analita 1 -
Sample Average 0.99 1

To verify the reliability of the correlations, an analysis of variance was performed
to determine if there are differential effects between the Tyler mesh method and Analita
image analysis. It can be seen in Table 2 that the value obtained for the F statistic is less
than its critical error value (0.08 < 4.07), which shows that Analita is a valid method to
determine the distribution of granulometric size particles.
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Table 2. Analysis of variance.

Origin of
Variations

Sum of
Squares

Degrees of
Freedom

Average of
Squares F Probability Critical Value

for F

Between groups 0.01237656 1 0.01237656 0.08022357 0.77838609 4.07265366
Within groups 6.47958603 42 0.15427586 - - -

Total 6.49196259 43 - - - -

3.3. Performance Testing and Comparison

The class classification strategy [32] was used to measure sensor performance. For
this, a set of images of particles prepared and taken in the laboratory was used (samples 1
to 6). These were previously segmented and processed through Analita. Then, both were
compared, calculating each of the classification values, resulting in Table 3.

Table 3. Performance analysis in sensitivity and accuracy.

- False
Negatives False Positives True Negatives True Positives Sensitivity

(Sn) Accuracy (1 − Sp)

Sample 1 98,774 4628 56,848 152,058 60.62% 8%
Sample 2 69,703 2439 101,606 139,743 66.72% 2%
Sample 3 79,562 6817 81,159 149,043 65.20% 8%
Sample 4 84,110 5701 80,216 146,726 63.56% 7%
Sample 5 85,068 2181 65,858 160,609 65.37% 3%
Sample 6 149,874 0 68,333 94,618 38.70% 0%
Average 94,515 3628 75,670 140,466 60.03% 4.58%

On average, “Analita” has a detection sensitivity (accuracy) to particles of 60% in any
image, meaning it will be able to recognize an average of 60% of the particles. Additionally,
it has a maximum of almost 67%. Furthermore, the degree of precision of model fitting, on
average, is 4.6%, being in a better case 2%, as seen in sample 2.

These results are favorable for the algorithm since they allow the size of the particles
to be properly established. It is worth mentioning that sample 6 is an image produced on
a computer. When comparing this image, a worse result is appreciated compared to the
one taken from the camera, where it only reaches a sensitivity of 38.7%, but instead, it has
a perfect recognition of those particles, achieving a precision of 0% (perfect fit) due to no
false positive spots emerging.

With these data, it can be demonstrated that the system is capable of segmenting and
analyzing 60% of the particles captured by the images.

4. Conclusions and Future Remarks

A hardware and software system for online measurement of particle size distribution
based on image analysis was developed and implemented. This analyzer was created
by separating the process into stages, such as image acquisition and enhancement, noise
reduction and processing, edge detection, region cutting, over-segmentation elimination,
watershed transform application, and property characterization, which were finally used
to create the size distribution. The prototype and software demonstrated the technical
feasibility of using this system in industry. Tests were carried out that showed that the
sensor manages to be a suitable tool for particle size analysis.

With the comparison and performance strategy procedure, it was obtained as a result
that the sensitivity, that is, the average amount of particles that the analyzer manages to
detect in an image, is 60% of the particle area, and the precision (model fitting) is 5%. The
analyzer was validated at a mining company of Chile, where an average error of 4.78%
was obtained when the Rosin Rambler model was adjusted. Nevertheless, with the Rosin
Rammler modeling method, this error was reduced to 1.61% for a coarse material; therefore,
this device can be used to determine size distributions on conveyor belts. In addition to
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this, the most appropriate algorithms could be established to reduce noise, improve the
contour of the particles, and optimize the segmentation time through Matlab software.

This system also presents an opportunity for the use of machine learning or deep learn-
ing, which would substantially improve its performance and would have the advantage of
not needing such repeated adjustments.
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