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Abstract: Natural kamacite samples (Fe92.5Ni7.5) from a fragment of the Gibeon meteorite were
studied as a proxy material for terrestrial cores to examine phase transition kinetics under shock
compression for a range of different pressures up to 140 GPa. In situ time-resolved X-ray diffraction
(XRD) data were collected of a body-centered cubic (bcc) kamacite section that transforms to the high-
pressure hexagonal close-packed (hcp) phase with sub-nanosecond temporal resolution. The coarse-
grained crystal of kamacite rapidly transformed to highly oriented crystallites of the hcp phase
at maximum compression. The hcp phase persisted for as long as 9.5 ns following shock release.
Comparing the c/a ratio with previous static and dynamic work on Fe and Fe-rich Fe-Ni alloys, it was
found that some shots exhibit a larger than ideal c/a ratio, up to nearly 1.65. This work represents the
first time-resolved laser shock compression structural study of a natural iron meteorite, relevant for
understanding the dynamic material properties of metallic planetary bodies during impact events
and Earth’s core elasticity.

Keywords: ultrafast X-ray diffraction; laser shock compression; iron meteorite

1. Introduction

Iron meteorites provide unique samples of early solar system material and offer
insight into planetary processes such as impact events and core formation originating
from differentiated planetesimals bodies [1,2]. The Gibeon meteorite, an iron meteorite
that was discovered in 1836 after falling in Namibia, Africa [3], is studied here due to
its compositional similarity to the Earth’s core and commercially availability. It can be
used for studying how the physical properties of planetary core materials are affected by
dynamic processes that may have occurred during the formation and evolution—much
like the metallic asteroid 16-Psyche [4]. During cosmic hit-and-run collisions, planetesimals
are stripped of their mantle material and leave behind a residual metal core that later
could break up further through collisions with other planetary bodies [5]. In addition,
exploring the effects of shock metamorphism on iron meteorites, as characterized by mi-
crostructure and microchemistry studies, provides insight into impact events and thermal
history [6]. Understanding the structural properties of meteorites under shock compression
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and during the timescale of dynamic compression may provide insight into the evolution
of these asteroids.

The Gibeon meteorite is made of an Fe-rich Fe-Ni alloy and belongs to the most
common structural class for iron meteorites called octahedrites (group IVA). This meteorite
contains three major phases, depending on the Fe/Ni ratio in its composition: an Fe-
rich/Ni-poor ferrite phase (<7.5% Ni) known as kamacite, which has a body-centered cubic
(bcc) structure; a second major phase taenite, also called austenite, which can incorporate
up to 25% Ni, crystallizing in a face-centered cubic (fcc) structure [7,8]; and plessite,
the third major meteorite texture, which is a mixture of kamacite and taenite, exhibiting
fine grains between larger bands of pure taenite and kamacite phases. The kamacite phase
is located in the Widmanstätten lamellae [9], with plessite and taenite making up the
material between the lamellae, producing complex structural orientations and boundaries
between the bcc and fcc crystals [10]. This is the dominant microstructure seen in Gibeon
meteorite samples [11].

The phase diagram of Fe has been studied extensively as a function of pressure
and temperature and is of particular importance for Earth and planetary science as well
as for industry. It shows transitions between the bcc or fcc structures transforming to
a hexagonal close-packed (hcp) structure at high pressure, (e.g., [12–15]). Some reports
include investigations on the Fe-Ni binary system, demonstrating that the fcc–hcp boundary
is shifted toward higher pressure and lower temperature with respect to the pure Fe phase
diagram. Here, the Ni stabilizes the fcc structure, showing that the Ni content could be
crucial in stabilizing the two-phase region (fcc together with hcp) at extreme conditions [16].

The ratio of hcp crystal structure lattice parameters, c/a, is often tracked as a function of
pressure (P) or volume (V) and temperature (T) to provide insight into atomic packing and
examine deformation mechanisms in metals. At Earth’s inner core pressure–temperature
conditions, hcp iron is likely the stable phase. However, despite the importance of un-
derstanding the inner core structure and properties, the elastic constants of hcp iron at
relevant core conditions are still poorly constrained. The ideal c/a ratio of 1.633 is de-
rived from the assumption of non-interacting, identical hard spheres in an hcp structure.
One way to track the elasticity of hcp iron at extreme conditions, and in particular, elas-
tic anisotropy, is to measure departure from the ideal c/a ratio. For instance, alignment of
hcp crystallites could be responsible for the measured seismic anisotropy in Earth’s inner
core. Substantially larger c/a ratios of 1.7, for instance, have been predicted for hcp Fe at
inner core conditions [17], although static experiments do not agree with those predic-
tions [18]. The axial c/a ratio can be used to characterize hcp Fe elasticity under static [17] or
dynamic [19] compression. Similar to static compression measurements, dynamic compres-
sion experiments and simulations on polycrystalline bcc Fe show shock-induced transitions
to hcp Fe and also reveal a c/a ratio below the ideal value [19]. This could be associated with
defects, such as dislocations, or grain boundaries that act as sources of stress on the time
scale of the measurements (i.e., nanoseconds) [19]. Furthermore, it has been demonstrated
that hcp Fe-Ni and Fe-Ni-Si alloys only have slightly higher c/a ratios (less than 1% higher)
than pure hcp Fe for the same pressure range [20] but that are all still lower than the ideal
value. Tracking this parameter could provide insight into which important underlying
physical or chemical properties (e.g., starting structure, composition, and microstructure
like crystal orientation or texture) and/or processes (e.g., static vs. dynamic compression,
including strain rate) dictate the deformation response in meteoritic material—including
the typical timescales of phase transformation of meteorites exposed to extreme conditions.

High-pressure dynamic compression experiments represent a unique way to recreate
dynamic processes such as asteroid/planetary collisions in the lab and make it possible to
track the lattice-level response of materials using in situ time-resolved X-ray diffraction [21,22].
Dynamic compression techniques also provide access to combined high-pressure and high-
temperature states of a material in concert with characterization via ultrafast X-ray probes
that more traditional static compression techniques cannot access, e.g., [23]. Coupling the
laser-induced shock compression experiments with reliable structural studies to elucidate
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phase transitions that occur at short timescales of hundreds of picoseconds to nanoseconds
requires an ultrafast and tunable X-ray source such as X-ray free-electron lasers (XFELs)
that can operate on femtosecond timescales with a high repetition rate, e.g., [24–26].

Herein, the first time-resolved structural study of a laser-shock-compressed natural
meteorite is presented. Phase transformation kinetics of Fe92.5Ni7.5 natural kamacite was
investigated from the Gibeon meteorite using in situ time-resolved X-ray diffraction and
compared to previous static compression work on related systems.

2. Materials and Methods
2.1. Sample Preparation and Characterization

The starting material was a hand sample fragment (0.4 cm × 2 cm × 3 cm) of the
Gibeon meteorite (Figure 1a) that was characterized by an electron microprobe to determine
the precise metallic composition before shock compression (Figure 1b). Electron backscatter
diffraction (EBSD, Philips XL30 FEG SEM using TSL Data Collection & Analysis software,
MST-8, LANL, Los Alamos, NM, USA) was also performed to determine crystal orientations
(Supplementary Materials, Figure S1). Individual, large-grained crystals of kamacite (bcc)
are clear in the Widmanstätten lamellae, with Ni-rich taenite (fcc) and plessite concentrated
in the grain boundaries. The hand sample fragment was sectioned and double-side parallel-
polished into 34-µm-thick foils. Here, kamacite was isolated for primary investigation of
this study due to its similarity to Earth’s core composition. Individual kamacite lamellae
were cut along the perimeter and diced into 1 mm × 2 mm foils. The composition within
the selected lamellae was Fe92.5Ni7.5, with taenite and plessite (Ni content up to 25%)
concentrated in the grain boundaries. The samples were aligned such that the length
of the lamellae was perpendicular to the shock propagation direction. Dupont Kapton
CB plastic film, 54 µm thick, was glued (glue layer thickness: 2–5 µm) to the meteorite
foil, serving as the laser ablation layer. This plastic smooths out any inhomogeneities
(e.g., hot spots) in the drive laser to generate a planar, uniform shock front with respect to
the X-ray probed volume.
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Figure 1. (a) Photomicrograph of Gibeon meteorite starting material. (b) Electron microprobe map 
showing the Ni distribution (in wt %) in a typical portion of the sample. On average, the Ni content 
within the grains is 7.5%, while the grain boundaries are Ni rich (up to 25%). 

Figure 1. (a) Photomicrograph of Gibeon meteorite starting material. (b) Electron microprobe map
showing the Ni distribution (in wt %) in a typical portion of the sample. On average, the Ni content
within the grains is 7.5%, while the grain boundaries are Ni rich (up to 25%).

2.2. Experimental Setup

A schematic of the setup for the dynamic compression experiments carried out at
the Matter at Extreme Conditions (MEC) end station is shown in Figure 2. The XFEL
probe was generated by the Linac Coherent Light Source (LCLS) at the SLAC National
Accelerator Laboratory [27] through a quasi-monochromatic beam with high-energy res-
olution (∆E/E~0.2%), fully transverse coherent at 6.9 keV, with a 60 fs temporal duration
and an average of 1012 photons per pulse. The XFEL probe beam was 20 µm in diameter
on the sample. Phase plates on the optical drive laser, a frequency-doubled Nd: Glass laser
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system (527 nm), set a 176-µm-diameter laser spot on target. This was used to achieve
a focal spot intensity of ~1012 W/cm2 over a 12 ns quasi-flat top temporal pulse profile.
The energy of the drive laser was varied from 6 to 40 J to achieve different peak pres-
sures in the sample. The angle between the target normal and the XFEL probe was 65◦.
The optical laser and X-ray beam were spatially overlapped and operated in single-shot
mode with absolute time zero corresponding to the overlap of their leading edges of the
pulse. Prior to each laser shot, an X-ray-only pattern was first collected to confirm the
starting sample area corresponding to the expected bcc structure. For each shot, a time
delay (∆t) was selected for the XFEL pulse relative to the optical laser pulse with a jitter of
0.5 ns. This ∆t was verified by oscilloscope traces captured for each shot. The pump-probe
delay scans at several nanosecond intervals enabled collection of X-ray diffraction (XRD)
time series, where the 2-dimensional (2D) patterns were captured by Cornell–SLAC Pixel
Array Detectors (CSPADs) constructed of individual application-specific integrated circuits
(ASICs) [28]. The combined azimuthal angle coverage was 180◦. One target was shot per
selected ∆t.
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(LCLS), an X-ray free-electron laser (XFEL) at the SLAC National Accelerator Laboratory. An MEC long-pulse laser was 
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Figure 2. Experimental setup at the Matter in Extreme Conditions (MEC) end station with the Linac Coherent Light Source
(LCLS), an X-ray free-electron laser (XFEL) at the SLAC National Accelerator Laboratory. An MEC long-pulse laser was
used to generate and launch a shock wave, via laser ablation, in the plastic (labeled ‘CH’ in the schematic), which then
traversed the meteorite foil. At discrete time delays (∆t) during the shockwave propagation, the XFEL was used to probe the
lattice structure by measuring XRD in transmission. Inset: cross section of the sample package. Meteorite sample thickness
was 34 ± 0.5 µm.

3. Results
3.1. X-ray Diffraction

Calibration for the sample-to-detector distance and orientation of the CSPADs were
performed using internally developed software [29] and Dioptas [30]. Peak fitting was
performed using Fityk [31]. An image of raw data from the CSPADs projected onto a single
plane is shown in Figure 3a. The XRD patterns of the shock-compressed material showed
new peaks identified as (100), (002), and (101) for high-pressure hcp Fe [18,32] (Figure 3b).
This hcp Fe manifested as large spots with uneven intensity distribution in the XRD about
the azimuthal coverage. A possible explanation for this diffraction character is highly
oriented crystallites of hcp Fe, rather than a few large-grained crystals, since previous
shock compression work on Fe demonstrated nano-crystalline hcp Fe formation at ul-
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trafast timescales [13]. Due to the large angle between the shock propagation direction
and the incident X-ray beam, some small volume (less than a few µm3) of unshocked
sample was recorded in the data, identified as ambient-pressure bcc Fe. For each shot,
the hcp (100), (002), and (101) peak positions were used to determine the lattice param-
eters and density (ρ), adjusted to include 7.5% Ni. A compositionally close Fe90Ni10
Hugoniot [33] was used to determine pressure for the measured density for in-shock
data. Data collected after the cessation of the drive laser, and/or when the compressive
wave reached the edge of the sample, were on release and no longer represented an on-
Hugoniot measurement. Here, the quasi-isentropic release path from our peak pressure
was estimated by extrapolating pressure and temperature from previously reported post-
shock studies on iron [34,35]; see Supplemental Discussion, Section 1. Using the measured
density from our XRD, we used these extrapolated release paths to constrain the pressure.
Pressure uncertainty was derived from standard error propagation from XRD peak fitting.
Velocimetry records were also collected corroborating pressure estimates within 8% using
the velocity interferometry system for any reflector (VISAR) diagnostic. However, only tran-
sit times were available due to the low reflectivities of the natural samples. LiF as a VISAR
window material was not used. Representative VISAR data are shown in Supplementary
Materials, Figure S2.
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Figure 3. Representative raw X-ray diffraction data for a sample shocked to 42 GPa. (a) 2D diffraction image from
CSPADs projected onto a single plane. (b) Caked pattern of (a) displayed as an s function of the 2θ and azimuthal angle.
The blue diamonds and dashed lines show the hcp peaks for the shock-compressed high-pressure phase. The red line and
triangle indicate uncompressed starting bcc Fe. The large spots and uneven intensity distribution indicate the sample is
coarse-grained and highly textured.

Two types of XRD data series were collected, a pressure series and a time series on
shock release from a peak pressure. A pressure series consisted of varied drive laser param-
eters to achieve a suite of peak pressure states, ~40 GPa to above 140 GPa, on the Hugoniot
where the sample was probed at the state of maximum compressed sample volume, ~6.5 ns
after onset of compression, for our target design. The 2D XRD data were recorded for each
pressure. After a steady shock was no longer supported (i.e., the drive laser turned off or
the shock front reached the end of the sample at the vacuum interface), the sample under-
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went quasi-isentropic release, during which time the pressure and temperature decreased
from some peak state. XRD patterns were collected at time delays of >6.5 ns to examine
the metastability kinetics of hcp Fe. In this regime, though not totally released back to the
starting bcc structure, the sample was still within the hcp phase stability region.

Spotty, high-intensity features in the 2D XRD made the hcp peaks challenging to
identify. The hcp Fe transformation agreed with previous static compression experiments
on pure Fe and Fe-rich Fe-Ni alloys up to 30% [36]. As expected, when Ni was added,
the unit cell contracted to accommodate the slightly smaller Ni atoms (~1.24 Å) compared
to the Fe atoms (~1.26 Å) [37]. As the drive laser energy increased, a suite of high-pressure
states on the Hugoniot could be achieved. On compression, the hcp Fe peak positions
shifted to a higher 2θ (or smaller d-spacing), as seen in azimuthally integrated XRD patterns
at pressures ~40 GPa to above 140 GPa (Figure 4a).
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and dark blue indicate hcp (100), hcp (002), and hcp (101) peaks, respectively. The red diamonds show the unshocked bcc
(110) peak from the starting material at ambient pressure. (a) Pressure series for separate runs collected at full compression.
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generating a 113 GPa peak pressure, but different XFEL time delays: at nearly full compression (bottom trace) and on release
(top trace) at ~25 GPa.

XRD data were also collected during shock release. After cessation of the drive laser
and/or reaching the edge of the sample, peak compression was no longer supported and
lower pressures and temperature could be accessed. Successively longer XFEL time delays
probed the lattice structure as it reverted from the high-pressure phase back to the low-
pressure state. The material eventually reached ambient conditions. An example of this
shock release XRD data (Figure 4b) still showed retention of the hcp Fe phase at a pressure
lower than the peak compression state.

3.2. Axial c/a Ratio

After identifying the hcp Fe peaks in the XRD for each run, least-squares fitting was
performed to determine the hexagonal lattice parameters, a and c. Studying the c/a ratio
as a function of P, ρ, and T is a common approach to track changes in elasticity of hexago-
nal metals at extreme conditions. As such, the axial c/a ratio was calculated and plotted
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against volume to compare to previous static work on Fe-Ni alloys and previous dynamic
compression of single- and poly-crystalline Fe (Figure 5); see Supplemental Discussion,
Section 2. Previous static compression experiments on pure hcp Fe and Fe90Ni10 stud-
ied the effects of pressure, temperature, and composition on the axial ratio, in particu-
lar revealing an increase in c/a with increasing volume [38]. Most notably, these previ-
ous studies showed that the c/a ratio stays below the ideal 1.63 and is, on average, 1.61.
Similarly, a shock compression study on polycrystalline Fe found that the axial ratio stays
at 1.61 ± 0.01 regardless of pressure (up to 80 GPa) [19]. However, dynamic compression
of single-crystal bcc Fe shocked along the [100] axis could produce a c/a that exceeds
1.7. Molecular dynamics simulations [39] show that in a compression regime imposing
uniaxial strain, spacing between the atoms in the direction orthogonal to the shock front
cannot change, and there can be a lack of plasticity from generation and propagation of
dislocations. Specifically, the high strain rate and short timescale of these experiments
inhibit defect and dislocation motion, such that the interplanar spacing of the (011) planes,
which are perpendicular to the shock propagation direction, are completely unchanged
during compression. In this case, the [100] of a bcc lattice remains less compressed and
larger than expected as it becomes the c-axis in an hcp lattice and makes it possible to get
an apparently large c/a ratio [40]. Our experimental data show a distribution in the c/a
ratio—some instances with larger than, similar to, or less than the ideal ratio. The XRD
data giving larger than ideal c/a ratios are cases where the c-axis is 2–3% larger and the
a-axis is comparable to values of the same pressure under quasi-hydrostatic compression
in a diamond-anvil cell [18]. This large c-axis value is consistent with model predictions,
e.g., [39] and is the first experimental demonstration of a c/a ratio > 1.63.
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Figure 5. Comparison of the axial c/a ratios determined in this study (black circles) to the ideal c/a ratio of 1.633 (dashed
black line) and to previous static and dynamic compression work on Fe and Fe-rich Fe-Ni alloys [17]. Solid, colored lines
are plotted to show the trend line for different groups from individual datasets from [17]. The shaded polygons show the
spread of the data: shock-compressed polycrystalline Fe (gray) from [19], static-compressed polycrystalline Fe (pink) and
Fe90Ni10 (blue) from datasets compiled in [38], pure Fe from [14,41–48], and Fe-Ni alloys from [36,47,49,50]. We plotted the
static-compressed Fe and Fe90Ni10 data that fell in a similar temperature region as our study, 1000–3000 K. Error bars were
calculated by propagating the uncertainty of the least-squares fit for hcp lattice parameters. The error bars on the data at
5.12 and 5.35 cm3 are smaller than the symbol size on the plot.
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4. Discussion

Results from this work were compared with previous data within the same tem-
perature range as this study (1000–3000 K). Our c/a data show a large distribution as a
function of volume, with some values near previous work, e.g., [17] or near the ideal 1.63
and even above or below previous trends by as much as 3% (Figure 5). Though the data
distribution from all previous static experiments falls below the ideal c/a ratio, we present
the first experimental observation of a high c/a, at 1.65, which is even higher than pre-
vious ratios determined during shock compression on polycrystalline Fe. This suggests
that the requirements for achieving a higher than ideal c/a ratio include starting with an
oriented single crystal or highly textured polycrystalline bcc sample and using dynamic
compression to transform the bcc to the hcp phase. Though the starting orientation of
the exsolution lamellae remained constant shot to shot, meaning the long edge of the
lamellae was always placed parallel to the top of the sample holder, specific control of
intra-grain orientation for these natural large-grained samples was not possible. This could
explain the wide distribution in the c/a values for the Gibeon meteorite—some crystals
may have been oriented with the bcc [100] parallel to the shock propagation direction, as in
Run, reaching c/a = 1.65, whereas other samples may have had grains oriented along the
body diagonal or at high angles from the [100] direction. Recent work [51] systematically
tracked the starting orientation in single-crystal Fe during laser-driven shock compres-
sion, notably documenting higher than ideal c/a ratios as well. Continued effort in this
area is needed to potentially reveal how crystalline orientation trends support proposed
deformation mechanisms [13,39], as previously reported for Fe single crystals [52].

The pure Fe Hugoniot plotted on an equilibrium P–T phase diagram was used to
compare our data with previous work, including the phase boundaries for pure Fe and
the two-phase (fcc + hcp) region from a previous study on Fe90.3Ni9.7 [36] (Figure 6).
The hcp–fcc boundary on the pure Fe phase diagram shifts to higher pressures and lower
temperatures with increasing Ni content. We examined the composition dependence,
ranging from pure Fe to Fe90Ni10, for the Hugoniot distribution across P–ρ and P–V,
finding little change in our measured pressure regime, i.e., scatter in the datasets for each
Ni content composition was within the scatter for pure Fe Hugoniot data [32,33]. We did not
measure temperature directly and therefore used the Fe Hugoniot to estimate temperature.
For XRD data collected after peak compression, on release ~7–16 ns, we estimated isentropic
release paths using previously reported post-shock temperatures [34,35]. This helped to
identify where, on the phase diagram, we were probing the lattice structure.

The hcp structure persisted to peak pressures on the Hugoniot, as expected.
Interestingly, the hcp structure also remained in existence well past peak compression states
to time delays as long as 16 ns. Here, samples follow an isentropic release path, similar to a
natural impact or large-body collision process, with relevance to Psyche. However, it is
important to consider that the starting conditions of our sample may be admittedly dif-
ferent than a natural iron meteorite in space or a metallic asteroid in our solar system
at different points in the solar system evolution. For instance, starting temperatures can
differ—our samples started at 300 K in this experiment, whereas initial temperatures of
asteroids (e.g., Psyche) could have been substantially higher in the early history of the
solar system. At a later time, the temperatures of iron asteroids in the main belt can be
significantly colder than room temperature on Earth.

It is remarkable to study the physical properties of natural Fe-Ni samples at extreme
conditions to obtain insight into the rheological behavior of metal-rich and remanent core
planetary bodies for modeling impacts, collisions, and planet-forming processes. The next
steps include a systematic examination of oriented single-crystal Fe to further reveal
deformation mechanisms from c/a studies and the examination of further microstructure
complexities, such as variable and increased porosity and multiphase response during a
dynamic compression event.
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Figure 6. Phase diagram of Fe and results of shock-compressed Gibeon meteorite, kamacite lamellae, Fe92.5Ni7.5 on the
Fe Hugoniot from this study. Shock compression data (blue circles) plotted on a pure Fe phase diagram: bcc boundaries
from [53], melt curve from [14], along with the Fe90.3Ni9.7 phase boundary from [36] (pink section). XRD data collected at
full compression are plotted along the Hugoniot for pure Fe (green curve) [54]. Guides for the eye of release isentropes
(dashed lines) are derived from post-shock temperatures [34,35]. Our temperature uncertainties are 20%.
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Release Temperature Estimate.
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