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Abstract: Shear deformation of a solid-fluid, two-phase material induces a fluid segregation process
that produces fluid-enriched bands and fluid-depleted regions, and a crystallographic preferred
orientation (CPO) characterized by girdles of [100] and [001] axes sub-parallel to the shear plane and a
cluster of [010] axes sub-normal to the shear plane, namely the AG-type fabric. Based on experiments
of two-phase aggregates of olivine + basalt, a two-phase flow theory and a CPO formation model
were established to explain these microstructures. Here, we investigate the microstructure in a
two-phase aggregate with supercritical CO2 as the fluid phase and examine the theory and model,
to evaluate differences in rheological properties due to the presence of CO2 or basaltic melt. We
conducted high-temperature and high-pressure shear deformed experiments at 1 GPa and 1100 ◦C in
a Griggs-type apparatus on samples made of olivine + dolomite, which decomposed into carbonate
melt and CO2 at experimental conditions. After deformation, CO2 segregation and an AG-type
fabric were observed in these CO2-bearing samples, similar to basaltic melt-bearing samples. An
SPO-induce CPO model was used to explain to the formation of the fabric. Our results suggest that
the influences of CO2 as a fluid phase on the microstructure of a two-phase olivine aggregate is similar
to that of basaltic melt and can be explained by the CPO formation model for the solid-fluid system.

Keywords: olivine aggregates; CO2; crystallographic preferred orientation; AG-type fabric

1. Introduction

In the mantle of the Earth, deformation often occurs in regions where melt is produced
and transported, such as plate boundaries, plumes, intra-plate rifts, and boundary layers.
Deformation and melt transport, including melt migration and segregation, are strongly
coupled in partially molten rocks, as demonstrated by field observations [1], laboratory
experiments [2], and theoretical analyses [3]. Significantly, melt spontaneously localizes
into melt-enriched bands oriented ∼20◦ to the shear plane, antithetic to the shear direction
in partially molten rocks deformed in general and torsional shear [4–7]. The formation
of melt-enriched bands is predicted and modeled by the two-phase flow theory with
anisotropic viscosity [3,8,9]. Moreover, shear deformation of partially molten, olivine
aggregates produces a crystallographic preferred orientation (CPO), which is characterized
by a cluster of [010] axes sub-normal to the shear plane and girdles of [100] and [001] axes
sub-parallel to the shear plane [2,10]. This CPO, often referred to as AG-type fabric [11],
can form due to the development of a shape preferred orientation (SPO), where the grain
shape is crystallographically controlled in partially molten olivine aggregates [10].

Deformation-induced microstructural features in partially molten rocks, primarily
the re-distribution of melt and the formation of CPOs as introduced above, have mostly
been investigated in the solid-fluid system consisting of olivine and basaltic melt [12–14]
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or other silicate melt [7]. These fluid phases have low dihedral angles, 30–50◦ [15–17],
relatively high viscosities (>100 Pa·s for basaltic melt at 1473 K [7]), and high solubility
for the solid phase [18,19]. These properties of the fluid phases were incorporated in the
development of previous theory for melt distribution and mechanism for CPO formation.
However, whether the theory and mechanism apply to fluid phases with very different
properties is yet to be examined. Supercritical carbon dioxide (CO2), a fluid state of carbon
dioxide at or above its critical temperature and pressure, is a fluid phase suitable for the
examination. A laboratory study found dihedral angles for olivine + CO2-rich fluid of
~80–90◦ [20]. By constrast, the dihedral angle of olivine + carbonate melt is much lower
(~30◦) [21]. A model extrapolatd from laboratory measurements suggests that the viscosity
of CO2 is lower than 0.1 mPa·s at 1 GPa and 900 K [22]. Conductivity experiments carried
out on peridotite showed that adding carbonate melt significantly increases the electrical
conductivity [23], indicating that the presence of carbonate melt enhances the transport
properties. Moreover, CO2 and carbonate melt are also important for the dynamics of the
mantle.

With the mantle being the largest carbon reservoir, carbon cycles between the mantle
and the atmosphere via volcanic activity and subduction [24], where intense deformation
occurs. In the upper mantle, carbon exists as CO2 or carbonate melt [25]. At certain
geological conditions, carbonate melt will decompose into CO2, which can be held stable in
the lithosphere [26]. Thus, the influence of CO2 and carbonate melt on the microstructures
in olivine aggregates not only aids the understanding of the microstructural evolution of
partially molten rocks, but also benefits the study of carbon transportation in the mantle.

In the present paper, we present results from laboratory deformation experiments
on olivine + CO2 aggregates at high temperature and pressure. Detailed microstructural
analyses of sheared samples provide observations on the distribution of CO2 and the
development of CPOs. In this contribution, we focus on the CPOs. A comparison between
CPOs observed in this study and those reported in olivine + basalt samples reveal the
mechanism for CPO formation in this solid-fluid, two-phase system.

2. Experimental Methods
2.1. Sample Preparation

Sample powders contained 88 wt% olivine, 3 wt% clinopyroxene (CPx, with ~8 wt%
of orthopyroxene; [27]) and 9 wt% dolomite. Olivine and CPx crystals were hand-picked
from a lherzolite xenolith (Damaping, Hebei, China; [28]). The composition of the dolomite
is CaMg(CO3)2. Olivine, CPx, and dolomite were separately ground in an agate motor and
sieved to a particle size of <32 µm. Powders of olivine and CPx were subsequently baked
in a furnace for 20 h at 850 ◦C and an oxygen fugacity set by flowing CO and CO2 at a ratio
of 1:1, which is within the stability field of natural olivine (f O2 = 10−14 Pa). Then powders
were mechanically mixed.

Each sample was prepared by cold-pressing ~0.1 g of the mixture into a nickel can
between two alumina pistons beveled at 45◦. The details of the experimental assembly are
illustrated in Figure 1a. Before hot-pressing, cold-pressed samples were stored in a vacuum
oven at 110 ◦C for more than 6 h. Cold-pressed samples were then hot-pressed at 1100 ◦C
and a confining pressure of 1 GPa for 17–18 h in a Griggs-type apparatus.

2.2. Deformation Experiments

Immediately after hot-pressing, samples were deformed at 1100 ◦C and 1 GPa. Two
experiments (W2264 and W2266) were carried out at a constant axial displacement rate of
7.5 × 10−5 mm/s to a shear strain of γ ≈ 3. After deformation, one experiment (W2266)
was then annealed for 10 h at 1100 ◦C and 1 GPa. A strain-rate-stepping experiment
(W2263) was carried out at axial displacement rates of 7.5 × 10−5 mm/s, 1.9 × 10−5 mm/s,
1.9 × 10−4 mm/s, and 7.5 × 10−5 mm/s to a total shear strain of γ ≈ 5.
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Figure 1. (a) A sketch of the experimental assembly. (b) A photo of a deformed sample. Blisters on the surface of the Ni
jacket are marked by white arrows. (c) A photo of a sample cut through the profile plane. (d) Schematic illustration of the
shear plane and profile plane.

At the end of each experiment, the sample was first quenched to 800 ◦C and then
the temperature was decreased to 300 ◦C in less than 10 min. The confining pressure
was decreased while maintaining a differential stress of less than 100 MPa at 300 ◦C to
minimize unloading cracks. When the confining pressure decreased to 500 MPa, we started
to decrease the temperature again. With the confining pressure decreasing to 0 MPa, the
temperature was gradually lowered to the temperature of the cooling water (19 ◦C).

2.3. Mechanical Data Processing

Axial displacement, load, temperature and confining pressure data were collected
every second in our apparatus. The axial displacement rate was multiplied by

√
2 and

divided by the measured thickness of samples, to obtain the shear strain rate. Equivalent
strain rate was obtained by dividing the shear strain rate by

√
3. The thinning of specimens

resulted in a small increase of shear strain rate with an imposed constant axial displacement
rate. We obtained a linear correlation between the specimen thickness and shear strain,
which was incorporated into the calculation of shear strain rate. Comparison of hot-pressed
and deformed specimens indicates that the sample thickness decreased from ~1.3 mm
to ~0.9 mm after a shear strain of γ = 3, which increased the shear strain rate by 40%
(Appendix A, Figure A1).

Axial load was converted to axial differential stress by dividing the axial load by the
area of the horizontal cross section of the pistons. Axial differential stresses were corrected
for force contributions from assembly friction by subtracting the friction estimated by
an intercept of two linear fits of force-displacement curves just before and just after the
specimen “hit point” [29]. Shear stress was calculated by dividing the differential stress by
2. Equivalent stress was then obtained by applying a factor of

√
3 to the shear stress. The

accuracy of stress data is estimated to be ±5 MPa.

2.4. Microstructure Analysis

After deformation, the nickel jacket was peeled off, and the alumina pistons were cut
off. Each sample was cut perpendicular to the shear plane (referred to as “profile plane”,
as illustrated in Figure 1d). The sample section was dry-polished on a series of diamond
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lapping films down to 0.5 µm. To protect the deformation microstructures of the highly
porous samples, water, ethanol or other fluids were not used during mechanical polishing.
After dry polishing, the sample was polished with 0.02 µm SiO2 non-crystallizing colloidal
silica for ~4 h. In two samples (W2263 and W2264), a section was also cut parallel to the
shear plane (Figure 1d) and polished in the same manner as described above.

Polished sections were prepared for analysis by electron backscatter diffraction (EBSD).
To obtain crystallographic orientation data, high-resolution orientation maps with a step
size of 0.5 µm were collected for all sections using a Zeiss Sigma field emission SEM
equipped with an Oxford Instruments Nordlys Nano EBSD detector (State Key Laboratory
of Earthquake Dynamics, Institute of geology China Earthquake Administration, Beijing,
China) and a Tescan MIRA3 LMU field emission scanning electron microscope equipped
with an Oxford Instruments NordlysMax2 EBSD detector (Department of Earth and En-
vironmental Sciences, Boston College, Boston, USA) (only for W2264). Raw orientation
data were processed with HKL Channel5 software, including removal of single misindexed
points, assigning unindexed points the average orientation of neighboring grains, and
removal of systematic misindexed points, as outlined in previous studies [30,31].

Grains were constructed from processed orientation data using the MTEX toolbox [32]
in MATLAB. Grain boundaries were drawn where neighboring pixel misorientations
exceeded 10◦. No extrapolation of orientation data was applied in MTEX, because the data
were already processed by the HKL Channel5 software. Grain size was determined by
applying a factor of 4/π [33] to the equivalent diameter of a circle with the area of each
grain in cross section. In the analysis of the average grain size for a map, grains containing
less than four pixels or lying on the edge of the map were excluded.

To analyze the grain shape, each grain was fit with an ellipse to obtain its aspect ratio
and the orientation of the long axis using MTEX toolbox [32]. Grains with an area of less
than 2 µm2 were excluded, because they did not contain enough pixels to derive reliable
values of aspect ratio and slope of the ellipse. Then, the shape preferred orientation (SPO)
was illustrated by a rose diagram, and the distribution of aspect ratios was illustrated by a
histogram. An analysis of the SPOs in grains grouped with respect to their crystallographic
orientations was performed following the methods described in Qi et al. [10] in the profile
and shear planes.

Orientation distributions were generated from the mean orientations of at least 500
grains with a half-width angle of 10◦ using the MTEX toolbox in MATLAB [34,35]. To
facilitate comparison with previous studies, orientation data were rotated so that the sense
of shear is top to the right. To quantify the strength of the CPOs, both the J-index [36] and
the M-index [37] were used.

After EBSD analysis, the sample was etched in phosphoric acid for 45 min to highlight
grain boundaries in preparation for analysis by scanning electron microscopy (SEM). After
coating the sections with >8 nm thick carbon, backscattered electron images were collected
using a Zeiss Sigma field emission scanning electron microscope at an accelerating voltage
of 15 kV. The CO2 + melt fractions for each sample were estimated in SEM images by
assuming these phases occupied all the pockets.

2.5. Composition Analysis

Electron microprobe analyses (EPMA) were performed on a SXFive. Samples were
analyzed using an accelerating voltage of 15 kV, a beam current of 20 nA and a focused
beam. The CO2 in the melts may be estimated by difference between 100% and the observed
microprobe totals [38].

3. Results
3.1. Starting Materials

In our samples, 9 wt% dolomite was added to the olivine aggregates as a CO2 source.
At our experimental conditions (1100 ◦C and 1 GPa), dolomite thermally decomposes
and melts, producing supercritical CO2 and carbonate melt [39,40]. After samples (both
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hot-pressed and deformed) were removed from the apparatus, many “blisters” started
to appear on the surface of the Ni jacket (Figure 1b). Piercing through the Ni jacket with
the sample submerged in ethanol, gas bubbles were released from the blisters for several
minutes—indicating CO2 was successfully encapsuled in the assembly by the jacket at our
experimental conditions.

The presence of CO2 was also demonstrated by the microstructures presented in
Figure 2a,b. Voids (Figure 2b) located at grain boundaries and junctions are interpreted
as CO2 fluid, in accordance with the results of [41]. Carbonate melt was homogeneously
distributed in the hot-pressed sample. Most CO2 and melt pockets were located at three-
and four-grain junctions and grain boundaries of the solid phase, with no melt-preferred
orientation observed. Individual pockets appeared to be made of either the melt phase or
the subcritical CO2. Owing to the delicate nature of these pore structures, we cannot rule
out that some of the larger pores were “pluck-outs”. By image analysis, the porosity in the
hot-pressed sample was approximately 7%, including the CO2, melt, and pluck-outs.
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The grain size of the hot-pressed sample roughly fit to a lognormal distribution, with a
mean grain size of 5.7 µm, as illustrated in Figure 2c. The CPO was approximately random
with an M-index of 0.017, as illustrated in Figure 2d. For water content, the polycrystal
of the hot-pressed sample (including grain boundaries) contained approximately 9 ppm
H2O by weight (FTIR result presented in Appendix A). Chemical compositions of olivine,
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CPx, and carbonate melt were also analyzed by electron microprobe (see Table 1 in the
Appendix A for details and Appendix A).

3.2. Mechanical Data

The sample conditions and deformation conditions including the imposed strain rate,
stress, and strain at the end of each experiment are summarized in Table 1. As described
in the Methods section, samples were hot-pressed and then immediately deformed. After
deformation, the sample was flattened normal to the imposed shear direction. Therefore,
the strain rate of an experiment was calculated using the imposed displacement rate and
interpolation of the sample thickness. No slip between pistons and samples was observed
(Figure 1c).

Table 1. Summary of experiments.

No. Experiment
Type

Measured
Porosity

Axial
Displacement
Rate (mm/s)

Equivalent
Strain

Rate (/s)

Equivalent
Stress
(MPa)

Shear
Strain

Equivalent
Strain

Grain Size *
(µm)

Thickness *
(mm)

W2261 Hot-
pressing 7.0% 5.7

W2263 Rate
stepping

5.8% 7.5 × 10−5 6.0 × 10−5 131 1.8 1.0
1.9 × 10−5 1.6 × 10−5 61 3.0 1.7
1.9 × 10−4 1.9 × 10−4 237 4.4 2.5
7.5 × 10−5 8.0 × 10−5 147 4.9 2.8 4.5 0.74

W2264 Constant
rate 7.2% 7.5 × 10−5 5.9 × 10−5 178 3.2 1.8 5.8 0.88

W2266 Annealing 6.5% 7.5 × 10−5 6.7 × 10−5 174 3.2 1.8 7.3 0.77

*: Grain size and thickness were measured after the experiment.

Graphs of equivalent stress plotted against equivalent strain are presented in Figure 3.
All of the curves for the experiments showed a rapid stress rise to a peak stress at an
approximate equivalent strain of ~0.2, followed by a steep drop to a more slowly changing
stress with increasing strain. The experiments shown in Figure 3a were carried out at the
same equivalent strain rate of ~6.0 × 10−5 s−1 and the equivalent stresses were around
175 MPa. The shear strain calculated using the displacement measure with the external
linear variable displacement transducer (LVDT) (γ = 3.2) is consistent with the offset of
the piston (Figure 1c) after correction for the contribution of the elastic loading of column.
Four strain-rate steps were performed during the rate-stepping experiment. During each
strain-rate step, when the stress reached a steady state, the strain rate was changed to the
next step. Although strain-rate steps were taken in an experiment, a flow law was not
derived based on only four data points, because the number of parameters in a flow law
will render the problem underdetermined; a discussion of a flow law for our aggregates
consisting of olivine, CPx, CO2 and carbonate melt is beyond the scope of this paper.
Nonetheless, we note that the apparent stress exponent, n = 1.8, based on data from
experiment W2263, is similar to that reported by Qi et al [10], suggesting a significant
component of dislocation creep.

3.3. Distribution of CO2

Here, detailed microstructural observations of a deformed sample (W2264) are pre-
sented. As illustrated in Figure 4, CO2 and carbonate melt were highlighted as pores in
the micrographs of the etched polished section. The size and distribution of the pores
illustrates the redistribution of CO2 induced by shear deformation. The size of the pores,
that is, the size of CO2 and melt pockets, ranged from a couple of microns to close to the
lower limit of the olivine grain size. The smaller pores, probably single CO2 pockets, were
sparsely and homogenously distributed at olivine three- and four-grain junctions and along
the olivine grain boundaries as isolated “bubbles”. The presence of CO2 pocket at triple
junctions can arise because of a relatively high fraction of CO2 (>5%), which is consistent
with the calculations of von Bargen and Waff [42].
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the CO2-depleted region in between. The darkest regions with bright rims are CO2 pockets/layers, but they may appear to 
Figure 4. BSE micrographs of the etched surface of a deformed sample, W2264. (a) A close look at CO2-enriched bands and
the CO2-depleted region in between. The darkest regions with bright rims are CO2 pockets/layers, but they may appear to
be larger due to etching. (b) A broad view of the deformed sample. The red frame indicates where the region of (a) was
picked. The diopside (light phase) is set in the olivine grains (gray). The tubules (black) are formerly CO2-filled.

The distribution of CO2 and melt was dramatically changed after deformation. CO2
segregated into high-porosity bands, that is, CO2-enriched bands, orienting ~20◦ from the
shear plane, synthetic to the imposed shear direction. CO2-enriched bands, which occurred
across the entire section, were separated by low-porosity regions, that is, CO2-depleted
regions. Within the bands, pores were interconnected. The CO2-enriched bands were
~30 µm wide, while the CO2-depleted regions were ~100 µm wide.

3.4. Crystallographic Preferred Orientation and Shape Preferred Orientation

To examine the crystallographic preferred orientation and shape preferred orientation
of olivine grains in our CO2-bearing samples, pole figures highlighting the CPOs and
rose diagrams quantifying the SPOs are presented in Figure 5. In both deformed samples,
CPOs are characterized by girdles of [100] and [001] axes sub-parallel to the shear direction,
and strong point maxima of [010] axes sub-perpendicular to the shear plane, namely the
AG-type fabric [11]. The fabric is rotated by 20 to 30◦, antithetic to the shear direction, from
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[010] axes being normal to the shear plane. With equivalent strain increasing from 1.8 to
2.8, the strength of the fabric increased slightly, with the J-index increasing from 2.39 to
2.77 and the M-index increasing from 0.135 to 0.158. In both deformed samples, the long
axes of olivine grains align 27 ± 3◦ from the shear plane, antithetic to the shear direction.
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Figure 5. CPOs and SPOs in the profile plane of 3 samples. From top to bottom are the sample deformed at a constant
rate, W2264, the sample deformed at different strain rate steps, W2263, and the sample annealed for 10 h after deformation
W2266. Pole figures and rose diagrams were processed from grains with grain areas greater than 2 µm2 and aspect ratios
greater than 1.2. The J-index and M-index were calculated for each crystallographic fabric. The angle between the SPO and
the shear direction is noted on each rose diagram.

The annealed sample was very different from the two deformed samples in terms of
CPO and SPO. The CPO was characterized by a diffused cluster of [010] axes normal to the
shear plane, and almost random distributed [100] and [001] axes. This CPO was very weak,
with a J-index of 1.49 and an M-index of 0.033. The long axes of olivine grains aligned
roughly in the shear plane.

3.5. CPOs in and out of a CO2-Enriched Band

To examine the influence of the CO2-enriched bands on CPO formation, pole figures
were processed from a CO2-enriched band region and a CO2-depleted non-band region
in the profile plane deformed sample. The comparison shown in Figure 6 of the pole
figures from these two regions reveals that the general orientations and distributions of
crystallographic axes are little different in the two regions. In terms of the J-indexes and
M-indexes, the strength of the crystallographic fabric in the band region is somewhat
stronger than that in the entire region in Figure 6, and accordingly, the non-band region
shows a weaker CPO than the entire region. In addition, the girdles of [100] and [001]
axes, the strong [010] (maximum normal to the girdle), and the rotation of the fabric are
similar in the entire region and non-band region. The 30◦ back-rotation is observed in both
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entire region and non-band regions. By contrast, the back-rotation in the band regions
is ~0◦, indicating that the deformation kinematics are different between non-band and
band regions.
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section of deformed sample (W2264). (a) Electron image. (b) The orientation map is colored by the aspect ratios of grains.
White pixels are unindexed points. The parallelogram-shaped region noted as “band” is a CO2-enriched band. The
parallelogram-shaped region noted as “non-band” is a CO2-depleted region. (c) From top to bottom, the three sets of pole
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of MUDs are listed for each pole figure. The sense of shear for the pole figures is top to the right. J- and M-indexes are
included for each region.

4. Discussion
4.1. The Formation of CO2-Enriched Bands

Segregation of the fluid phase occurred during deformation of our samples, as il-
lustrated in Figure 4. Fluid/melt-enriched bands formed in a similar manner to those
reported by Holtzman [2] and King et al. [5]. In contrast to previous studies, in which
basaltic melt was the fluid phase, in our samples, the fluid phase consisted of carbonate
melt and supercritical CO2. The dihedral angle of CO2 was ~80–90◦, too large to form an
interconnected fluid network. However, the dihedral angle of carbonate melt was much
smaller, at ~30◦, which is sufficient for the formation of an interconnected fluid network
and thus the migration of the fluid phase. However, if only carbonate melt could migrate,
CO2 should maintain a roughly uniform distribution. As illustrated in Figure 4, not many
CO2 pores existed in the fluid-depleted regions, suggesting CO2 may migrate together
with carbonate melt. Further investigations into such two-phase systems are necessary to
examine this interpretation [43].

4.2. A Comparison with the CPOs in Olivine + Basalt

Our observations on sheared samples revealed an AG-type fabric in CO2-bearing
olivine aggregates. Compared with the A-type fabric, typically observed in anhydrous
olivine aggregates sheared at similar conditions to this study [44], the AG-type fabric is
characterized by two key features: (1) girdles of [100] and [001] axes at a low angle to the
shear plane, with a strong [010] maximum normal to the girdle, and (2) antithetic rotation
of the fabric with respect to the shear plane. The CPO is very similar to the CPOs observed
in sheared partially molten rocks of olivine and basalt [4,10], except for the fact that the
weakly aligned, shear-direction-normal [100] axes in the shear plane were not observed in
our samples. Qi et al. [10] proposed a melt-assisted, SPO-induced CPO model to explain
the formation of the CPOs in the olivine + basalt samples. Based on the similarities and
differences in the CPOs between sheared CO2-bearing olivine and basaltic melt-bearing
olivine, in the following discussions, we examine the applicability of the model to our
samples and explain the formation of the CPOs.



Minerals 2021, 11, 493 10 of 17

4.3. Crystal Habit of Olivine Grains

One key in the SPO-induced CPO model is that the grain shape is crystallographically
controlled [45]. Studies of the morphology of olivine grains in an ultramafic melt demon-
strate a crystal habit with grain shapes of which the longest are parallel to the [001] axis
and the shortest are parallel to the [010] direction [46], which was observed in the partially
molten samples analyzed by Qi et al. [10]. However, the crystal habit of olivine grains in
the CO2-bearing samples, that is, a solid-fluid system with supercritical CO2 and carbonate
melt as the fluid phase, is unknown.

To explore the morphology of olivine grains in the CO2-bearing samples, grain shape
and crystallographic orientation were examined for two orthogonal surfaces (profile and
shear planes) on a CO2-bearing sample sheared to a strain of 1.8. In Figure 7, the orienta-
tions of crystallographic axes of grains selected based on their grain shape in the section
are examined with pole figures, rose diagrams of the orientations of long axes of grains,
and histograms of aspect ratios. In the pole figures, light gray girdles and clusters in the
background represent the overall CPO observed in this section. The yellow stars indicate
the reference orientation for the subset of grains used to make the other plots in this panel.
Blue and red dots in the pole figures indicate the orientations of the selected subset of
grains. The orientations of these grains lie within 30◦ of the target orientation. Each grain
in a subset is fitted with an ellipse with its long-axis orientation plotted in the rose diagram
and aspect ratio plotted in the histogram. This information permits a comparison of the
preferred orientations of crystallographic axes with the orientation of long axes of grains.

In the profile plane, [010] axes form strong point maxima sub-perpendicular to the
shear plane, so comparisons were only obtained between the relative lengths of grains
along the [001] and [010] axes (Figure 7a), and between the relative lengths of grains along
the [100] and [010] axes (Figure 7b). In Figure 7a, [001] axes align subparallel to the shear
direction in this subset, and the SPO reveals that the orientation of the long axes is in
the same direction as the [001] axes. Therefore, grains are longer along [001] axes than
along [010] axes. Similarly, Figure 7b indicates that grains are longer along [100] axes than
along [010] axes. In the shear plane (Figure 7c,d) the relative lengths along the [100] and
[001] axes are compared. In both panels, grain shape exhibits a bimodal distribution. The
primary mode corresponds to long [001] axes, while the secondary mode corresponds to
elongated [100] axes. This result suggests that grains have similar lengths along [100] and
[001] axes, with more grains slightly longer parallel to [001] axes.

Note that this crystal habit is different from that reported in Miyazaki et al. [45], in
which forsterite exhibited elongation along the [100] axis, or Qi et al. [10], in which San
Carlos olivine exhibited elongation along the [001] axis. These differences suggest that the
olivine crystal habit can vary with the composition of the fluid phase and the deformation
conditions.

4.4. SPO-Induced CPO Model

CPO can be induced by a crystallographically controlled SPO [45]. As elaborated in
Qi et al. [10], during simple shear, the long axes of elongated grains are rotated towards
the shear direction, which produces an SPO. Then, if the elongated grain shape is crys-
tallographically controlled, the SPO results in a CPO. As demonstrated in the previous
subsection, olivine grains are on average shortest along [010] axes and similar in length
along [100] and [001] axes. Simple shear of these oblate ellipsoidal grains would align the
shortest axes, the [010] axes, normal to the local shear plane, resulting in a cluster of [010]
axes, and homogeneously distribute the two similarly long axes, the [100] and [001] axes,
in the local shear plane, resulting in girdles of [100] and [001] axes. The 30◦ back-rotation
observed in both CPO and SPO is consistent with the SPO-induced CPO model.

4.5. Local Deformation Geometry

Fluid phase segregation occurred in our sheared CO2-bearing samples, in a very
similar way to the melt segregation that occurred in sheared olivine + basalt samples. When
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stress-driven melt segregation occurred, an anastomosing network of melt-enriched bands
formed at an angle to the bulk shear plane, synthetic to the bulk shear direction. These melt-
enriched low-viscosity bands deformed more easily than melt-depleted regions. Because
of strain incompatibility at the sample ends, the imposed shear requires the non-band
regions to accommodate strain at an angle to the bulk shear plane, rotated antithetically to
the imposed shear direction [47]. Similarly, this strain partitioning process must apply to
sheared CO2-bearing samples, where stress-driven phase segregation occurred. Therefore,
the counterclockwise rotation of [010] axes from the normal to the shear plane is due to
strain partitioning between the CO2-enriched and CO2-depleted regions. The [010] axes
are normal to the local shear plane, and [100] and [001] axes lie in the local shear plane
in the CO2-depleted portions of a sample, as the bands only take a small fraction of the
total volume.
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Figure 7. For the deformed sample, W2264, comparison of orientation of crystallographic axes with the direction of the long
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used in this analysis.

4.6. CPO Modification during Annealing

Grain size and the CPO of the annealed sample were compared with those of the
deformed samples in Table 1 and Figure 5. After annealing, the grain size increased from
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5.8 µm to 7.3 µm (increased by 26%) in 10 h. Grain growth in this sample was much slower
than that in the samples of Boneh et al. [48], in whose study 200 µm grains were observed
after only four hours of annealing. We infer that the distribution of CO2 pockets in the
deformed samples (Figure 4) probably inhibits the rate of grain boundary migration, thus
limiting the grain size in the annealed sample. CO2-enriched bands were less obvious in
the annealed sample (Appendix A).

The CPO of the annealed CO2-bearing samples was modified significantly in terms
of its strength and its orientation. The M-index decreased from 0.135 to 0.033 after 10 h
of annealing, and the decrease rate was significantly faster than that reported by Boneh
et al. [48]. Compared to the deformed samples, the cluster of the [010] axes rotated to
become perpendicular to the shear plane. Shape preferred orientation also changed after
annealing, with the long axes of olivine grains aligning roughly parallel to the shear
direction (Figure 5). The rotation of the CPO correlated with the rotation of the SPO. These
data are insufficient to explain the changes in the microstructure during annealing, which
were dramatically different from the changes in melt-free samples, but the alteration of
the interfacial energy due to the existence of fluid/melt phase may significantly affect the
annealing behavior.

5. Conclusions

We investigated the microstructure in sheared CO2-bearing olivine aggregates. Stress-
driven fluid segregation occurred, producing CO2-enriched bands at ~20◦ to the shear
plane, synthetic to the shear direction. An AG-type fabric was found in sheared samples.
[100] and [001] axes formed girdles sub-parallel to the shear plane, and [010] axes formed
a strong cluster sub-normal to the shear plane. A strong correlation existed between the
orientation of the gridles and the SPO, indicating that this CPO was developed due to
the SPO-induced CPO model. Our study suggests that the CPO formation mechanism
established in the solid-fluid system of olivine + basalt also applies to the solid-fluid system
of olivine + CO2. Degassing of CO2 from peridotite is an important part of global CO2
cycling. Our results provide constraints on the microstructures effect of CO2 on peridotite
and the relative of CPO and SPO.
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to the data from Zhao et al. [27]. 

Water contents in the polycrystalline aggregates were determined by Fourier trans-
form infrared (FTIR) spectroscopy in transmission. To calculate hydroxyl concentration, 
we integrated spectra between 3650 cm−1 and 3000 cm−1, which covered infrared hydroxyl 
stretching bands for Olivine, CPx, and OPx [27,49–51]. 

We examine the hot-pressed sample to obtained water contents; the thickness of the 
sample wafer was 0.3 mm. The polycrystal of the hot-pressed sample (including grain 
boundaries) contained ~9 ppm H2O by weight (~150 H/106 Si), indicating that olivine ag-
gregates are nominally anhydrous prepared through this procedure. FTIR results are pre-
sented in Figure A2. 

Figure A1. The thickness of the specimens as a function of the shear strain. The result includes data
from different CO2 contents (4%, 7%, 14%) and CO2-free dunite. Gray circles are data from Zhao
et al. [27]. The green line is a least square fit to data from this work; the black line is a least square fit
to the data from Zhao et al. [27].

Water contents in the polycrystalline aggregates were determined by Fourier transform
infrared (FTIR) spectroscopy in transmission. To calculate hydroxyl concentration, we
integrated spectra between 3650 cm−1 and 3000 cm−1, which covered infrared hydroxyl
stretching bands for Olivine, CPx, and OPx [27,49–51].

We examine the hot-pressed sample to obtained water contents; the thickness of the
sample wafer was 0.3 mm. The polycrystal of the hot-pressed sample (including grain
boundaries) contained ~9 ppm H2O by weight (~150 H/106 Si), indicating that olivine
aggregates are nominally anhydrous prepared through this procedure. FTIR results are
presented in Figure A2.
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specimen 

W2261-diopside 13.34 30.36 5.12 47.19 3.14 0.40 0.37 0.27 0.00 0.12 0.19 0.00 100.49 
Hot-pressed 

specimen 
Light 1: is the light triple junctions of Figure 2b; Dark 2: is the dark gray melt of Figure 2a,b; Dark 3: is the dark gray melt 
of deformed sample not etched; Light 4: is the light gray melt between sample and piston of Figure A3c. 

Figure A2. FTIR spectra from hot-pressed polycrystalline sample (W2261). The characteristic OH
stretching bands in Ol (3613, 3572, 3521, 3409, 3356, 3267, 3160 cm−1) were presented by solid
red lines.

EPMA shows the composition of the starting sample and deformed sample. The
results of Table 1 show the composition of the dark gray melt in Figure 2a,b and the light
gray melt at Figure 2b, and the light gray melt between sample and piston (Figure A3).
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Images of Figure A3 obtained from an un-etched deformed sample. The light phase at
triple junctions is Ca-rich carbonate melt and the dark phase is Mg-rich carbonate melt.
Figure A3a,b show reaction of the sample with the alumina piston.

Table 1. Summary of the EPMA.

No. CaO MgO FeO SiO2 Al2O3 Cr2O3 TiO2 Na2O K2O MnO NiO CO2 Total Comment

W2261-light
1-gray-melt

48.17 7.21 1.54 5.84 0.00 0.00 0.00 0.01 0.01 0.03 0.05 37.17 100.00 Hot-pressed specimen

W2261-dark
2-gray-melt 1.17 36.89 5.88 5.66 0.03 0.00 0.03 0.05 0.00 0.08 0.14 50.08 100.00 Hot-pressed specimen

W2264-dark
3-gray-melt 1.42 45.45 7.75 38.42 0.60 0.20 0.02 0.03 0.00 0.09 0.37 5.64 99.99 Deformed specimen

W2264-light
4-gray-melt

23.98 19.99 2.13 48.93 6.30 0.02 0.09 0.10 0.00 0.04 0.13 0.00 101.75 Deformed specimen

Dolomite 34.40 23.08 0.02 −0.09 0.00 0.01 −0.01 0.00 0.01 0.00 −0.02 42.28 99.88 Dolomite

W2261-olivine 0.13 49.24 8.60 40.04 0.01 0.02 0.02 −0.01 −0.01 0.13 0.43 1.34 99.96 Hot-pressed specimen

W2261-diopside 13.34 30.36 5.12 47.19 3.14 0.40 0.37 0.27 0.00 0.12 0.19 0.00 100.49 Hot-pressed specimen

Light 1: is the light triple junctions of Figure 2b; Dark 2: is the dark gray melt of Figure 2a,b; Dark 3: is the dark gray melt of deformed
sample not etched; Light 4: is the light gray melt between sample and piston of Figure A3c.Minerals 2021, 11, x FOR PEER REVIEW 15 of 18 
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Figure A5. (a) The BSE images of the annealed sample (W2261, Figure 2). The majority of the grey phase is olivine. (b)
The oblate and rotund voids are CO2 (formerly CO2-filled) with higher magnification. The voids at three- and four-grain
junctions are interpreted to be CO2. The red frame in (a) indicates where the region of (b) is picked.
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