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Abstract: In hard rock mining, sensor-based sorting can be applied as a pre-concentration method 
before the material enters the mill. X-ray transmission sensors have been explored in mining since 
1972. Sorting ore of acceptable grade and waste material before processing at the mill can reduce 
the amount of tailings per unit of valuable metal in the mining operation and have many economic 
benefits. Ore samples used in this paper are from a polymetallic carbonate replacement deposit 
(gold-silver-lead-zinc sulphide) in Southeast Europe. This paper focuses on how the Dual-Energy 
X-ray Transmission (DE-XRT) data is generated and used for ore characterization and sortability for 
this sulphide ore. The method used in the DE-XRT analysis in this project is based on the dual-
material decomposition method, which is used in the medical industry for radiology. This technique 
can distinguish sulphides from non-sulphides. However, the correlation developed between the 
DE-XRT response and the metal content is lacking. As a result, the DE-XRT response can only clas-
sify the material effectively but cannot reliably predict the metal content. 
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1. Introduction 
Ore sorting is a sensor-based sorting and pre-concentration technology that is imple-

mented before the processing stage and used to reduce the amount of low-grade ore and 
waste reporting to the mill feed. X-ray transmission sensors have been explored in mining 
since 1972, as described by Jenkinson et al. [1] This technology is widely used at airports 
for baggage inspection and the basic principles have been adopted as a sorting technique 
[2] This technology can also be utilized to recover ore from previously uneconomic waste 
and reduce the mill energy and reagent consumption by reducing the mass of ore being 
processed by the mill [3]. In greenfield projects, sensor-based sorting can further provide 
value by lowering processing capital costs [4]. The decline of available high-grade ore-
bodies and decreasing head grades has further increased the attractiveness of pre-concen-
tration, and, subsequently, ore sorting [5]. 

A critical parameter in obtaining the DE-XRT result is developing the H-L (High and 
Low energy) curves that determine the relative density of a given pixel based on its X-ray 
attenuation. In this paper, a dual-material decomposition method will be used to deter-
mine the sulphide material from the waste material. This study aims to assess the effec-
tiveness of DE-XRT to sort the sulphides from the non-sulphides. Since the ore is very 
heterogeneous, different rock types were identified to account for the mineral composi-
tion of various pieces of rock. Hence, the test work was designed to assess each rock rep-
resenting different mineralogy or rock type. Density measurements using DE-XRT were 
used to determine average atomic density by measuring the X-ray attenuation for each 
specimen used in the study, respectively. Both silver and gold assays are determined by 
the fire assay method, and the rest of the elements are determined by the Induction Cou-
pled Plasma Method (ICP). 
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In this study, the equivalent gold grade is used to assess the value of the sample since 
it is a polymetallic deposit. The equivalent gold grade is calculated by summarizing the 
dollar value of gold, silver, zinc, and lead, divided by the price of gold. The commodity 
price used in this study to calculate equivalent gold grade is 1300 $/oz of Au, 17.5 $/oz of 
Ag, 5 $/lb of Mo, 1.25 $/lb of Zn and 1.05 $/lb of Pb. 

2. Materials and Methods 
Three main parameters were recorded for each rock specimen in this experiment: 

rock classification, DE-XRT output, and assays. It is critical to ensure that the same sample 
is assessed for each parameter to obtain correct data for correlation analysis. Five hundred 
rock specimens were used in this study, and the particle size ranged between +50 mm to 
100 mm. The initial sample consisted of run-of-mine (ROM) material, which included fines 
and coarse particles not suitable for particle sorting. The ROM material was screened to 
the desired particle size between 50 mm and 100 mm and washed where the five hundred 
representative samples were selected. 

2.1. Material Classification 
Individual rock specimen has been classified into two classes based on visual obser-

vations of mineralization. When classifying rock types into the two classes, two factors are 
considered for this ore deposit. Initially, visual parameters are considered where rock 
specimens are observed showing mineralization; those with silver or golden tints are con-
sidered sulphides, while the dull and whitish-looking rocks are considered non-sulphides 
(mostly carbonates in this case). Also, the density of the samples aids the classification, 
where the heavier sample of the same rock size is classified as a sulphide. Examples of 
sulphide and non-sulphide specimens are illustrated in Figure 1. 

 
Figure 1. Non-sulphides (left) and sulphides (right). 

2.2. Dual-Energy X-ray Transmission (DE-XRT) 
The Dual-Energy X-ray Transmission (DE-XRT) technology measures the X-ray at-

tenuation according to Beer’s Law for monochromatic narrow X-ray beams [6], which is 
expressed in the equation below. The final µ coefficient will be a function of radiation 
energy in addition to the properties like material density and thickness [7]. 𝐻 = 𝑒ିఓಹ௧ (1) 𝐿 = 𝑒ିఓಽ௧ (2) 𝝁𝑯: Mass attenuation coefficient for High Energy (𝑐𝑚ଶ/𝑔) 𝝁𝑳: Mass attenuation coefficient for Low Energy (𝑐𝑚ଶ/𝑔) 
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𝒕: Mass thickness (𝑔/𝑐𝑚ଶ) 
The relationship between the high- and low-energy X-ray attenuation can be ex-

pressed by rearranging Equations (1) and (2), which is the basis of H-L curve generation: 𝐻 = 𝐿ഋಹഋಽ   (3) 

In this experiment, COMEX’s MSX-400-VL-XR system installed at the University of 
British Columbia (UBC) was used and illustrated in Figure 2. The equipment has an X-ray 
sensor with a 1.5 mm resolution and a belt width of 51 cm travelling at a speed of 0.5 m/s. 
In order to minimize the error from equipment malfunction such as miscalibrated detec-
tors, the machine is maintained regularly and necessary repair would need to be com-
pleted [8]. 

 
Figure 2. COMEX’s MSX-400-VL-XR System in UBC’s Coal and Mineral Processing Laboratory. 

Using the COMEX MSX-400-VL-XR system, H-L curves are generated. The low-en-
ergy X-ray response represents the x-axis, and the high-energy X-ray response represents 
the y-axis. To use the dual-material decomposition method, two distinct material types 
were chosen. Figure 3 illustrates a visual representation of the dual-material decomposi-
tion method where Material 1 and Material 2 are vectors and where material can be rep-
resented as a sum of Material 1 and Material 2. 

 
Figure 3. The material decomposition method using vector addition [9]. 



Minerals 2021, 11, 490 4 of 11 
 

 

𝑀ሬሬ⃗ =  𝐴 + 𝐵ሬ⃗   (4) 𝑤ℎ𝑒𝑟𝑒 𝑀ሬሬ⃗  𝑖𝑠 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙  𝐴 𝑖𝑠 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑇𝑦𝑝𝑒 1 𝐵ሬ⃗  𝑖𝑠 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑇𝑦𝑝𝑒 2 
 

In this study, the two types of material chosen for validation were dictated by the 
amount of equivalent gold content in the specimen. The rock with an equivalent gold 
grade in the top fifth percentile (sulphide) and the bottom fifth percentile (non-sulphide) 
was chosen to generate the characteristic function in the H-L plot. The average grade of 
the entire sample was 13.47 g/t gold, 80.32 g/t silver, 2.58% lead, and 2.66% zinc. The unit 
of 1 g/t was equivalent to 1 ppm since there are one million grams in one metric ton. The 
rocks classified in the top fifth percentile of metal content can have gold grades as high as 
60 g/t, silver grades of 200 g/t, lead grades of 7%, or zinc grades of 4%. 

The relative density number for each pixel is determined by finding the magnitude 
of each vector from sulphides and non-sulphides. The relative density value, in this case, 
represents the percentage of being rock referred to as Material type 1, which is expressed 
in the equation below. 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝐴𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝐴 + 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝐵ሬ⃗  (5) 

𝐴 =  𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑇𝑦𝑝𝑒 1 𝐵ሬ⃗ =  𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑇𝑦𝑝𝑒 2 
 

2.3. Assays 
Upon completion of the XRT tests, the rocks were then sent for assaying. The assay 

determined the amount of valuable metals present in every rock using 30 g of a sample 
for fire assay. Additionally, a 33-element Inductively Coupled Plasma Atomic Emission 
Spectroscopy (ICP-AES,MS Analytical, Lanley,B.C., Canada was conducted on the indi-
vidual samples. 

3. Results and Discussion 
In this sample, the ore and waste have been determined by the amount of particular 

mineralization visible macroscopically (by the naked eye). Of the five hundred rock spec-
imens, 218 (43.6%) samples were visually classified as non-sulphides, and the remaining 
282 (46.4%) samples were sulphides. 

Figure 4 illustrates the distribution of six different assays for all samples, with rock 
types differentiated by colour (orange sulphides; blue non-sulphides). The histograms 
show that sulphide material tends to have a much higher grade for gold, silver, zinc, and 
lead, while non-sulphide materials tend to have much higher calcium content. 
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Figure 4. Histogram of six different assays based on rock type. 

As illustrated in Figure 5, there are two distinct sets of materials. Sulphides (orange 
dots) have high equivalent gold grades as well as high sulphur content, while the non-
sulphides have low equivalent gold grades and low sulphur content. This infers that there 
are distinct characteristics between the sulphide material and non-sulphide material. 
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Figure 5. Scatter plot of equivalent gold assay versus ICP sulphur grade. Eq. Au—Equivalent 
Gold. 

3.1. DE-XRT Image Processing 
Based on the H-L curve generated using the top and bottom 5 % of the samples with 

the highest equivalent gold grade, each specimen produced an image with relative density 
values representing each pixel. Three samples selected in Table 1 illustrate the difference 
between high, medium and low sulphur content samples (indicating sulphide content). 
The pixel values range from 0 to 1, where 0 is represented as blue, and 1 is represented as 
yellow. 
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Table 1. Comparison of three different specimens with low, medium, and high sulphur content. 

Sample Number 260 493 459 

Images 

 

 
 

 
 

 
 

Au Assay (g/t) 0.34 6.93 41.19 
Ag Assay (g/t) 0.50 40.00 347.00 
Pb Assay (%) 0.12 1.32 10.01 
Zn Assay (%) 0.22 3.68 6.05 

Eq. Au Assay (g/t) 0.55 10.62 55.39 
As ICP (%) 0.21 7.92 10.00 
Ca ICP (%) 27.09 8.87 0.09 
Fe ICP (%) 0.72 7.37 23.86 
Mg ICP (%) 1.65 4.54 0.03 
Mn ICP (%) 2.25 1.40 0.10 

S ICP (%) 0.53 4.60 10.00 
Average Relative Density 0.52 0.54 0.91 

In Table 1, there are distinct characteristics between these three samples. The colours 
represent each pixel’s relative density, ranging from 0 (dark blue) to 1 (yellow). The high 
relative density indicates that the sample is more likely to be a sulphide material. Valuable 
metals, iron, and sulphur are proportionally correlated, while the calcium content is in-
versely correlated. The high calcium content indicates that the waste material is composed 
of carbonates, while the sulphides have high iron, sulphur, and valuable metal content. 

It is easy to distinguish the high sulphur samples from the low sulphur samples 
based on the relative XRT density distribution as illustrated in Figure 6. This suggests that 
taking an average value of the relative density of an entire sample can be effective in sep-
arating the sulphide from the non-sulphide rocks. 

Figure 7 illustrates the top and bottom 10% of the samples based on equivalent 
gold grade. It is apparent that below 0.6 relative density, samples have significantly 
lower grade value. Also, there are two very distinct clusters of points that are distin-
guished by the rock type. 
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Figure 6. Histogram of relative XRT-generated density for high, medium and low sulphur sam-
ples. 

 
Figure 7. Scatter plot of equivalent gold assay versus average relative density. 

Figure 8 plots all samples where similar characteristics can be observed, as illustrated 
in Figure 7. The distribution of the y-axis shown on the right side of the graph demon-
strates the potential for removing more than 90% of the non-sulphide material below a 0.6 
average relative density. However, when using the logarithmic scale to visualize the 
trends (Figure 8) when the relative density is below 0.6, there is no correlation between 
relative density and equivalent Au. This makes grade prediction difficult by using XRT. 
The tentative range of grades can be estimated from the scatter plot of equivalent gold 
assay average as shown in Figure 7, but this is not accurate enough for proper grades 
prediction.  
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Figure 8. Scatter plot of equivalent gold assay versus average relative density-logarithmic scale. 

3.2. Sortability Analysis 
To assess the sortability, the average relative density value for each rock is put in 

order from the highest value to the lowest value. The metal recovery can then be calcu-
lated at a given mass yield. The mass is assumed to be equal for all particles in this analy-
sis. 

To plot a sortability curve derived from DE-XRT, each specimen is ranked by the 
lowest average relative density and the highest relative density. Then, the recovery curve 
is generated using the modelled metal grade of each rock specimen, as illustrated in Fig-
ure 8. The line graphs represent the cumulative mass yield and cumulative metal recovery 
(y-axis on the right side), while the bar graph represents the individual equivalent gold 
grade based on the descending order of average relative density for each particle. 

As shown in Figure 9, 90% of sulphides can be recovered in approximately 55% of 
the mass. Furthermore, more than 95% of equivalent gold can be recovered in the same 
amount of mass. It is also important to note that at a 55% mass yield, the rate of calcium 
recovery almost doubles. This concludes that more carbonates are starting to be recovered 
when the 55% mass of rocks is being collected into the concentrate. 
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Figure 9. Scatter plot of equivalent gold assay versus average relative density. 

4. Conclusions 
In this study, the effectiveness of DE-XRT in characterizing material type for sensor-

based sorting was explored. The new to mineral processing approach of a dual-material 
decomposition method was used to the DE-XRT image analysis. 

For the studied ore, it was shown that DE-XRT sorting technology can recover 90% 
of the sulphides with a 55% mass yield. Although the DE-XRT was unable to accurately 
predict the grade of the rock based on the average relative density of the sample, it was 
able to separate sulphides from non-sulphides effectively. There is potential for applying 
regression methods for the sulphide rocks since there is a linear correlation between 
equivalent gold assay and average relative atomic density above 0.6, shown in Figure 7. 

In this work, the dual-material decomposition method using linear components has 
been discussed, where the individual pixel’s relative density is averaged for the entire 
sample. However, rather than averaging all the pixels within each sample, clustering 
methods can evaluate for nuggety mineralization. The clustering method can identify a 
cluster of pixels that share similar characteristics. For example, a quartz vein hosts a gold 
deposit where the amount of quartz vein in the sample can indicate the concentration of 
gold. An example of characterization criteria is that if more than fifty pixels of the nearest 
neighbour have a relative density value greater than 100, the sample can be characterized 
as an ore specimen. Furthermore, machine learning applications such as supervised learn-
ing can be used to train the classification of rock types based on a much larger set of sam-
ples. 

In summary, the DE-XRT is an effective sensor that can be used to differentiate sul-
phides from waste. The dual-material decomposition method made it possible to use the 
characteristics of the sulphide materials and the non-sulphide materials to determine the 
composition of the sulphide. 
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acquisition, Y.Z. and M.E.H. All authors have read and agreed to the published version of the man-
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