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Abstract: The sequential extraction procedure is used to reconstruct the processes of redistribution of
uranium isotopes in the mineral phases of the aquifer of the Vendian sandy-argillaceous deposits
developed in the coastal territory of the European North of Russia. This aquifer has large resources of
drinking and mineral groundwater which, however, are used in extremely limited quantities. This is
due to the very complex nature of the hydrochemical conditions, and uranium-isotopic methods are
used to clarify these conditions. The following mineral phases of core samples were characterized:
adsorbed trace materials and carbonate minerals; ferrihydrate, amorphous minerals of Fe, Al and
Si, and secondary U minerals; crystalline iron minerals; clay and some refractory minerals; and all
remaining resistant minerals. The most resistant minerals, whose fraction ranges from 70.58 to 96.4%,
have a minimum average uranium concentration of 0.47 ppm. This uranium is practically conserved
in the rock, as a result of which the average ratio of its 234U:238U isotopes is close to equilibrium. In
the remaining fractions, uranium is redistributed by groundwater along their flow lines from recharge
areas in watersheds to areas of discharge into river valleys. Its maximum concentration (12.89 ppm)
measurement is carried out by coprecipitation with iron hydroxides, then the uranium is adsorbed
and precipitated with carbonates (9.14 ppm). The average 234U:238U is maximum in adsorbed trace
materials and carbonate minerals (2.39 ± 0.36) and is close to that in fresh groundwater (2.8 ± 0.42).
It is also increased in the amorphous minerals of Fe (1.53 ± 0.23). In general, there is a dependence of
the 234U:238U activity ratio in rock on the degree of participation of groundwater in the deposition of
hydrogenic uranium isotopes into the cracks and pores of these rocks. The results obtained contribute
to the refinement of such a parameter as the retardation factor, which is necessary for understanding
the processes of migration and concentration of uranium in sedimentary basins.

Keywords: sequential extraction; mineral phases; uranium; migration; disequilibrium

1. Introduction

The average uranium content in sedimentary rocks, such as clays, sandstones, and
carbonates, ranges from 0.45 ppm to 3.7 ppm [1], but it is very actively redistributed
in these partially permeable deposits in strictly defined directions and forms large roll-
front accumulations on geochemical barriers. For example, the average ore grade of the
Moinkum deposit complex is 0.06%U (600 ppm) [2–5]. Water is the main carrier of uranium,
and it is always radioactive to some extent. Therefore, information on the distribution,
migration, and concentration of uranium in sedimentary deposits is used when searching
for its deposits and for assessing the chemical and radiological aspects of the negative
impact on terrestrial inhabitants [6–10]. In addition, thanks to the discovery of uranium
isotopic fractionation, uranium isotopes are actively used as indicators of geological,
hydrogeological, and geoecological processes [11–16].

To analyze the processes that control the distribution of nuclides in sedimentary basins,
complex mathematical models have been developed using molar concentrations and activity
of nuclides in groundwater and host rocks [17–25]; however, information on the distribution

Minerals 2021, 11, 467. https://doi.org/10.3390/min11050467 https://www.mdpi.com/journal/minerals

https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0003-0585-8893
https://doi.org/10.3390/min11050467
https://doi.org/10.3390/min11050467
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/min11050467
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min11050467?type=check_update&version=2


Minerals 2021, 11, 467 2 of 16

of uranium isotopes in the rock is obtained mainly by the method of its total digestion. At
the same time, the host rocks of sedimentary basins are characterized by a heterogeneous
mineralogical composition and contrasting differences in the physicochemical properties of
mineral formations, which determine the different migration abilities of uranium isotopes.
There is no doubt that the procedure for sequential extraction of uranium isotopes from
mineral phases with reagents of different strengths [26–31] gives a more informative picture
of the redistribution of uranium isotopes in the water–rock system.

In our previous works, we presented the results of studying the migration of uranium
isotopes, the activity of which was determined by the methods of total digestion [32] and
the procedure of partial extraction [33]. Therefore, in this work, an attempt is made to use
the sequential extraction method to reconstruct the processes of redistribution of uranium
isotopes in individual mineral phases of the aquifer of the Vendian sandy-argillaceous
deposits, widespread in the coastal territory of the European North of Russia. This aquifer
has large resources of groundwater, but they are used in extremely limited quantities,
because the hydrochemical conditions in the aquifer are very complex and are associated
with salinization by sea waters of modern and ancient transgressions [34] and an increase
in the concentration of uranium in certain areas [35].

2. Materials and Methods

The boreholes GGS2-10 and GGS2-11 are located 100 km north of the city of Arkhangelsk
in northwestern Russia in the area with coordinates N65◦20′48′ ′ E41◦06′10′ ′ and were
drilled using a diamond drill bit (92 mm inner diameter, 112 mm outer diameter) and mud
rotary methods to 102 m and 101.2 m, respectively below the ground surface in May–July
2018. Five samples were taken from each boreholes to perform sequential extraction. In
addition, 15 samples were taken from the diamond deposit, including 5 core samples from
the hydrogeological well P-4 (N65◦19′28′ ′ E41◦01′48′ ′) and 10 samples from the walls of the
kimberlite pipe open pit (N65◦17′14′ ′ E41◦01′48′ ′) (Figure 1) to perform partial extraction.
Samples were taken from objects available for sampling: wells being drilled along Vendian
sandy-argillaceous sediments and a deepening open pit to a freshwater circulation depth
of about 200 m. The sampling interval in the wells was approximately 10 m. The samples
were quickly packed in airtight polythene bags. The sample mass collected in each case
was about 1500 g. Then, 500 g sub-samples of the material were oven dried at 40 ◦C for
7 days and homogenized by grinding with an agate mortar and pestle to pass through
a 125 µm sieve in a glove box with nitrogen. The prepared material was stored in glass
bottles for sequential and partial extractions and isotopic analyses.

The chemical composition and the mineralogical composition of the Vendian sedi-
ments in the area of the diamond deposit were studied in detail during different periods
of geological exploration and have been described in the article by Malov and Zykov [33].
The deposits are mainly composed of sandstones (60–80%) and siltstones (20–30%), sepa-
rated by interlayers of mudstones. Clastic material is 70–80%, represented by quartz and
feldspar grains. Biotite and clay aggregates are insignificant. Cement has a predominantly
clay-ferruginous composition and there are also carbonate and gypsum cements. Clay
minerals are represented by illite, kaolinite and chlorite. The ratio of Fe2O3 and FeO forms
of iron in siltstones is ~(6 ÷ 17):1.
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pipe of the Lomonosov diamond deposit with a depth of 210 m. 
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Figure 1. Core sampling locations. “Wells GGS” are the GGS2-10 and GGS2-11 boreholes with a depth of 102 and 101.2 m.
“Well P-4” is a hydrogeological borehole with a depth of 214 m. “Open pit” is Quarry on the Arkhangelskaya kimberlite
pipe of the Lomonosov diamond deposit with a depth of 210 m.

The description of the samples of the studied rocks was performed on five thin sec-
tions of core samples. The mineral phases were examined using X-ray powder diffraction
(XRD) analysis and scanning electron microscopy (SEM) at the Laboratory of Mineralogy
of Ore Genesis, Institute of Mineralogy, Ural Branch of RAS, Russia (Miass, Russia) (see
Appendix A).

2.1. Sequential Extractions

About 500 g of rock sample was crushed using an agate mortar and pestle to pass
through a 125 µm sieve and 20 g of the prepared material was sequentially treated by
extraction solutions in accordance with Yanaze et al. [26]. At the end of each extraction
step, the suspended solution was separated by a combination of centrifugation and fil,
tration using a 0.45 µm Millipore filter. The residue in the centrifuge tube was washed with
10 mL of each extraction solution and passed through the filter. The combined residue
was washed with 10 mL of distilled water, then dried and treated by the next extraction
solution [26]. The sequential extraction procedures are described hereinafter.

2.1.1. Fraction 1. Adsorbed Trace Materials and Carbonate Minerals

The sample of mass 20 g was shaken with 100 mL of Morgan’s solution (1 M sodium
acetate adjusted at pH 5.0 by acetic acid) at room temperature for 4 h.

2.1.2. Fraction 2. Ferrihydrate, Amorphous Minerals of Fe, Al, and Si, and Secondary
U Minerals

The residue on the filter from fraction 1 was shaken with 100 mL of Tamm’s solution
(10.9 g/L oxalic acid + 16.1 g/L ammonium oxalate) in the dark at room temperature for 4 h.

2.1.3. Fraction 3. Crystalline Iron Minerals

The residue from fraction 2 was stirred with 100 mL of CDB solution (1 g sodium
dithionite and 60 mL of 0.3 M trisodium citrate +0.2 M sodium hydrogen carbonate) at
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85 ◦C for 30 min. The extraction was repeated, then the extractions were combined and
boiled with nitric and hydrochloric acid until the solution became transparent and this
avoided precipitation of sulfides.

2.1.4. Fraction 4. Clay and Some Refractory Minerals

The residue on the filter from fraction 3 was stirred with 100 mL of 6 M HCl at 85 ◦C
for 2 h.

2.2. Measurements of Uranium Isotopes after Sequential Extractions and in Fraction 5. All
Remaining Resistant Minerals

The analytical procedure for the extracted uranium isotopes after Sequential Extrac-
tions and in the resulting solutions was similar to the method used in a previous study by
Malov and Zykov [33]. Spectrometric detection of alpha particles was performed using an
alpha spectrometer (PROGRESS-ALPHA, DOZE, Russia) with an uncertainty of 10–15%.
Total error of analysis is defined by δ = δst + δsys (statistical + systematic), measurement of
uncertainties for U are reported individually, and efficiency of 232U extraction was 40–50%.

2.3. Partial Extraction of Adsorbed Trace Materials

A volume of 200 mL of low mineralized fresh natural groundwater of Ca-Mg-Na-
HCO3 composition taken from the borehole 3u had total dissolved solids (TDS) of 285 mg/L
(see [34]) and was mixed with 20 g of the prepared material in centrifuge tubes and shaken
for 1 h on an end-over-end shaker. The boundary conditions when using low-mineralized
fresh natural groundwater were as follows: temperature 20 ◦C, pH 7.7 and redox potential
of 230 mV. First, adsorbed material was released. Measurements of uranium isotopes were
carried out in the same way as described above in Section 2.2.

The uranium concentration in water taken from borehole 3u was 0.25 ± 0.005 ppb [34].
The 200 mL of water, which was mixed with 20 g of crushed material, contained
0.05 ± 0.001 µg of uranium; this concentration was subtracted from the concentration
obtained after partial extraction of adsorbed trace materials.

3. Results

Table 1 shows the results of five sequential extractions of the ten core samples.

Table 1. Distribution of uranium and measured 234U:238U activity ratios in sequential extracted phases.

Borehole ID GGS2-10

Sampling Depth, m 61.0–61.1 75.0–75.1 85.7–85.8 97.0–97.1 101.5–101.6

Fraction a Uranium Isotope Activity Ratio 234U:238U

1 2.57 ± 0.39 5.36 ± 0.8 1.25 ± 0.19 1.52 ± 0.22 2 ± 0.3
2 4.63 ± 0.7 1.39 ± 0.21 2.23 ± 0.34 1.09 ± 0.15 1.76 ± 0.26
3 1.71 ± 0.26 0.86 ± 0.13 1.5 ± 0.22 1.5 ± 0.22 1.84 ± 0.28
4 1.45 ± 0.22 2 ± 0.3 0.88 ± 0.13 2.64 ± 0.39 0.73 ± 0.11
5 1.04 ± 0.15 2 ± 0.3 1.04 ± 0.15 0.93 ± 0.15 0.73 ± 0.11

Uranium Content in the Entire Volume of the Rock, ppb

1 43.8 ± 6.6 24.9 ± 3.8 45.8 ± 6.9 50 ± 7.4 38.2 ± 5.7
2 50.6 ± 7.5 160.6 ± 24 97.2 ± 14 44 ± 6.6 142 ± 21
3 27.2 ± 4.1 67.5 ± 10.1 258 ± 39 70.8 ± 10.6 39.9 ± 6
4 141 ± 21 81.2 ± 12.2 234 ± 35 35.7 ± 5.35 346 ± 52
5 301 ± 45 21.7 ± 3.2 65.9 ± 9.9 47.1 ± 7.06 12.1 ± 1.8

Sum 564 ± 84 356 ± 53 701 ± 105 248 ± 37 578 ± 87
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Table 1. Cont.

Borehole ID GGS2-10

Sampling Depth, m 61.0–61.1 75.0–75.1 85.7–85.8 97.0–97.1 101.5–101.6

Uranium Content in the Entire Volume of the Rock, %

1 7.8 7 6.5 20.3 6.6
2 9.0 45.1 13.9 17.7 24.6
3 4.8 19 36.8 28.6 6.9
4 25 22.8 33.4 14.4 59.8
5 53.4 6.1 9.4 19 2.1

Sum 100 100 100 100 100

Substance Dissolution, %/g (from a 20-g Sample)

1 0.77/0.16 1.62/0.33 2.39/0.48 2.52/0.51 1.35/0.27
2 1.15/0.24 4.31/0.88 3.73/0.75 3.06/0.62 1.7/0.34
3 2.44/0.51 1.64/0.33 5.02/1.01 8.1/1.64 10.2/2.04
4 2.15/0.45 6.42/1.31 9.4/1.89 4.11/0.83 3/0.6
5 86.6/18.1 73.73/15.04 71.69/14.41 70.58/14.3 74.55/14.91

Sum 93.1/19.46 87.72/17.89 92.23/18.54 88.37/17.9 90.8/18.16

Borehole ID GGS2-11 Average

Sampling Depth, m 66.7–66.8 75.2–75.3 83.9–84.0 94.0–94.1 99.5–99.6 GGS2-10-11

Fraction a Uranium Isotope Activity Ratio 234U:238U

1 1.73 ± 0.26 2.02 ± 0.3 3.98 ± 0.6 1.82 ± 0.26 1.67 ± 0.25 2.39 ± 0.36
2 0.58 ± 0.09 0.49 ± 0.07 2.67 ± 0.4 2.97 ± 0.45 1.04 ± 0.15 1.88 ± 0.28
3 0.89 ± 0.13 2.68 ± 0.4 1.79 ± 0.27 1.43 ± 0.21 1.16 ± 0.18 1.53 ± 0.23
4 1 ± 0.15 1.51 ± 0.23 0.84 ± 0.13 1.52 ± 0.23 0.98 ± 0.14 1.35 ± 0.2
5 0.91 ± 0.14 1.04 ± 0.16 1.2 ± 0.18 0.8 ± 0.15 1.26 ± 0.19 1.09 ± 0.16

Uranium Content in the Entire Volume of the Rock, ppb

1 54.7 ± 8.2 57.3 ± 8.6 33.2 ± 5 63.4 ± 8.8 1074 ± 161 149 ± 22
2 231 ± 35 119 ± 18 142 ± 21 296 ± 36 1343 ± 201 263 ± 39
3 31.7 ± 4.8 106 ± 16 39.6 ± 5.9 54.6 ± 9.6 252 ± 38 95 ± 14
4 69.6 ± 10.4 94.7 ± 14 352 ± 53 263 ± 39 310 ± 46 193 ± 29
5 1050 ± 157 177 ± 27 773 ± 116 593 ± 76 940 ± 141 398 ± 60

Sum 1437 ± 215 554 ± 94 1339 ± 201 1270 ± 168 3919 ± 587 1098 ± 165

Uranium Content in the Entire Volume of the Rock, %

1 3.8 10.3 2.5 5 27.4 9.72
2 16.1 21.5 10.6 23.3 34.2 21.6
3 2.2 19.1 3 4.3 6.5 13.12
4 4.8 17.1 26.2 20.7 7.9 23.21
5 73.1 32 57.7 46.7 24 32.35

Sum 100 100 100 100 100 100

Substance Dissolution, %/g (from a 20-g Sample)

1 1.3/0.26 1/0.2 1.8/0.36 1.52/0.3 1.93/0.39 1.62/0.33
2 1.6/0.31 1.4/0.28 0.13/0.026 2.13/0.42 1.03/0.21 2.03/0.41
3 1/0.21 0.6/0.12 0.12/0.025 0.86/0.17 1.28/0.26 3.13/0.63
4 1/0.19 1.3/0.25 0.6/0.12 3.5/0.69 1.17/0.23 3.21/0.66
5 92.9/18.6 94.2/18.8 96.4/19.3 92/18.1 93.3/18.7 84.59/17.03

Sum 97.8/19.6 98.5/19.7 99/19.8 98.6/19.7 98.8/19.8 94.49/19.05
a 1—Adsorbed trace materials and carbonate, 2—Amorphous minerals of Fe, 3—Crystalline iron minerals, 4—Clay and some refractory
minerals, 5—All remaining resistant minerals

3.1. Substance Dissolution

As can be seen from Table 1, Morgan’s solution dissolves from 0.77% to 2.52% (on
average 1.62%) of the sample substance; Tamm’s solution dissolves from 0.13% to 4.31%
(on average 2.03%) of the sample substance; CDB solution dissolves from 0.12% to 10.2%
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(on average 3.13%) of the sample substance; 6 M HCl dissolves from 0.6% to 9.4% (on
average 3.21%) of the sample substance. In general, these four fractions range from 2.65%
to 17.79%, with a weighted average of 10 percent. The bulk is from 70.58% to 96.4% (on
average 84.59%) of the sample substance is dissolved only by a mixture of hydrofluoric,
perchloric, and nitric acids.

Experiments on the partial extraction of adsorbed trace materials showed that wa-
ter dissolved from 0.51% to 2.12% (on average 1.2%) of the sample substance (Table 2),
that is, carbonate minerals make up only about 0.42% of the sample substance. This is
consistent with the results of visual examination of the thin sections of core samples [33].
There are spots, lenses (no more than 0.4–0.5 mm in size) with limonite-goethite and
ferruginous-carbonate cement. Carbonate is represented by calcite and is formed later
than the limonite-goethite aggregate. Individual detrital grains are partially replaced by
ferruginous carbonate aggregate. No carbonate phases were detected in these samples by
XRD and SEM (see Appendix A), however significant levels of bicarbonate (3–5 mmol)
are present in the contacting groundwater [34] from which carbonate is deposited (see
Section 3.2).

Table 2. Distribution of uranium and measured 234U:238U activity ratios in adsorbed trace materials.

ID Rock Type Depth, m

U, ppm 234U:238U Substance
Dissolution, %/g

(from a 20-g Sample)

U, ppb U, % 234U:238U

In the Entire Volume of
the Rock In Adsorbed Trace Materials

1P-4 Sandstones 149 1.01 ± 0.15 0.99 ± 0.14 1.44/0.29 22.9 ± 3.4 2.3 2.02 ± 0.28
2P-4 Sandstones 195 1.22 ± 0.18 0.80 ± 0.12 1.58/0.32 12.9 ± 1.9 1.1 4.25 ± 0.64
3P-4 Sandstones 202 1.58 ± 0.23 0.83 ± 0.12 0.51/0.1 16 ± 2.4 1 3.27 ± 0.48
4P-4 Sandstones 208 1.65 ± 0.24 1.26 ± 0.18 1.43/0.29 25.8 ± 3.8 1.6 2.10 ± 0.29
5P-4 Sandstones 213 1.03 ± 0.14 1.35 ± 0.2 1.42/0.28 18.1 ± 2.6 1.8 1.83 ± 0.26
10op Siltstones 20.5 1.29 ± 0.18 1.43 ± 0.22 0.93/0.19 11.5 ± 1.7 0.9 1.58 ± 0.23
11op Siltstones 72.8 1.79 ± 0.25 1.12 ± 0.16 1.62/0.32 26.2 ± 3.9 1.5 2.18 ± 0.3
12op Siltstones 71.7 2.81 ± 0.41 1.32 ± 0.18 1.26/0.25 17.6 ± 2.6 0.6 2.49 ± 0.36
13op Argillite 82.4 1.62 ± 0.23 1.29 ± 0.17 2.12/0.42 404 ± 59 24.9 1.86 ± 0.27
14op Siltstones 109.8 2.35 ± 0.35 1.31 ± 0.18 1.33/0.27 99 ± 14 4.2 1.94 ± 0.29
16op Siltstones 92 1.20 ± 0.16 0.83 ± 0.12 0.61/0.12 225 ± 32 18.8 1.68 ± 0.24
17op Siltstones 92 1.08 ± 0.15 1.94 ± 0.28 0.58/0.12 38 ± 5.7 3.5 1.44 ± 0.21
18op Siltstones 94 1.50 ± 0.2 1.23 ± 0.16 0.92/0.18 266 ± 39 17.7 1.50 ± 0.22
21op Siltstones 73.4 1.66 ± 0.24 0.98 ± 0.15 1.73/0.34 274 ± 41 16.5 3.76 ± 0.54
25op Sandstones 59 1.38 ± 0.19 1.04 ± 0.14 0.73/0.14 9.2 ± 1.4 0.7 1.67 ± 0.23

The effectiveness of Tamm and CDB solutions for dissolving amorphous minerals and
ferrihydrite and crystalline iron minerals, respectively, is supported by Yanaze et al. [26]
with references to Tamm [36], Chao, Zhou [37], Mehra, Jackson [38], Airey et al. [39],
Lowson et al. [27].

According to the chemical analyses, the content of Fe2O3 in the rocks is 2–5.3% [33].
XRD analysis showed the presence of hematite and amorphous iron oxides up to 18% in
one of the samples. This is consistent with the data given in Table 1 for dissolution of 0.25
to 11.9% rocks with Tamm and CDB solutions.

The content of feldspar and clay from 6 to 18% (see Appendix A) is consistent with
the data given in Table 1 about the dissolution by six molar hydrochloric acid from 0.6 to
9.4% of rocks. Remaining resistant minerals are the quartz, mica and most resistant clay
([26], Appendix A).

3.2. Uranium Concentration

The adsorbed trace materials and carbonate minerals contain from 2.5% to 27.4%
(on average 9.72%) of the total uranium content in the rock (Table 1, Figure 2), while
the adsorbed trace materials contain from 0.6% to 24.9% (on average 6.1%) of the total
uranium content in the rock (Table 2). That is, about one third of easily recoverable
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uranium is coprecipitated with carbonates. Analysis of the evolution of the composition of
groundwater in the study area [34] showed that the composition of Ca-Mg-HCO3 is typical
for the least saline waters with a total dissolved solids content (TDS) of up to 0.3 g·L−1.
This is due to the undersaturation of atmospheric precipitation, melted snow water and the
least saline groundwater in relation to calcite. There is an almost 100% correlation between
(Ca + Mg) and HCO3. However, as the TDS increases to 0.6–0.9 g·L−1, the deficiency of Ca
and Mg in groundwater increases. This is due to their saturation with calcite and dolomite
and partial precipitation of calcium carbonates.
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Figure 2. Distribution of uranium (%) in extracted phases.

Ferrihydrate, amorphous minerals of Fe, Al, and Si, and secondary U minerals
contain from 9% to 45.1% (on average 21.6%) of the total uranium content in the rock
(Table 1, Figure 2). Thermodynamic numerical simulations were carried out to determine
the principal migration species of U in groundwater and the saturation of certain water
samples with uranophane suggests that this mineral is of secondary genesis [40].

Crystalline iron minerals contain from 2.2% to 36.8% (on average 13.12%) of the total
uranium content in the rock. Clay and some refractory minerals contain from 4.8% to
59.8% (on average 23.21%) of the total uranium content in the rock. All remaining resistant
minerals contain from 2.1% to 73.1% (on average 32.35%) of the total uranium content in
the rock (Table 1, Figure 2).

The average weight distribution of uranium in extracted phases differs slightly from
its percentage distribution (Table 1, Figure 3A): a minimum uranium content of 95 ± 14 ppb
is typical for crystalline iron minerals.
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In other fractions, the weight distribution of uranium is similar to its percentage
distribution: the maximum value is observed in the most resistant minerals (398 ± 60 ppb),
followed by amorphous minerals of Fe (263 ± 39 ppb), clay and some refractory miner-
als (193 ± 29 ppb), and adsorbed trace materials and carbonate minerals (149 ± 22 ppb)
(Figure 3A).

At the same time, the maximum content of uranium in the most resistant minerals is
explained only by the maximum mass of this fraction, which averages about 85% of the
total mass of samples (see Table 1). The concentration of uranium directly in the dissolved
substance (leached material) is at a maximum in amorphous minerals of Fe (12.89 ppm),
then adsorbed trace materials and carbonate minerals (9.14 ppm), clay and some refractory
minerals (5.88 ppm), crystalline iron minerals (3.01 ppm), and most resistant minerals
(0.47 ppm) (see Figure 4). It is also noteworthy that the average concentration of uranium in
adsorbed trace materials was 7.7 ppm according to Table 2, that is, about 1.4 ppm remains
in carbonate minerals.
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3.3. Uranium Isotopes 234U:238U Activity Ratio

For adsorbed trace materials leached from rocks by partial extraction, the values of
the uranium isotopes 234U:238U activity ratio vary from 1.44 ± 0.21 to 4.25 ± 0.64, average
2.2 ± 0.32 (Table 2). In adsorbed trace materials and carbonate minerals leached from rocks
by sequential extraction, they vary from 1.25 ± 0.19 to 5.36 ± 0.8, average 2.39 ± 0.36
(Table 1, Figure 5).
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For ferrihydrate, amorphous minerals of Fe, Al, and Si, and secondary U minerals
leached from rocks by sequential extraction, the values of the uranium isotopes 234U:238U
activity ratio vary from 0.49 ± 0.07 to 4.63 ± 0.7, average 1.88 ± 0.28. In crystalline iron
minerals, they vary from 0.86 ± 0.13 to 2.68 ± 0.4, mean 1.53 ± 0.23. For clay and some
refractory minerals, the values of the uranium isotopes 234U:238U activity ratio vary from
0.73 ± 0.11 to 2.64 ± 0.39, average 1.35 ± 0.2. In all remaining resistant minerals, they
range from 0.73 ± 0.11 to 1.26 ± 0.19, mean 1.09 ± 0.16 (Table 1, Figure 5).

4. Discussion

In general, the distribution of uranium concentrations in various mineral associations
of Vendian sedimentary rocks is rather uneven and as shown in previous works [32,33], this
unevenness is mainly associated with the presence of relics of green-colored deposits, which
were under reducing conditions for a long period of time. The significantly higher uranium
content in them compared to red-colored siltstones indicates a significant variability in
the values of the permeability of the aquifer, as a result of which they were located far
from the groundwater filtration paths and retained uranium. The content of such rocks is
approximately 20% according to Malov [32], in this study it is 25% according to Table 2
and 10% according to Table 1. It seems that in such a situation the maximum information
content will be achieved as the number of analyzed samples increases. Figures 3 and 4 show
the results of fifty extractions and demonstrate quite clearly, in our opinion, manifested
regularities of uranium concentration in sedimentary sandy-clayey sediments interacting
with groundwater filtering through them.

In the most resistant minerals, such as hardly soluble aluminosilicates and a clay/quartz
resistate, the volume of which ranges from 70.58% to 96.4% (an average of 84.59%), the
average uranium concentration is 398 ppb per 1 kg of rock and 470 ppb per 1 kg of the
most resistant minerals. This uranium is practically sealed in the rock, as a result of which
the average ratio of its 234U:238U isotopes is close to equilibrium (1.09) (Figure 3B)

In the remaining fractions, uranium is redistributed by groundwater along their
flow lines from recharge areas in watersheds to areas of discharge into river valleys. Its
maximum concentration is achieved by coprecipitation with iron hydroxides (263 ppb per
1 kg of rock, but 12890 ppb per 1 kg of the amorphous minerals of Fe), in second place is
sorbed uranium and uranium precipitated with carbonates (149 ppb per 1 kg of rock, but
9140 ppb per kg of the adsorbed trace materials and carbonate minerals).

The average value of the activity ratio of uranium isotopes 234U:238U in adsorbed trace
materials and carbonate minerals according to sequential extraction data is 2.39 ± 0.36,
the maximum values reach (3.98 ± 0.6)—(5.36 ± 0.8) (Table 1). The average value of the
activity ratio of uranium isotopes 234U:238U according to partial extraction of adsorbed
trace materials from 15 samples looks similar (2.2 ± 0.32). It is no coincidence that the
average value of the activity ratio of uranium isotopes 234U:238U in fresh groundwaters of
the study area is 2.8± 0.42, and the maximum values reach (4.34± 0.65)—(5.94± 0.84) [34]
(see Figure 6), that is, they are on the same level with the 234U:238U values in rocks, but still
slightly increased. The average value of the activity ratio of uranium isotopes 234U:238U
in the amorphous minerals of Fe is also significantly increased in comparison with the
equilibrium value (1.53 ± 0.23).
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Overall, Figure 3B actually demonstrates an unexpectedly strong logarithmic depen-
dence of the uranium isotopes 234U:238U activity ratio in rock on the degree of groundwater
participation in the deposition of hydrogenic uranium isotopes into the cracks and pores
of these rocks. This participation is maximally realized in the processes of sorption of
uranium and its precipitation with calcium carbonates and iron hydroxides.

The similarity of the activity ratios of 234U:238U in groundwater and in the most easily
leached fractions of water-bearing rocks was noted in the experiments of Lowson et al. [27],
Payne et al. [28], and Dabous et al. [29], with the fractions being defined as sorbed elements,
carbonate minerals and amorphous iron minerals [26] which could indicate the process
which is the transition of nonequilibrium nuclides from water to rock with an increase in
the U isotopes activity ratio in the rock [32].

In addition, thermodynamic numerical simulations were carried out to determine
the principal migration species of U in groundwater and the saturation of certain water
samples with uranophane suggests that this mineral is of secondary genesis [40].

The results obtained contribute to the refinement of such parameters as the retardation
factor and the recoil loss factor, which are necessary for understanding the processes of
migration and concentration of uranium in sedimentary basins.

5. Conclusions

(1) In this work, an attempt is made to use the sequential extraction method to reconstruct
the processes of redistribution of uranium isotopes in individual mineral phases of
the aquifer of the Vendian sandy-argillaceous deposits, widespread in the coastal
territory of the European North of Russia.

(2) This aquifer has large resources of groundwater, but they are used in extremely limited
quantities, because the hydrochemical conditions in the aquifer are very complex and
are associated with salinization by sea waters of modern and ancient transgressions
and an increase in the concentration of uranium in certain areas.

(3) Samples were taken from objects available for sampling: wells being drilled along
Vendian sandy-argillaceous sediments and a deepening open pit to a freshwater
circulation depth of about 200 m. Clastic material is 70–80%, represented by quartz
and feldspar grains. Biotite and clay aggregates are insignificant. Cement has a pre-
dominantly clay-ferruginous composition and there are also carbonate and gypsum
cements. Clay minerals are represented by hydromica, kaolinite, and chlorite. The
ratio of Fe2O3 and FeO forms of iron in siltstones is ~(6 ÷ 17):1.

(4) The adsorbed trace materials and carbonate minerals have been found to contain on
average 9.72% of the total uranium content (TUC) in the rock, while the adsorbed trace
materials contain on average 6.1% TUC. That is, about one third of easily recoverable
uranium is coprecipitated with carbonates. Ferrihydrate, amorphous minerals of Fe,
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Al, and Si, and secondary U minerals contain on average 21.6% TUC. Thermodynamic
numerical simulations were carried out to determine the principal migration species
of U in groundwater and the saturation of certain water samples with uranophane
suggests that this mineral is of secondary genesis. Crystalline iron minerals contain on
average 13.12% TUC. Clay and some refractory minerals contain on average 23.21%
TUC. All remaining resistant minerals contain on average 32.35% TUC.

(5) At the same time, the maximum content of uranium in the most resistant minerals is
explained only by the maximum mass of this fraction, which averages about 85% of
the total mass of samples. The content of uranium directly in the dissolved substance
(leached material) is at a maximum in amorphous minerals of Fe (12.89 ppm), then
adsorbed trace materials and carbonate minerals (9.14 ppm), clay and some refractory
minerals (5.88 ppm), crystalline iron minerals (3.01 ppm), and most resistant minerals
(0.47 ppm). It is also noteworthy that the average concentration of uranium in
adsorbed trace materials was 7.7 ppm, that is, about 1.4 ppm remains in carbonate
minerals.

(6) The average 234U:238U is maximum in adsorbed trace materials and carbonate min-
erals (2.39 ± 0.36) and is close to that in fresh groundwater (2.8 ± 0.42). It is also
increased in the amorphous minerals of Fe (1.53 ± 0.23). In general, there is a de-
pendence of the 234U:238U activity ratio in rock on the degree of participation of
groundwater in the deposition of hydrogenic uranium isotopes into the cracks and
pores of these rocks.
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Appendix A

Appendix A.1. X-ray Powder Diffraction (XRD) Analysis

X-ray diffraction patterns were obtained on a Shimadzu XRD-6000 diffractometer
(Shimadzu, Kyoto, Japan), Cu-K α radiation with a monochromator, recording speed
2 degrees/min. X-ray processing was carried out using standard software. Quantitative
ratios between minerals were calculated using the SIROQUANT V.3 software package.
References from the internal database were used. The results are reduced to 100% of the
crystalline phases. The amount of X-ray amorphous substance (filmy iron hydroxides and
oxides, amorphous silica) was not analyzed. The sensitivity of the method is 0.5 wt % for
well crystallized minerals and 1 wt % for clay minerals and poorly ordered iron oxide. The
results are shown in Table A1.

The maximum amounts of clay minerals and a significant amount of hematite were
found in sample GGS2-11-4. In samples GGS2-11-2, GGS2-11-3, intrinsic iron oxide minerals
do not form crystalline forms and are probably represented by filmy X-ray amorphous
precipitates. Crystalline iron hydroxide (goethite FeOOH) was not found.

No carbonates were found in the form of any discernible precipitates. Calcium level
is so low that it does not even map. Magnesium is present, but it is associated with
cement illite. One fragment of serpentine and several fragments of biotite (hydrobiotite)
composition were also found. Illite and kaolinite are not identified during routine analysis,
because in very thin aggregates the particles in the cement have submicron dimensions.



Minerals 2021, 11, 467 12 of 16

Table A1. Mineral composition of sedimentary rock samples (wt %).

Sample ID GGS2-11-1 GGS2-11-2 GGS2-11-3 GGS2-11-4 GGS2-11-5

Sampling depth, m 66.7–66.8 75.2–75.3 83.9–84.0 94.0–94.1 99.5–99.6

Mineral

Quartz 75 87 90 22 42
Potassium feldspar (Orthoclase) 12 5 5 2 4

Albite 3 - 3 - -
Illite (+Muscovite) 8 2 1 46 40

Kaolinite 2 1 1 12 14
Hematite - trace trace 18 -

Sample GGS2-11-4 is likely to contain a significant X-ray amorphous substance; there-
fore, the contents of crystalline phases, especially hematite, are clearly overestimated in
X-ray analysis. Hematite in the form of separate precipitates sufficient for analysis is not
identified. Possibly, the rock contains titanium oxides but in small amounts.

Appendix A.2. Scanning Electron Microscopy (SEM)

VEGA3 TESCAN with EDS. Minerals were diagnosed by energy dispersive spectra, the
presence of carbonates was checked by mapping in the characteristic radiation of calcium
and magnesium. If the carbonate component is present, then it is a filmy precipitation in
clay cement. The presence of carbonates can be unambiguously proven only by chemical
determination of CO2.
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Figure A2. SEM micrograph of Sample GGS2-11-2. 

Quartz (Q)-potassium feldspar (Mc) aggregate (orthoclase or microcline) with mica 
cement (not marked, there is very little of it) and accessories: zircon (Zr), titanium oxide 
(Rt). No calcium carbonates were found in the cement. Mica cement (illite) is enriched 
with magnesium. 

Figure A1. SEM micrograph of Sample GGS2-11-1.

Quartz (Q)-potassium feldspar (Mc) aggregate with mica (Mu), mica-kaolin cement
and accessories: zircon (Zr), titanium oxide, in the form of rutile (Rt), pyrite (Py)—very
thin inclusions at the border of potassium feldspar. No calcium carbonates were found in
the cement. Loss on ignition is probably associated with mica-kaolin cement. Mica cement
(illite) is enriched with magnesium.
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Figure A2. SEM micrograph of Sample GGS2-11-2.

Quartz (Q)-potassium feldspar (Mc) aggregate (orthoclase or microcline) with mica
cement (not marked, there is very little of it) and accessories: zircon (Zr), titanium oxide
(Rt). No calcium carbonates were found in the cement. Mica cement (illite) is enriched with
magnesium.
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clearly indicates the presence of sorbed water in the cement. No calcium carbonates were 
found in the cement. 

  
Figure A4. SEM micrograph of Sample GGS2-11-4. 

Fragments of quartz (Q)—potassium feldspar (Mc) in clay (kaolin-hydromica) ce-
ment, individual minerals do not differ. Light thin spots are clumps of Fe + Ti oxides. In 
clay cement, iron is evenly distributed in the form of films around clay particles (Lim), 
individual minerals are not distinguished. Voids in some clay particles—chipping. No 
calcium carbonates were found in cement. 

Figure A3. SEM micrograph of Sample GGS2-11-3.

Fragments of quartz (Q), potassium feldspar (Mc), muscovite (Mu) in clay (kaolin-
hydromica) cement. Accessory minerals are monazite (Mnz) and rutile (Rt). Voids in some
clay particles are spalling, not all particles are uniformly saturated with epoxy, which
clearly indicates the presence of sorbed water in the cement. No calcium carbonates were
found in the cement.



Minerals 2021, 11, 467 14 of 16

Minerals 2021, 11, x FOR PEER REVIEW 14 of 16 
 

 

  
Figure A3. SEM micrograph of Sample GGS2-11-3. 

Fragments of quartz (Q), potassium feldspar (Mc), muscovite (Mu) in clay (kaolin-
hydromica) cement. Accessory minerals are monazite (Mnz) and rutile (Rt). Voids in some 
clay particles are spalling, not all particles are uniformly saturated with epoxy, which 
clearly indicates the presence of sorbed water in the cement. No calcium carbonates were 
found in the cement. 

  
Figure A4. SEM micrograph of Sample GGS2-11-4. 

Fragments of quartz (Q)—potassium feldspar (Mc) in clay (kaolin-hydromica) ce-
ment, individual minerals do not differ. Light thin spots are clumps of Fe + Ti oxides. In 
clay cement, iron is evenly distributed in the form of films around clay particles (Lim), 
individual minerals are not distinguished. Voids in some clay particles—chipping. No 
calcium carbonates were found in cement. 

Figure A4. SEM micrograph of Sample GGS2-11-4.

Fragments of quartz (Q)—potassium feldspar (Mc) in clay (kaolin-hydromica) cement,
individual minerals do not differ. Light thin spots are clumps of Fe + Ti oxides. In
clay cement, iron is evenly distributed in the form of films around clay particles (Lim),
individual minerals are not distinguished. Voids in some clay particles—chipping. No
calcium carbonates were found in cement.
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Figure A5. SEM micrograph of Sample GGS2-11-5.

Fragments of quartz (Q, large rounded sand grain in the left photo), potassium feldspar
(Mc), muscovite with mica cement, and accessories: apatite (Ap). No calcium carbonates
were found in the cement. Loss on ignition is probably associated with mica-kaolin cement.
Illite is enriched with magnesium.
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