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Abstract: The Mushgai Khudag complex consists of numerous silicate volcanic-plutonic rocks in-
cluding melanephelinites, theralites, trachytes, shonkinites, and syenites and also hosts numerous
dykes and stocks of magnetite-apatite-enriched rocks and carbonatites. It hosts the second largest
REE–Fe–P–F–Sr–Ba deposit in Mongolia, with REE mineralization associated with magnetite-apatite-
enriched rocks and carbonatites. The bulk rock REE content of these two rock types varies from
21,929 to 70,852 ppm, which is much higher than that of syenites (716 ± 241 ppm). Among these, the
altered magnetite-apatite-enriched rocks are characterized by the greatest level of REE enrichment
(58,036 ± 13,313 ppm). Magmatic apatite from magnetite-apatite-enriched rocks is commonly euhe-
dral with purple luminescence, and altered apatite displays variable purple to blue luminescence and
shows fissures and hollows with deposition of fine-grained monazite aggregates. Most magmatic
apatite within syenite is prismatic and displays oscillatory zoning with variable purple to yellow
luminescence. Both magmatic and altered apatite from magnetite-apatite-enriched rocks were dated
using in situ U–Pb dating and found to have ages of 139.7 ± 2.6 and 138.0 ± 1.3 Ma, respectively,
which supports the presence of late Mesozoic alkaline magmatism. In situ 87Sr/86Sr ratios ob-
tained for all types of apatite and calcite within carbonatite show limited variation (0.70572–0.70648),
which indicates derivation from a common mantle source. All apatite displays steeply fractionated
chondrite-normalized REE trends with significant LREE enrichment (46,066 ± 71,391 ppm) and high
(La/Yb)N ratios ranging from 72.7 to 256. REE contents and (La/Yb)N values are highly variable
among different apatite groups, even within the same apatite grains. The variable REE contents and
patterns recorded by magmatic apatite from the core to the rim can be explained by the occurrence of
melt differentiation and accompanying fractional crystallization. The Y/Ho ratios of altered apatite
deviate from the chondritic values, which reflects alteration by hydrothermal fluids. Altered apatite
contains a high level of REE (63,912 ± 31,785 ppm), which are coupled with increased sulfur and/or
silica contents, suggesting that sulfate contributes to the mobility and incorporation of REEs into
apatite during alteration. Moreover, altered apatite is characterized by higher Zr/Hf, Nb/Ta, and
(La/Yb)N ratios (179 ± 48, 19.4 ± 10.3, 241 ± 40, respectively) and a lack of negative Eu anomalies
compared with magmatic apatite. The distinct chemical features combined with consistent Sr isotopes
and ages for magmatic and altered apatite suggest that pervasive hydrothermal alterations at Mush-
gai Khudag are most probably being induced by carbonatite-evolved fluids almost simultaneously
after the alkaline magmatism.

Keywords: magnetite-apatite-enriched rock; REE mineralization; carbonatite; apatite chemistry;
U-Pb ages
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1. Introduction

Rare earth elements (REEs) are important resources for highly technological appli-
cations and are a fundamental component of a range of low- carbon energy production
approaches. REEs are included in the recent and current lists of critical metals due to geopo-
litical controls on their supply [1]. Even though REE mineralization is associated with a
range of rocks, including igneous, metamorphic, and sedimentary rocks, alkaline igneous
rocks (either carbonatite or syenite) dominate in hosting giant REE deposits [2]. Some
examples of these deposits include Bayan Obo (China) [3], Mianning-Dechang (China) [4],
Mountain Pass (United States) [5], and Mushgai Khudag (Mongolia) [6]. The Mesopro-
terozoic Bayan Obo deposit is the largest REE deposit in the world and serves as the main
supply for the world’s REE market [7]. Compared to the long discovered and investigated
Bayan Obo deposit in North China, the petrogenetic and mineralization history of the
Mushgai Khudag complex has not been well studied and remains poorly understood.
The multi-element REE–Sr–Ba–P–S Mushgai Khudag complex displays complex miner-
alogical and paragenetic relations, which suggests the occurrence of primary magmatic
accumulation modified by hydrothermal processes [2,6,8]. The alkaline complex hosts
significant REE–Sr–Ba–P–S mineralization, and REE mineralization is mainly associated
with magnetite-apatite-enriched rocks and carbonatites [8–10].

The formation history of the Mushgai Khudag complex has attracted considerable
attention. Samoilov and Kovalenko [11] were the first to provide a detailed geological
and petrographic description of the complex and put forward its formation sequence.
Andreeva et al. [12] inferred that the complex is formed by fractional crystallization and
silicate–salt liquid immiscibility based on the chemical compositions of fluid and melt
inclusions hosted by silicate minerals (e.g., diopside, garnet, and K-feldspar) in alkaline
igneous rocks. Nikolenko et al. [13] presented new Sr–Nd–Pb isotopic compositions as
well as geochemical data (LILE/HFSE values), which implies that the parental melts of
Mushgai-Khudag were derived from a lithospheric mantle source affected by a mixture of
subducted oceanic crust and its sedimentary components. The major and trace element
compositions of alkaline silicate rocks suggest that these rocks were formed by fractional
crystallization of the nephelinitic parental magma [13].

Magnetite-apatite-enriched rocks within Mushgai Khudag are unique, with the highest
apatite contents reaching 80–90 vol.% and REE2O3 concentrations in apatite of up to
12 wt.% [10]. Magnetite-apatite-enriched rocks are more commonly known as the dominant
component of iron oxide-apatite (IOA) deposits, which are of great economic significance
as a source of iron and potential sources of REEs [14]. Magnetite-apatite-enriched rocks are
characterized by variable concentrations of apatite (1–50 vol.%) within IOA deposits. These
are commonly associated with (sub-)volcanic rocks in convergent margins and rift-related
environments [15,16]. The processes involved in the formation of IOA deposits continue to
be a controversial topic, with both magmatic and hydrothermal origins inferred [17–25].
In spite of the development of the equivocal magmatic-hydrothermal model of the ore
formation for IOA deposits, the potential REE enrichment in these IOA deposits is still
poorly understood. As a unique REE-enriched IOA deposit, the REE mineralization
processes in Mushgai Khudag have received limited attention [10].

The structure of apatite gives it the ability to incorporate and concentrate trace ele-
ments such as Sr, U, and Th, especially REEs [26]. It is sensitive to geochemical changes in
magmatic systems and various fluid-induced chemical and textural changes over a wide
range of pressures and temperatures [27–30]. Thus, apatite has been used to trace the
petrogenetic processes of magma evolution and hydrothermal alteration [27–30]. In this
contribution, we present the in situ U–Pb ages of apatite within magnetite-apatite-enriched
rocks and chemical and Sr isotopic compositions of apatite in magnetite-apatite-enriched
rocks and syenite as well as calcite in carbonatite together with the bulk rock chemical
compositions, aiming to provide insight into the source and genetic history of the Mushgai
Khudag complex. The details of the texture and chemical and isotopic compositions of
apatite illustrate the constraints of the contribution of the magmatic and hydrothermal
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processes to the REE enrichment and mineralization associated with magnetite-apatite-
enriched rocks.

2. Geological Background

The Mongolian collage is separated into northern and southern domains by the Main
Mongolian Lineament. The Mushgai Khudag alkaline volcanic-plutonic complex is located
in the southern domain of Mongolia (Figure 1). The Mushgai Khudag complex is hosted by
Paleozoic sedimentary-volcanic sequences and Carboniferous granitoids [10]. It is associ-
ated with late Jurassic to early Cretaceous alkaline magmatic activities, including alkaline
and subalkaline extrusive, subvolcanic, and intrusive rocks, which range in composition
from melanephelinite and nepheline melaleucitite to trachyte in the extrusive facies and
shonkinite to syenite in the plutonic facies [8,12]. The alkaline-carbonatite complex is
composed of various volcanic and subvolcanic silicate rocks including melanephelinite,
theralites, and alkali feldspar trachytes, which are cross-cut by stocks and dykes of alkaline
syenites, shonkinites, and magnetite-apatite-enriched rocks, as well as numerous small
dykes of carbonatites [10,11]. The complex displays a central ring structure that is almost
30 km in diameter, and the Mushgai Khudag REE deposit is located in the central part
of this ring (Figure 2). Twenty ore bodies have been recognized along the endo- and exo-
contact parts of syenite and syenite-porphyry [2]. Different ore types have been identified
at Mushgai Khudag, including those hosted by carbonatite, mineralized breccia with car-
bonate cement, magnetite-apatite-enriched rock, and complex phosphate-enriched rocks.
A drill core and field investigation showed that carbonatitic and apatite-bearing ores are
the two dominant types of REE ore [12]. Carbonatites are ubiquitously associated with
fluorite mineralization and contain numerous fluorite veins [13]. The ages of K–Ar in the
Mushgai Khudag complex vary widely between 179 and 121 Ma, which might reflect sec-
ondary processes [11]. The newly obtained Ar–Ar dating of the magnetite-apatite-enriched
rocks and associated silicate rocks (e.g., melanephelinte and alkaline syenite) narrowed
the measured age range to 145–133 Ma [13]. The Rb–Sr age of the syenite was shown by
Baatar et al. [6] to be 139.9 ± 5.9 Ma.

Figure 1. Locations and simplified geological map of the Mushgai Khudag complex modified from Baatar et al. [6].
MK = Mushgai Khudag, BK = Bayan Khoshuu, SKSZ = Sulinkheer suture zone, LG = Lugiin Gol.

Apatite-enriched and magnetite-apatite-enriched rocks are exposed in two stocks of
30 × 70 m and 10 × 30 m in size. The former is known as Apatite Hill and is a typical
REE mineralized zone (Figure 2) [10]. Magnetite-dominant rocks occur in the very center,
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with apatite dominated rocks on the outside and phlogopite-enriched zones in between.
Carbonatite in Apatite Hill occurs as veins and dykes of 0.1 to 10 m in width and is
associated with widespread fluorite mineralization. The top of Apatite Hill is usually
weathered with britholite and anhydrite. Samples, including fresh and altered magnetite-
apatite-enriched rocks, syenites, and carbonatites were collected from Apatite Hill during
the 2016 and 2017 HiTech AlkCarb Mongolian Expeditions.

Figure 2. Simplified geological map of magnetite-apatite stock in Mushgai Khudag modified from Nikolenko et al. [10] and
Samoilov and Kovalenko [11].

3. Analytical Methods
3.1. Petrographic Analysis

Textures and mineral assemblages of samples prepared in petrographic thin sections
were studied using an optical petrographic microscope, an optical microscope coupled with
cathodoluminescence (OM-CL), and a scanning electron microscope (SEM) coupled with
both energy-dispersive spectrometry (EDS) and back-scattered electron imaging (BSE).

Cathodoluminescence analyses were collected using a Leica DM2700P microscope
coupled with a CITL MK5-2 system at the state key laboratory of Geological Processes
and Mineral Resources (GPMR), China University of Geosciences (Wuhan). The system
was operated at an accelerating voltage of 12 kV and a current density of about 300 µA for
calcite and apatite with an exposure time of up to 3s. The CL system was typically operated
with a corresponding voltage of 13 kV and a beam current of 400 µA with an exposure
time of up to 4 s for feldspar. Back-scattered electron (BSE) images were obtained using a
high-definition back-scattered electron detector coupled to a Zeiss Sigma 300 field emission
scanning electron microscope (FESEM) at the GPMR. The instrument was operated with a
working distance of 8.5 mm, an electronic high tension of 20 kV, and a magnification of
20–100×.

3.2. Chemical Analysis

Major element analyses of whole-rock samples were carried out using a Philips PW
2400 XRF at ALS Minerals-ALS Chemex, Guangzhou. The samples were crushed and
powdered in an agate ring mill to pass a 200-mesh sieve. About 1 g of sample was mixed
with lithium borate flux (Li2B4O7–LiBO2) and fused in an auto fluxer at about 1050 ◦C
to form a flat glass disc for analysis by X-ray fluorescence spectrometry (XRF). Major
element compositions were determined with the SARM-4, NCSDC-73510, NCSDC-73303,
GBW-7238, and SARM-32 standards with analytical uncertainties of better than 5%. Trace
element analyses of whole-rock samples were carried out using an Agilent 7500a ICP-MS at
the GPMR. About 50 mg of powdered sample was dissolved with an HF + HNO3 mixture
in high-pressure Teflon capsules. The detailed analytical procedure used for the trace
element analyses can be found in Liu et al. [31]. The trace elements were measured together
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with the AGV-2, BCR-2, BHVO-2, GSP-2, and RGM-2 standards. The analytical precision
was estimated to be better than 10% for all trace elements based on the standards and
duplicate analyses.

The major element compositions of apatite were quantified using a JEOL JXA-8230
Electron Probe Microanalyzer equipped with five wavelength-dispersive spectrometers at
the Laboratory of Microscopy and Microanalysis, Wuhan Microbeam Analysis Technology
Co., Ltd. (Wuhan, China). All thin sections were carbon-coated prior to the analysis. The
electron microprobe (EMP) analyses were conducted using an accelerating potential of
15 kV, an incident current of 5 nA, and a spot size of 20 µm. The peak counting time was
10 s for Na, Ca, P, S, Sr, F, Si, Fe, Cl, La, Ce, Pr, Nd, and Sm. The background counting time
was half of the peak counting time in the high- and low-energy background positions. The
following standards were used: Jadeite (Na), Apatite (Ca, P), Barite (S), Strontium fluoride
(Sr), Fluoride (F), Olivine (Si), Pyrope Garnet (Fe), Sodium chloride (Cl), Lanthanum metal
(La), Cerium metal (Ce), Praseodymium metal (Pr), Neodymium metal (Nd), and Samarium
metal (Sm). The formula of each analyzed spot was calculated based on 25 oxygens as
suggested in Ketcham [32].

In situ trace element analyses for calcite and apatite were conducted using a RESO-
lution 193 nm laser ablation system coupled to a Thermo iCAP-Q Inductively Coupled
Plasma Mass Spectrometer (ICP-MS) at the GPMR. The NIST SRM 612 international glass
standard was used to correct the instrument drift, and USGS reference glasses (BIR-1G,
BCR-2G, and BHVO-2G) were adopted as external standards for concentration calibra-
tion [33]. Standards and samples were analyzed with a 33 µm spot size, a 10 Hz repetition
rate, and a corresponding energy density of approximately 5–7 J/cm2. Each spot analysis
incorporated 30 s of background acquisition and 40 s of sample data acquisition. Elements
of data reduction, including the concentration determination, detection limit, and individ-
ual run uncertainty were calculated using ICPMSDataCal software [33]. The analytical
uncertainty for most trace elements in calcite and apatite was within 10% and was better
than 5% for REEs.

3.3. In Situ U–Pb Dating of Apatite

In situ U–Pb dating of apatite was carried out using the RESOlution laser ablation
coupled to the iCap-Q ICP-MS at the GPMR. The details of the analytical procedure and
the method of correction used for the common Pb component can be found in Chen and
Simonetti [34]. Madagascar apatite (MAD) was utilized as an external standard to monitor
instrumental drift and U/Pb fractionation [35]. Standards and samples were ablated using
a spot size of 50 µm, a repetition rate of 8 Hz, and an energy density of 5–7 J/cm2. Each spot
analysis incorporated 30 s of background acquisition and 40 s of sample data acquisition.
The data calculation was carried out using an Excel-based program developed by Chen
and Simonetti [34]. Tera–Wasserburg diagrams and weighted mean 206Pb/238U ages were
constructed using Isoplot v3.0 [36].

3.4. In Situ Sr Isotope Determinations

In situ Sr isotope analyses for apatite and calcite were conducted using the RESOlution
laser ablation system coupled to the Nu Plasma II multi-collector (MC) ICP-MS at the
GPMR. The measurements involved correction of spectral interference for Kr, Rb, and
doubly-charged REE, as described by Chen and Simonetti [37]. Analyses of calcite and
apatite were carried out using a spot size of 50 µm, a repetition rate of 10 Hz, and an energy
density of approximately 5–7 J/cm2. An in-lab coral standard (Qingdao) was analyzed as
the external standard to evaluate the reliability of analytical accuracy. The average 87Sr/86Sr
isotopic composition obtained for the coral standard was 0.70917 ± 0.00004 (2σ, n = 24),
which is consistent with the recommended value of 0.70923 ± 0.00002, as determined by ID-
TIMS at the State Key Laboratory for Mineral Deposits Research at Nanjing University [38].
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4. Petrography
4.1. Magnetite-Apatite-Enriched Rocks and the Dominant Apatite

Paragenesis and textural details for apatite from magnetite-apatite-enriched rocks
are presented in Figure 3. Some of the magnetite-apatite-enriched rocks show obvious
alterations. The fresh magnetite-apatite-enriched rocks are commonly yellow-green to
pale green and porphyritic in texture, with apatite phenocryst accounting for 90 vol.%
(Figure 3a). Euhedral to subeuhedral magmatic apatite is commonly identified in these
rocks, with grain sizes varying from 100 µm to 10 mm (Figure 4b–d). Coarse-grained ap-
atite (Ap-1) displays heterogeneous purple luminescence with dispersed yellowish zones,
accompanied by minor fissures characterized by orange luminescence (Figure 3b). Fine-
grained apatite (Ap-2), commonly 100–500 µm in grain size, shows an internal structure
characterized by a darker core and a lighter rim on the BSE images (Figure 3c). Some fine-
grained apatite occurs as aggregates with phosphosiderite filled in the fissures (Figure 3d).
The groundmass primarily consists of celestine and phosphosiderite, accompanied by
minor concentrations of magnetite, monazite, fluorite, and quartz (Figure 3c). Anhedral
fine-grained celestine (10–200 µm) makes up approximately 80 vol.% of the groundmass,
with the rest dominated by phosphosiderite that generally occurs along the grain bound-
aries of apatite (Figure 3c,d). Small secondary monazite crystals that are 1–2 µm in grain
size, accounting for less than 1 vol.%, occur in association with phosphosiderite in the
groundmass (Figure 3c).

Figure 3. Transmitted plane-polarized light, cathodoluminescence, and back-scattered electron pho-
tomicrographs illustrating the key petrographic features of magnetite-apatite-enriched rocks and the
dominant apatite. (a) Hand specimen of the yellowish magnetite-apatite-enriched rocks; (b) coarse-
grained magmatic apatite (Ap-1) displaying heterogeneous purple luminescence with dispersed
yellow luminescent zones; (c) fine-grained magmatic apatite (Ap-2) associated with anhedral fine-
grained celestine (Cls), phosphosiderite (Phsd), and minor monazite (Mnz); (d) fine-grained magmatic
apatite aggregates with phosphosiderite occurring along the grain boundaries; (e) coarse-grained
slightly altered apatite (Ap-3) showing dark purple luminescence associated with fine-grained al-
tered apatite (Ap-4) illustrating various levels of blue-purple luminescence; (f) fine-grained monazite
crystals deposited in the fissures along a slightly altered apatite (Ap-3) rim associated with phospho-
siderite, magnetite (Mag), and a minor concentration of quartz (Q); (g) Ap-3 showing a thin darker
rim on the BSE images; (h) fractured Ap-4 with magnetite, phosphosiderite, and secondary monazite
precipitated in the fissures or along the boundaries; (i) fine-grained monazite aggregates crystallized
in the Ap-4 hollows and along the boundaries associated with hydrothermal magnetite.
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Figure 4. Transmitted plane-polarized light, cathodoluminescence, and back-scattered electron photomicrographs illus-
trating the key petrographic features of syenite and apatite. (a) Coarse-grained orthoclase (Or), phlogopite (Phl), and
sanidine (Sa) phenocryst in syenite; (b) prismatic magmatic apatite displaying oscillatory zoning with various levels of
purple to yellow luminescence and sanidine showing a red CL color; (c) irregular apatite showing relatively uniform yellow
luminescence; (d) minor phlogopite, apatite, quartz, magnetite, ilmenite (Ilm), rutile (Rt), aegirine (Aeg), and diopside (Di)
in the groundmass; (e,f) tiny acicular apatite disseminated in quartz, magnetite, ilmenite, rutile, and aegirine.

The altered magnetite-apatite-enriched rocks are gray to earthy yellow with a por-
phyritic structure, and apatite phenocryst accounts for 80 vol.% associated with minor
magnetite, monazite, fluorite, phosphosiderite, and celestine (Figure 3e,g). Coarse-grained
apatite (Ap-3) with slight alterations occurs as disseminated crystals in the more abundant
fine-grained apatite (Ap-4) with strong alterations in the altered magnetite-apatite-enriched
rocks. Ap-3 displays dark purple luminescence and is 500–2000 µm in size. Some Ap-3
shows alterations with fine-grained monazite crystals (<10 µm) precipitated in the fissures
along the crystal rims (Figure 3e,f), whereas others are relatively euhedral with limited
alterations (Figure 3g). Ap-4 displays various levels of blue to purple luminescence with
grain sizes of 50–1000 µm and is strongly fractured with fissures in the rim or altered as
hollows with small relict apatite mostly distributed along the rim. Fine-grained magnetite
and monazite occur in the altered fissures and hollows (Figure 3h,i). The monazite grains
or aggregates in the altered zones, accounting for 3–5 vol.%, are secondary in nature. The
abundance of magnetite, monazite, and fluorite in the altered magnetite-apatite-enriched
rocks is greater than in fresh rocks, whereas the distributions of phosphosiderite and
celestine have sharply declined (Figure 3).

4.2. Syenite and Apatite

The paragenesis and texture of apatite from syenite are shown in Figure 4. Mushgai
Khudag syenite contains variable amounts of orthoclase and sanidine with minor concen-
trations of phlogopite, apatite, quartz, magnetite, ilmenite, rutile, and titanite (Figure 4a–d).
Orthoclase with grain sizes of up to 1–10 mm is characterized by blue luminescence,
whereas sanidine with grain sizes of 100–500 µm displays a red CL color (Figure 4a,b).
Most apatite within syenite appears to be euhedral, which is prismatic and 200 to 500 µm
in size (Figure 4b). Oscillatory zoning within the prismatic grains is evident in CL images,
ranging from purple to yellow in color (Figure 4b). A small number of ovoid or irregular
apatite grains display relatively uniform yellow luminescence (Figure 4c). Acicular apatite
with grain sizes of 1–10 µm can be identified as being disseminated within quartz, aegirine,
and ilmenite (Figure 4e,f). It displays a green CL color with aspect ratios ranging from 5
to 10.
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4.3. Carbonatite and the Dominant Calcite

The paragenesis and textural details for calcite and minor minerals from carbonatite
are shown in Figure 5. Carbonatite is brown or yellowish-gray in color and mainly consists
of calcite, fluorite, celestine, and barite with accessory quartz and REE minerals (e.g.,
bastnaesite and parasite). Calcite accounts for 70 vol.% with variable grain sizes ranging
from 20 µm to 2 mm. Coarse-grained calcite (1–2 mm) appears relatively subeuhedral
with jagged grain boundaries, suggesting the occurrence of hydrothermal overprinting
(Figure 5a). Fine-grained calcite (20–50 µm) is anhedral and is commonly found to surround
the coarse-grained calcite (Figure 5a). Fluorite, accounting for 15 vol.%, varies from 10 µm
to 2 mm in grain size (Figure 5a,b). Celestine is anhedral with grain sizes of 10 to 20 µm,
and it is widely disseminated in carbonatite, making up 5 vol.% (Figure 5c). Barite occurs
as very fine-grained crystals smaller than 20 µm in size and is commonly associated with
quartz and REE minerals (e.g., bastnaesite and parasite; Figure 5d,e). The parasite shows
zonation in the BSE images due to variable levels of REE abundance, and it commonly
occurs in association with celestine as inclusions in calcite (Figure 5e,f).

Figure 5. Transmitted plane-polarized light and back-scattered electron photomicrographs illustrating the key petrographic
features of carbonatite and calcite. (a) Euhedral coarse-grained calcite (Cal) with jagged grain boundaries associated with
fine-grained calcite and purple fluorite (Fl); (b) coarse-grained fluorite associated with fine-grained calcite; (c) calcite,
fluorite, celestine (Cls) with accessory quartz; (d,e) barite (Brt) associated with quartz and parasite (Par) disseminated in
calcite; (f) parasite together with celestine occurring as inclusions in calcite.

5. Results
5.1. Major and Trace Element Compositions for Magnetite-Apatite-Enriched Rocks, Syenites,
and Carbonatites

The major and trace element compositions of magnetite-apatite-enriched rocks, syen-
ites, and carbonatites are listed in Table S1. Fresh and altered magnetite-apatite-enriched
rocks show variations in concentrations of major elements, especially Fe2O3, SO3, and
SiO2. The contents of Fe2O3 (1.50–2.75 wt.%) and SO3 (1.32–2.34 wt.%) in the fresh
magnetite-apatite-enriched rocks are lower than in the altered rocks (15.62–23.88 wt.%
and 3.57–5.89 wt.%, respectively). The SiO2 content of the former (7.38–8.48 wt.%) is higher
than that of the latter (2.35–5.16 wt.%). As illustrated in the primitive mantle normalized
trace element plots (Figure 6a), the Mushgai Khudag magnetite-apatite-enriched rocks are
characterized by significant enrichments of REE and U and depletion of HFSE (e.g., Nb, Ta,
Zr, and Hf). In addition, the patterns show obvious negative Sr and Pb anomalies, which
are consistent with data previously reported by Nikolenko et al. [13]. Magnetite-apatite-
enriched rocks display strong REE enrichment (21,929–49,660 ppm) compared with the
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typical magnetite-apatite-enriched rocks found elsewhere in the world (e.g., approximately
120 ppm in the Los Colorados IOA, Chile) [24]. Of note, the altered magnetite-apatite-
enriched rocks have distinctly higher REE concentrations (58,036 ± 13,313 ppm) than the
fresh magnetite-apatite-enriched rocks (28,681 ± 6752 ppm), a characteristic that was also
observed by Nikolenko et al. [10]. Nb/Ta and Zr/Hf values show large variations for
both fresh and altered samples, ranging from 22.1 to 35.0 and 37.2 to 127, respectively.
The chondrite-normalized REE patterns of magnetite-apatite-enriched rocks are steep and
show significant LREE enrichments with (La/Yb)N ranging from 85 to 257 (Figure 6b). The
(La/Yb)N of the altered magnetite apatite-enriched rocks (225 ± 33) is higher than that of
the fresh rocks (117 ± 32) as well.

Figure 6. Primitive mantle normalized trace element and chondrite-normalized REE patterns of
magnetite-apatite-enriched rocks (a,b), syenites (c,d), and carbonatites (e,f) from the Mushgai Khudag
complex. Normalization values were adopted from McDonough and Sun [39] and Sun and Mc-
Donough [40], respectively. Reported data for these rocks are presented as grey shades for compari-
son [6,10,13].

Syenites contain 63.16–63.27 wt.% of SiO2 and 11.80–11.56 wt.% of Na2O + K2O and
are plotted in the syenite field of the TAS (Total Alkali and Silica) diagram (Table S1) [41].
The primitive mantle normalized trace element patterns obtained are similar to those
reported by Nikolenko et al. [13], showing positive Pb and Sr anomalies and negative Nb
and Ta anomalies (Figure 6c). The chondrite-normalized REE patterns of syenite show
LREE enrichment (Figure 6d). Syenites display much lower and limited variation in REE
contents (519–956 ppm) and (La/Yb)N values (46.1–52.5) compared with magnetite-apatite-
enriched rocks.
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The CaO/(CaO + MgO + FeO + MnO) value of carbonatite is 0.95, which can be classi-
fied as calciocarbonatite [42]. Mushgai Khudag carbonatite shows significant enrichment in
REE (26,692 ppm), U (229 ppm), Th (259 ppm), and Sr (177,066 ppm) and depletion in HFSE
(<10 ppm), which is generally similar to the composition of carbonatites worldwide [43,44].
Obvious positive Pb and Sr anomalies are displayed in the primitive mantle normalized di-
agrams (Figure 6e). Carbonatites show chondrite-normalized REE patterns that are highly
enriched in LREEs (La/YbN = 191) (Figure 6f). The carbonatite samples are more enriched
in trace elements including REEs compared to the results reported by Baatar et al. [6] and
Nikolenko et al. [13], which suggests heterogeneous chemical distributions for different
carbonatite dykes at Mushgai Khudag.

5.2. Mineral Compositions for Apatite within Magnetite-Apatite-Enriched Rocks and Syenites

The major and trace element compositions for magmatic and altered apatite from
magnetite-apatite-enriched rocks and syenites were determined using an electron micro-
probe and LA-ICP-MS, respectively, and are listed in Table S2.

All apatite from Mushgai Khudag corresponds to fluorapatite with F contents of
2.73 to 3.77 wt.%. Apatite from magnetite-apatite-enriched rocks is characterized by high
contents of SiO2, SO3, and LREE2O3 (0.36–5.59 wt.%, 0.86–4.17 wt.%, and 2.62–9.22 wt.%,
respectively) compared to those within the typical magnetite-apatite-enriched rocks (SiO2
< 0.92 wt.%, SO3 < 2.93 wt.%, and LREE2O3 < 0.59 wt.%) [25]. Altered apatite shows higher
contents of SiO2 (up to 5.59 wt.%), SO3 (up to 4.17 wt.%), and LREE2O3 (up to 9.22 wt.%)
than magmatic apatite (0.94 wt.%, 1.40 wt.% and 4.39 wt.% on average, respectively;
Figure 7). Slightly altered apatite also contains higher concentrations of SiO2 and LREE2O3
but shows a comparable SO3 concentration compared with magmatic apatite (Figure 7).
An increased LREE content in apatite correlates with an increased Si abundance, which
suggests a coupled substitution scheme of Si4+ + REE3+ = P5+ + Ca2+ (Figure 7a) [26]. The
LREE and Si contents of slightly altered apatite (Ap-3) have the same substitution trend as
magmatic apatite (Ap-1 and Ap-2) (Figure 7a). Of note, altered apatite (Ap-4) also displays
correlated increases in S and LREE contents (Figure 7b). This suggests that the S6+ + REE3+

= P5+ + 2Ca2+ substitution scheme also contributes to REE incorporation into the apatite
structure of Ap-4 in addition to the coupled Si substitution scheme [26].

Apatite from magnetite-apatite-enriched rocks and syenites is characterized by en-
richment with REE, Th, and U and depletion of HFSE (e.g., Nb, Ta, Zr, Hf). Interestingly,
the REE content within apatite shows positive correlations with U, V, and Zr (Figure 8a).
Chondrite-normalized REE patterns for Mushgai Khudag apatite are characterized by
significant LREE enrichment (46,066 ± 71,391 ppm) with high (La/Yb)N values (176 ± 103)
(Table S2; Figure 9a–c). The REE contents and (La/Yb)N ratios for different types of apatite
show variations. Altered and slightly altered apatite within the altered magnetite-apatite-
enriched rocks contain the highest levels of REE abundance (65,988 ± 56,322 ppm) and
(La/Yb)N values (237 ± 71), whereas apatite within syenite is the most depleted in terms of
the REE abundance (14,741–30,220 ppm; Table S2). Magmatic apatite (Ap-1 and Ap-2) gen-
erally displays a lower REE content (39,414 ± 47,876 ppm) and (La/Yb)N ratio (237 ± 71)
compared with altered apatite (Ap-4; 63,912 ± 31,785 ppm and 241 ± 40, respectively).
Nb/Ta, Zr/Hf, Eu/Eu*, Y/Ho, and (La/Sm)N ratios for magmatic and altered apatite also
show significant differences (Table S2; Figure 8b–d). Magmatic apatite is characterized
by lower Nb/Ta and Zr/Hf ratios than altered apatite. Altered apatite generally lacks Eu
anomalies (Eu/Eu* = 0.857–0.964), whereas magmatic apatite shows slight negative Eu
anomalies with a variable Eu/Eu* ranging from 0.608 to 0.799. Y/Ho values for magmatic
apatite show limited variation of 30–33, whereas those for altered apatite are mostly larger
than 34 (Figure 8d).
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Figure 7. Major element compositions of apatite within magnetite-apatite-enriched rocks and syenites.
(a) The plot illustrates the correlated increases in LREE and Si in apatite; (b) the plot shows the
relatively consistent S content in magmatic and slightly altered apatite (Ap-1, Ap-2 and Ap-3) and
the correlated increases in S and LREE contents for altered apatite (Ap-4).

Figure 8. Diagrams displaying trace-element variations of apatite within magnetite-apatite-enriched
rocks and syenites from Mushgai Khudag. (a) ΣREE versus U; (b) Zr/Hf versus Nb/Ta; (c) Eu/Eu*
versus La/YbN; (d) Y/Ho versus La/SmN. The CHArge-and-RAdius-Controlled (CHARAC) interval
of Y/Ho ratios in (d) was taken from Bau [45].
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Figure 9. Chondrite-normalized REE patterns of apatite from magnetite-apatite-enriched rocks and syenites (a–c) and calcite
from carbonatite (d). Normalization values were adopted from Sun and McDonough [40]. Previously reported apatite data
from magnetite-apatite-enriched rocks and carbonatite are presented in blue and gray in (a–c) for comparison [25,27,34,43,44],
and calcite data from carbonatite are presented in gray in (d) for comparison [27,34,46–49].

Apatite with different levels of cathodoluminescence mostly shows variation in the
REE content. Magmatic apatite from magnetite-apatite-enriched rocks shows light to dark
purple luminescence, which is related to the variable content of Ce3+ [50]. Dark purple
apatite grains are characterized by higher Ce contents (up to 60,304 ppm) compared with
the light purple ones (as low as 9748 ppm) (Figure 10a,b). Oscillatory-zoned apatite from
syenite displays variable yellow to purple zones in the CL images (Figure 10c). From core
to rim, the abundance of REE, Zr, U, and Th varies in the ranges of 17,268–27,521, 9.19–23.1,
8.83–21.9, and 67.2–313 ppm, respectively (Table S2). The oscillatory geochemical variation
correlates well with the zonation identified with CL (Figure 10c,d). The purple zone is
characterized by enriched REE, Zr, U, and Th, whereas the light-yellow zone is relatively
depleted in these elements (Figure 10c,d). Both (La/Yb)N and (La/Nd)N decrease in the
core and increase in the rim, changes that are decoupled from the oscillatory variation
(Figure 10e,f).

5.3. Mineral Compositions for Dominant Calcite in Carbonatite

The trace element compositions for calcite from carbonatite are listed in Table S3.
Calcite from the Mushgai Khudag carbonatite shows strong enrichment of REE, Sr, Ba, and
Pb and depletion of HFSE (e.g., Nb, Ta, Zr, Hf), similar to calcite from carbonatites world-
wide (Table S3). Of note, Pb is enriched in calcite from Mushgai Khudag in concentrations



Minerals 2021, 11, 450 13 of 21

varying from 6.59 to 416 ppm (Table S3). Chondrite-normalized REE patterns for Mushgai
Khudag calcite show strong LREE enrichment (183–337 ppm) with relative HREE depletion
(5.90–10.6ppm) (Table S3; Figure 9d). The LREE-enriched trend is a typical characteristic
of primary calcite in carbonatites worldwide, such as in Oka carbonatite (Figure 9d) [34].
(La/Yb)N ratios of calcite vary from 38.4 to 101 with the majority being between 50 and 100
(Table S3). Some calcite displays a significant negative Ce anomaly (Ce/Ce* = 0.41 ± 0.29;
Figure 9d).

Figure 10. Apatite from magnetite-apatite-enriched rocks and syenites displaying trace-element
variations. (a,b) Dark purple luminescent apatite grains characterized by higher REE contents than
the light purple luminescent ones; (c–f) trace element composition variation trends recording the
oscillatory zonation of apatite within syenite. The red dots and the accompanying number (a,c) refer
to the analytical points of samples. 4–11 in (a) refer to MK3-2-4 to MK3-2-11 in (b); 7, 14 in (c) refer to
MK7-7 and MK7-14 in (d–f).

5.4. U–Pb Ages of Apatite within the Magnetite-Apatite-Enriched Rocks

Trace element data suggest that both magmatic and altered apatite are characterized
by a high U content ranging from 17.4 to 512 ppm, which favors high-quality U–Pb dating
(Table S3). U–Pb geochronological data for magmatic apatite (Ap-1 and Ap-2) and altered
apatite (Ap-4) from magnetite-apatite-enriched rocks are listed in Table S4 and shown
in Figure 11. Both magmatic and altered apatite were dated in situ by LA-ICP-MS and
similar U-Pb ages of 140.7 ± 5.4 and 138.0 ± 5.1 Ma were found, as shown in the Tera–
Wasserburg plots (Figure 11a,b). The y-intercept corresponds to a 207Pb/206Pb ratio that
represents the best estimate for the composition of the common Pb component. The
common Pb corrected weighted mean 206Pb/238U ages are 139.7 ± 2.6 and 138.0 ± 1.3 Ma,
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respectively (Figure 11c,d), which is consistent with the Rb–Sr age in the associated syenite
(139.9 ± 5.9 Ma) [6].

Figure 11. Tera–Wasserburg plots and weighted mean 206Pb/238U age diagrams for magmatic and
altered apatite within magnetite-apatite-enriched rocks.

5.5. In Situ Sr Isotopic Compositions

The Rb/Sr ratios for both calcite and apatite are extremely low (less than 0.001;
Table S3); therefore, the measured 87Sr/86Sr ratios obtained for individual grains can be
considered to be their initial Sr isotopic compositions due to the negligible radiogenic
contribution of 87Sr. In situ Sr, isotopic compositions of apatite from magnetite-apatite-
enriched rocks and syenite and calcite from carbonatite are reported in Table S5 and
presented in Figure 12. The Sr isotopic compositions of magmatic apatite (Ap-1 and Ap-2)
show narrow variations as well as slightly altered and altered apatite (Ap-3 and Ap-4)
with 87Sr/86Sr ratios of 0.70598–0.70626 and 0.70590–0.70648, respectively. Apatite from
syenite also shows relatively consistent Sr isotopic compositions with 87Sr/86Sr ratios of
0.70572–0.70619. Thus, the different apatite samples exhibit a limited range of 87Sr/86Sr
values with an average of 0.70606 (Table S5; Figure 12a). In addition, calcite from carbonatite
shows a similar level of 87Sr/86Sr variation (0.70619–0.70641) compared with apatite from
magnetite-apatite-enriched rocks and syenites (Table S5; Figure 12b).
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Figure 12. In-situ Sr isotopic compositions of apatite from magnetite-apatite-enriched rock and
syenite (a) and calcite from carbonatite (b).

6. Discussion
6.1. Age and Sources of the Mushgai Khudag Complex

The newly obtained 206Pb/238U age of 139.7 ± 2.6 Ma for apatite within magnetite-apatite-
enriched rocks is consistent with the Rb–Sr age of the associated syenite (139.9 ± 5.9 Ma) and
is in good agreement with the Ar–Ar dating age range (145–133 Ma) [6,13]. Magnetite-
apatite-enriched rocks are considered to be the products of silicate–salt liquid immiscibility
from the highly evolved parental alkaline silicate melt based on the melt and fluid in-
clusion data presented by Andreeva and Kovalenko [9] and Nikolenko et al. [10]. The
newly obtained U–Pb ages, which are consistent with alkaline silicate rocks and carbonatite,
strongly support the liquid immiscibility model. The Rb–Sr age of syenite (130.6 ± 9.3 Ma)
in the Bayan Khoshuu complex, which is not far from the Mushgai Khudag complex, is
also similar to the obtained ages for the Mushgai Khudag complex [6]. Other carbonatite
complexes in Central Asia include Ulgii Khiid and those in West Transbaikalia and Cen-
tral Tyva in Russian Siberia [6,11,51]. The age obtained for the Ulgii Khiid complex was
147–158 Ma, and carbonatites and associated alkaline silicate rocks from Western Trans-
baikalia and Central Tyva yielded ages of 131–118 and 118–117 Ma, respectively [11,52–54].
The similarity in ages (Early Cretaceous) supports the presence of late Mesozoic regional
alkaline-carbonatite magmatism in Central Asia, which is attributed to the late Mesozoic
global plume activity [51].

The newly obtained in situ 87Sr/86Sr isotopic compositions for dominant minerals
within magnetite-apatite-enriched rocks, carbonatites, and alkaline syenites suggest lim-
ited variation, which further implies that they were derived from a common mantle
source. The available experimental data provide evidence that partial melting of the
upper mantle phosphate-bearing peridotite and pyroxenite can generate phosphorus-
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rich melts, and these melts evolve into immiscible silicate and salt liquids at the early
stages of evolution [9,55]. The oxygen isotopic compositions of apatite and phlogopite
(δ18OAp = 5.1–5.6‰; δ18OPhl = 7.3‰) from the fresh magnetite-apatite-enriched rocks re-
ported by Nikolenko et al. [10] are typical for mantle-derived igneous rocks, which also
supports their origination from the mantle [56]. Combining our newly obtained in-situ
87Sr/86Sr isotopic values with the bulk rock Nd and Pb isotope data (143Nd/144Nd =
0.512487–0.512596, 206Pb/204Pb = 18.353–19.615, 207Pb/204Pb = 15.575–15.726, 208Pb/204Pb
= 38.224–41.383) reported by Baatar et al. [6] and Nikolenko et al. [13], the Mushgai Khudag
alkaline-carbonatite complex is believed to have formed from enriched mantle domains
involving DMM (Depleted MORB Mantle) and EM2 (Enriched Mantle 2). Bayan Khoshuu
and Lugiin Gol are the other two large carbonatite-related multi-element deposits located
in Southern Mongolia, and they are also predicted to originate from similarly enriched
mantle domains based on Sr–Nd isotope data [6].

6.2. Fractional Crystallization and Hydrothermal Alteration Recorded in Apatite

It is widely documented that apatite occurs through early magmatic to late hydrother-
mal stages and is sensitive to physical-chemical changes. It has been used as a petrogenetic
and geochemical indicator for the tracing evolution of alkaline rocks [43,44]. Magmatic
apatite with internal chemical variations is commonly characterized by a relatively REE-
depleted core (29,963 ± 719 ppm) and an REE-enriched rim (31,963 ± 1205 ppm), which can
be explained by fractional crystallization (Table S3). Apatite within syenite shows a variable
REE content from the core to the rim, which is correlated with the oscillatory zonation
identified on the CL images, whereas (La/Yb)N and (La/Nd)N values decrease in the core
and increase in the rim (Figure 10e,f). The transition point might mark the fractional crystal-
lization of an HREE-enriched mineral (e.g., garnet) [11]. The oscillatory zonation commonly
recorded in apatite within syenite supports the significant influence of melt differentiation
and accompanying fractional crystallization of feldspar and garnet in generating the vari-
able REE features (Figure 10c–f). Magmatic apatite in magnetite-apatite-enriched rocks
and syenites is characterized by negative Eu anomalies (Eu/Eu* = 0.437–0.779), similar to
those present in apatite in granitic rocks [27]. Preservation of the negative Eu anomaly
often indicates fractional crystallization of plagioclase and feldspar with low oxygen fu-
gacity [12,27,57]. Thus, the geochemical features of magmatic apatite recorded from the
Mushgai Khudag complex further support the fractionation of the alkaline silicate melt
and the associated mineral fractional crystallization.

Magmatic apatite within magnetite-apatite-enriched rocks is characterized by near-
chondritic Y/Ho ratios similar to those of the silicate rocks formed via CHArge-and-
RAdius-Controlled (CHARAC) processes (Figure 9d) [45]. The variable Y/Ho ratios of
altered apatite are higher than those of magmatic apatite and deviate from the chondritic
value, which reflects alteration by hydrothermal fluids (Figure 9d) [49]. Oxidized U6+ is
relatively soluble compared with U4+ and can be transported as phosphate or carbonate
complexes in neutral and alkaline solutions [58]. The generally correlated increases in
REE and U contents in altered apatite suggest that the hydrothermal fluids are possibly
oxidized (Figure 8a). HREE enrichment has commonly been observed for hydrothermal
apatite in Tundulu, Kangankunde, and Songwe Hill [59–61]. The HREE-enriched patterns
are mostly due to the mobilization and co-precipitation of LREE minerals such as monazite
and bastnäsite and/or the differing stability of REE anion complexes between LREE and
HREE [59–61]. Altered apatite is commonly associated with monazite precipitation at
Mushgai Khudag, as described above and observed in previous studies (Figure 3h,i) [8,10].
Nevertheless, altered apatite is still characterized by higher La/YbN and La/SmN ratios
compared with magmatic apatite (Figure 9c,d), which can be generated with the contri-
bution of extremely LREE-enriched hydrothermal fluids. Of note, altered apatite is also
characterized by higher Zr/Hf (179 ± 48) and Nb/Ta (19.4 ± 10.3) ratios compared with
magmatic apatite and relatively less Eu anomalies (Figure 8b,c). Carbonatite melts/fluids
are known to be characterized by high Zr/Hf, Nb/Ta, and (La/Yb)N ratios without Eu
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anomalies [6,13,62–65]. Thus, the late hydrothermal fluids involved in the pervasive al-
teration of magnetite-apatite-enriched rocks might be carbonatite exsolved. This is also
supported by the fact that the Mushgai Khudag carbonatite magma originates from the
common DMM-EM2 mantle domains together with magnetite-apatite-enriched rocks, as
suggested by the consistent isotopic compositions outlined above. Moreover, the similarity
in Sr isotopic compositions between magmatic and altered apatite also confirms that the
hydrothermal fluids evolve from a common source, the same as that of the phosphorus
melt. Of note, the newly obtained U–Pb ages for both magmatic and altered apatite are
similar within the error range, which indicates that alterations by the carbonatite exsolved
fluids probably took place almost simultaneously after the emplacement of magnetite-
apatite-enriched rocks.

6.3. REE Enrichment Mechanism of the Mushgai Khudag Complex

The multi-element deposit of Mushgai Khudag is believed to have formed through
multiphase liquid immiscibility based on melt and fluid inclusion studies [10,12,13]. The
model involves high temperature (1250–1280 ◦C) carbonate-silicate melt immiscibility
and relatively lower temperature (600–1200 ◦C) carbonate-phosphate-salt immiscibil-
ity [10,12,13,66]. The liquid immiscibility model is also supported by our newly obtained U–
Pb ages of magnetite-apatite-enriched rocks that are consistent with alkaline silicate rocks
and carbonatite and similar Sr isotopic compositions for various rock types, as mentioned
above. In an aqueous carbonate-phosphate-silicate melt system, REEs favor carbonate
melt during carbonate-silicate liquid immiscibility and phosphate melt during phosphate-
silicate liquid immiscibility [67,68]. This is evidenced by the lower REE content in syenite
(716 ± 241 ppm) compared with in magnetite-apatite-enriched rocks (28,681 ± 6752 ppm)
and carbonatites (26,692 ppm). Moreover, apatite is one of the predominant minerals
controlling the REE budget in these rocks. Apatite within syenite and shonkinite also
shows a lower REE concentration compared to apatite within magnetite-apatite-enriched
rocks (Table S3) [13,67,68]. Magmatic apatite hosting the extremely enriched REE contents
(up to 7.0 wt.%; Table S3) in magnetite-apatite-enriched rock suggests that REEs also favor
phosphate melt during phosphate-salt immiscibility. Magmatic apatite within magnetite-
apatite-enriched rock and syenite exhibits a positive correlation between LREE and Si
abundance, which suggests that the coupled substitution scheme of Si4+ + REE3+ = P5+ +
Ca2+ plays the dominant role in REE incorporation within the apatite during magmatic
evolution [26].

The bulk rock SO3 content of the altered magnetite-apatite-enriched rocks is almost
twice that in fresh ones (Table S1). Altered apatite in these altered rocks is more abundant in
SO3 compared to in magmatic apatite and is also much higher than the sulfur content of ap-
atite within other magnetite-apatite-enriched rocks, e.g., El Laco (S: 155–4791 ppm; [14]) and
Carmen (SO3: 0.01–2.39 wt.%; [25]). The correlated increases in S and Si contents together
with LREE enrichment in Ap-4 indicates that both the substitution schemes of Si4+ + REE3+

= P5+ + Ca2+ and S6+ + REE3+ = P5+ + 2Ca2+ contribute to the incorporation of REE into
altered apatite. In addition, the SO3 content of secondary monazite within the altered Mush-
gai Khudag magnetite-apatite-enriched rocks (0.56–9.94 wt.%; [8,10]) is much higher than
that of other carbonatites and magnetite-apatite-enriched rocks (0.15–1.72 wt.%; [69–73]),
which also supports the idea that sulfate plays an important role in REE mobility during
alterations. In other words, the unusual sulfur enrichments in altered apatite and deposited
monazite indicate that sulfate is an important ligand for REE transportation [74,75]. Of note,
experimental work suggests that differences in the stability of LREE and HREE as aqueous
chloride complexes can result in REE fractionation, whereas LREE and HREE transported
as sulfate complexes show similar levels of stability [74–77]. Thus, compared with the
preferred mobility of LREE as a chloride complex, sulfate-dominated fluids possibly result
in relative HREE enrichment during hydrothermal processes, such as those observed in
Songwe Hill apatite [27,76,77]. The altered Mushgai Khudag apatite with depleted HREE
and high (La/Yb)N ratios implies that the REE patterns of altered apatite are dominantly
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controlled by LREE-enriched carbonatite-evolved fluids, and the different REE ligands
play a limited role in REE fractionation during the pervasive hydrothermal alteration at
Mushgai Khudag.

7. Conclusions

The newly obtained, consistent in situ U–Pb ages of magmatic and altered apatite
(139.7 ± 2.6 and 138.0 ± 1.3 Ma, respectively) within the Mushgai Khudag magnetite-
apatite-enriched rocks support the presence of late Mesozoic alkaline-carbonatite magma-
tism and indicate that pervasive alterations probably took place almost simultaneously
after the magmatism. In situ 87Sr/86Sr isotopic values (0.70572–0.70648) within the re-
ported bulk rock Nd and Pb isotope data suggest that the Mushgai Khudag complex
originated from the mantle, involving both DMM and EM2 reservoirs. The variable trace
element compositions (especially the REE patterns) and texture of magmatic apatite from
both magnetite-apatite-enriched rocks and syenites show melt differentiation and min-
eral fractional crystallization. Altered apatite is characterized by higher REE, U, Nb/Ta,
Zr/Hf, and (La/Yb)N values and a lack of Eu anomalies compared with magmatic apatite,
which suggests that the carbonatite-exsolved LREE-bearing fluids overprinting magnetite-
apatite-enriched rocks further contribute to REE enrichment with monazite precipitation.
The coupled increases in sulfur and LREE contents in altered apatite (Ap-4) associated
with sulfur-enriched secondary monazite indicate that sulfate plays an important role in
REE transportation and mineralization during hydrothermal alteration at the Mushgai
Khudag deposit.
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