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Abstract: The leaching of chalcopyrite under different redox potentials was studied with a redox
potential controlling device based on microcontroller technology. The leaching test was carried
out in a 500 mL flask with 4 g pure chalcopyrite and 200 mL sulfuric acid. The additional total Fe
concentration was 0.1 mol/kg, and the initial pH was 0.7. Chalcopyrite leaching tests with initial
redox potential of 400 mV and 600 mV (vs. Ag/AgCl, the same below) and controlled redox potential
of 350 mV, 400 mV, 450 mV, 500 mV, and 600 mV were carried out at a temperature of 60 ◦C and
a stirring speed of 300 rpm. The results showed that the dissolution of chalcopyrite could not be
hindered until the granular intermediates (S0 and Sn

2−) accumulated to a certain amount on the
chalcopyrite surface. The main passivating species in chalcopyrite dissolution may be iron-deficient
polysulfides. At 400 mV, the chalcopyrite passivation by polysulfides was overcome by the galvanic
effect between pyrite and chalcopyrite, and the chalcopyrite was rapidly oxidized with Cu leaching
rate reaching up to 32% in 7 h, while it was only 15% in the other experimental groups. However,
at 450–500 mV, pyrite was oxidized and the galvanic effect between chalcopyrite and pyrite was
destroyed, leading to a significant decrease in Cu leaching rate. When the redox potential was 600 mV,
the dissolution of metal-deficient polysulfides was promoted; thus, the passivation was weakened.

Keywords: redox potential control; chalcopyrite; microcontroller; iron-deficient polysulfides

1. Introduction

Chalcopyrite (CuFeS2) is the most abundant copper-bearing mineral in the earth’s
crust, accounting for more than 70% of the global copper reserves [1]. The processes to
extract copper from chalcopyrite include flotation, pyrometallurgy, and electrorefining.
However, with the development of chemical and biological leaching for sulfide ores, hy-
drometallurgy has gradually become a promising technology to extract copper directly
from low-grade ores and flotation concentrates. Compared with traditional processes,
hydrometallurgical processes are more environmentally friendly. However, the chalcopy-
rite leaching process has not been widely adopted due to its low recovery rate and slow
leaching rate. Therefore, research on the chalcopyrite leaching mechanism and improving
the chalcopyrite leaching rate have always been the focus of hydrometallurgy.

Many researchers have observed a passive layer during chalcopyrite leaching. How-
ever, there is still disagreement about the composition of the passive layer. The reported
possible passivating species mainly consist of polysulfide (Sn

2−) elemental sulfur (S0) and
insoluble sulfate (SO4

2−). Linge [2] found that more iron than copper dissolved from the
lattice during the initial stage of chalcopyrite leaching, producing metal-deficient polysul-
fide of the chalcopyrite surface. Yang [3] analyzed the leaching process of chalcopyrite by
XANES, and found that the polysulfides generated on the surface of chalcopyrite in the
initial stage were CuSn-like species. With further Cu leaching, CuSn-like species were trans-
formed into Sn-like species. The slow oxidation rate of Sn-like species was the reason for
the passivation. Dutrizac [4] found that the chalcopyrite surface produced approximately
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94% elemental sulfur and 6% sulfate in the sulfuric acid solution at 95 ◦C, and believed
that elemental sulfur was the main passivating species of chalcopyrite in the ferric sulphate
system. Klauber [5] believed that the reactivity of polysulfide was strong, and it could be
oxidized to elemental sulfur by oxygen; the elemental sulfur could cause the passivation of
chalcopyrite, but it was easy to peel off from chalcopyrite surface, and jarosite should be
the main passivating species.

The passive layer can be dissolved at high redox potential, except jarosite. The effects
of oxidants on chalcopyrite leaching have extensively been studied; for example, dichro-
mate [6], permanganate [7], MnO2 [8], chlorate [9], nitrate [10], hydrogen peroxide [11],
etc. The results showed that the oxidants could observably promote the dissolution of
chalcopyrite, even under mild conditions. Antonijevic [12] reported that the chalcopyrite
leaching conformed to the shrinking core model with the presence of hydrogen peroxide.
The chemical reaction was the controlling step and increasing the concentration of hy-
drogen peroxide could significantly accelerate the chalcopyrite dissolution rate. Toro [13]
found that chalcopyrite can dissolve rapidly at room temperature when working at 4:1
ratio of oxidizing agent (MnO2): chalcopyrite in chlorinated acid medium.

The rest potential of pyrite is higher than chalcopyrite, therefore pyrite is more stable
than chalcopyrite [14]. Galvanox™ process increases the reduction site of Fe3+ to Fe2+ by
adding insoluble pyrite, and alleviates the negative impact of passive layer on chalcopyrite
dissolution [15]. An appropriate amount of Ag+ can improve the electrical conductivity of
the sulfur layer on the surface of chalcopyrite, and further strengthen the galvanic effect
between pyrite and chalcopyrite [16]. In addition, Zhao [17] believed that Fe2+ generated
by the pyrite oxidation could reduce the redox potential to the range of promoting the
chalcopyrite dissolution. A technique developed by Dixon [18] showed that the recovery of
copper can reach 98% or more in just 4 h retention time when the ratio of pyrite:chalcopyrite
is 2:1, the solution redox potential is controlled at 470 mV (vs. Ag/AgCl, the same below),
and the atmosphere temperature is 80 ◦C.

The elements Cu, Fe and S in chalcopyrite have multiple valence states, which is
the reason for the diversity of intermediate products. The redox potential determines
the oxidation degree of chalcopyrite, which in turn determines the type of intermediate
products [19]. Chalcopyrite dissolution consists of two stages, the chemical reaction
control stage with a trace of surface products, and the diffusion control stage with a
mass of surface products. Iron ions can promote the rate of chemical reaction stage, thus
accelerating the transformation from chemical reaction control to diffusion control [20].
Chalcopyrite leaching and electrochemical studies show that at a low redox potential of
400–420 mV, chalcopyrite is actively dissolved, and less affected by the surface product
layer. Chalcopyrite is reduced by Fe2+ and Cu2+ to Cu2S at low redox potential [21]. In
ferric sulfate solution, Cu2S is more readily dissolved than chalcopyrite. Ahmadi [22]
studied the electrochemical bioleaching of chalcopyrite and indicated that the copper
leaching rate under the redox potential controlled at 400–425 mV was 35% higher than
that under the natural redox potential. Kametani [23] found that the chalcopyrite leaching
was promoted when the redox potential of the solution was 400–430 mV. However, when
the potential was higher than 450 mV, chalcopyrite leaching was significantly inhibited.
Because pyrite began to be oxidized to sulfate, the jarosite layer played a passivation role
on the surface of chalcopyrite [7].

In conclusion, different redox potentials and the types of intermediate products
significantly affect the process of chalcopyrite leaching. The purpose of this study was to
develop a redox potential controlling device using microcontroller technology and evaluate
the effect of redox potential on the leaching of chalcopyrite. The leaching mechanism of
chalcopyrite was deduced by XRD, XPS, and SEM-EDS detection of the leaching residue.
The device used in this study controlled the redox potential of the solution through feedback
control, which can reduce the unnecessary use of an oxidizer, so it can provide a reference
for the development of the new process of chalcopyrite leaching.
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2. Materials and Methods
2.1. Minerals

All chalcopyrite used in this study was from Hunan Province, China. X-ray diffraction
(XRD) analysis (Figure 1) showed that the chalcopyrite was of high purity with only a
small amount of quartz and pyrite. The chemical composition of the ore sample, as shown
in Table 1, indicated that the chalcopyrite contained 33.85% Cu, 29.75% Fe and 51.58%
S. The presence of pyrite and Ag is conducive to chalcopyrite oxidation leaching due to
the galvanic effect between pyrite and chalcopyrite and the activation effect of Ag by
improving the electrical conductivity of the sulfur layer on the chalcopyrite surface. The
mineral particles were ground to particles of −74 µm using a ceramic ball mill (Changsha
Tencan powder technology Co. Ltd., Changsha, China).
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Figure 1. X-ray diffractogram pattern of the ore of chalcopyrite.

Table 1. Chemical composition of the ore.

Element. O Al Si S K Ca Fe Cu Ag

Wt. % 0.14 0.025 0.098 34.16 0.009 0.01 29.75 33.85 0.022

2.2. Apparatus

The reaction apparatus used in this experiment, as shown in Figure 2, consisted of a
500 mL four-hole boiling flask, a stirrer, a water bath, and a redox potential controlling de-
vice.

The microcontroller system was used to collect the real-time redox potential data
of the solution and controlled the release of redox potential regulators by the peristaltic
pump. The detailed working process is as follows: collecting the voltage data of the redox
potential composite electrode (vs. Ag/AgCl) through a microcontroller, and then sending
a control signal to the peristaltic pump after comparing with the set threshold value. If the
redox potential of the solution was higher than the threshold value, the reducing agent was
added; otherwise, the oxidizing agent was added. Real-time volume of the redox potential
regulator was obtained by using graduated container. The computer was only used to
easily read real-time redox potential data.

The division value of the redox potential control device was 0.6 mV. The model of mi-
crocontroller was STC15F2K60S2 and used an ADS1015 analog to digital converter (ADC).
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Figure 2. Schematic diagram of the redox potential controlling device: (1) host computer, (2) micro-
controller, (3) analog to digital converter (ADC), (4) redox potential composite electrode, (5) stirrer,
(6) four-hole boiling flask, (7) water bath heater, (8) peristaltic pump, (9) rubber tube, (10) redox
potential regulator.

2.3. Procedures

Solutions with different redox potentials were prepared by adding redox regulators
to sulfuric acid solutions with a pH of 0.7 and a total Fe concentration of 0.1 mol/kg. The
redox potential regulators were H2O2 (3 wt.%) as the oxidant and ascorbic acid (8 wt.%) as
the reductant.

All leaching tests were carried out at a stirring speed of 300 rpm, a pulp concentration
of 2% (200 mL leaching solution and 4 g ore), and a temperature of 60 ◦C. During the test,
the redox potential of the solution was controlled by the redox potential controlling device,
and data were recorded every 10 s.

The initial pH of the leaching solution was measured using a glass electrode. During
the leaching test, the solution was regularly sampled, 50 µL each time, to measure the
concentration of Cu2+ and Fe by inductively coupled plasma atomic emission spectrometry
(ICP-AES, Agilent 720ES). The sampling loss was compensated by adding equal volumes of
acid. After filtration, washing and vacuum drying, the residue underwent XRD, SEM-EDS,
and XPS.

2.4. Surface Analysis

The S speciation transformations on the chalcopyrite surfaces were analyzed by X-ray
photoelectron spectroscopy (XPS), which was carried out using the EscaLab Xi+ model, and
the spectra were recorded with a constant pass energy of 20 eV and 0.1 eV/step using an
Al K α X-ray source. The obtained XPS spectra were fitted by using Thermo Avantage 5.52
software. During the fitting process, the binding energies of the spectra were calibrated by
the C 1s level at 284.8 eV, the background was achieved by using the Shirley method, and
the spectrum was fitted by the Gauss–Lorentz line (SGL) function.

The phase compositions of chalcopyrite were analyzed by X-ray diffraction (XRD, Ad-
vance D8/Bruker). Jade6 software was used to analyze the XRD patterns. The microstruc-
ture of the pyrite was studied in a scanning electron microscope (SEM, JSM-6490LV/JEOL)
equipped with an energy dispersive spectrometer (EDS, Nepture XM 4/EDAX).

3. Experimental Results
3.1. Leaching under Different Initial Redox Potentials

This study first investigated the leaching of chalcopyrite under initial redox potentials
of 600 mV and 400 mV. Only the initial redox potentials were set to different values, and
the redox potentials were not fixed in the test process. Figure 3b shows the change in
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redox potential with time during the experiment. As shown in Figure 3a, the Cu leaching
rate of the experimental group with an initial redox potential of 400 mV at 23.5 h was
3.47-fold greater than that of the experimental group with initial redox potential of 600 mV.
Therefore, a lower redox potential is more conducive to the leaching of chalcopyrite.
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400 mV and 600 mV, respectively; the redox potential was not fixed in the test process.

In the experimental group with an initial redox potential of 600 mV, the redox potential
of the solution dropped sharply within the first few minutes after adding the chalcopyrite,
and then decreased slowly to 455 mV at 23.5 h, as shown in Figure 3b. The reason for
the decrease in redox potential was that Fe3+ was consumed as chalcopyrite was being
oxidized. The reasons for the sharp drop of redox potential in the initial stage were the rapid
reaction of the fine particles and the surface reconstruction of the ore. In the experimental
group with an initial redox potential of 400 mV, the potential of the solution began to rise
slowly around 5 h, and began to rise rapidly after 16 h, reaching 449 mV at 23.2 h. At the
initial stage, the minerals were oxidized, but at the later stage, Fe2+ was oxidized and the
minerals or intermediate products were reduced. The same experimental phenomenon
was observed by Cordoba [24] and Third [25]. Therefore, the leaching mechanism of
chalcopyrite is different under different redox potentials.

3.2. Controlled Redox Potential Leaching

The redox potential controlling device, shown in Figure 2, was used to perform the
leaching test of chalcopyrite at the redox potentials of 350 mV, 400 mV, 450 mV, 500 mV,
and 600 mV. As shown in Figure 4, the redox potential was precisely controlled. When
the target redox potential was 450 mV, 500 mV, and 600 mV, the ore sample was oxidized,
resulting in a decreasing trend of the redox potential. Oxidizer was added to maintain the
redox potential to the target value.

When the target redox potential was 400 mV and 350 mV, the redox potential showed
a decreasing trend in the first five hours, and oxidant was added; however, after about 5 h,
the redox potential showed an increased trend, and reductant was added.
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Figure 4. Real-time redox potential data with the redox potential controlling device.

Figure 5 shows the test results of the redox potential fixed at 350 mV, 400 mV, 450mV,
500mV and 600 mV. At the redox potential of 400 mV, the leaching rates of Cu and Fe were
the same (Figure 5b). However, at the lower potential of 350 mV and the higher potentials
of 450 mV, 500 mV and 600 mV, the leaching rate of Fe was higher than Cu. In all the
leaching tests, chalcopyrite was leaching at a faster rate at the beginning and then gradually
slowed down. At the redox potential of 400 mV, chalcopyrite was leached at a faster rate
before 7 h; however, after 7 h, the inhibition was more obvious, and the leaching almost
stopped. The Cu leaching rate reached 32% at 7 h, and only 15% in the other experimental
groups. However, at 23.5 h, the Cu leaching rate was only 37%.

Figure 5f shows that the leaching of Cu was faster when the redox potential was
maintained at 400 mV, which was identical with previous experimental results [24,26–28].
When the redox potential was between 400 mV and 500 mV, the leaching of Cu decreased.
When the redox potential was over 500 mV, Cu leaching increased again. This experimental
result is consistent with the activation, passivation, and over-passivation phenomenon in
the presence of a passivating substance. The activation potential is 400 mV, the passivation
potential ranges from 400 to 500 mV, and the over-passivation potential is above 500 mV.
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500 mV and 600 mV, respectively, showing the Cu and Fe leaching rates at different times; (f) Cu leaching rate at different
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3.3. Analysis of Chalcopyrite Leaching Residue

According to the above leaching test results, chalcopyrite undergoes oxidation reaction
at high redox potential, but at low redox potential, there was a reduction reaction causing
the increase in redox potential. Therefore, the leaching mechanism of chalcopyrite is
different at various redox potentials. Different intermediate products may be produced,
such as polysulfide, elemental sulfur, and jarosite. To further study the leaching mechanism
of chalcopyrite at various redox potential, the leaching residues with redox potentials fixed
at 400 mV and 600 mV were analyzed.

3.3.1. XPS Analysis

The S speciation transformations on the chalcopyrite surfaces were analyzed by X-
ray photoelectron spectroscopy (XPS), as shown in Table 2. Due to spin-orbit splitting,
S 2p peak presents a S 2p3/2 and S 2p1/2 doublet. The S 2p spectra were fitted on the
Thermo Scientific™ Avantage software. The area ratio of the two peaks fitted was 2:1,
and the energy difference of the two peaks was 1.2 eV. Figures 6d and 7c show the fitting
results of S 2p peaks. The S 2p2/3 peaks were found to be 161.36 eV (full width at half
maximum, FWHM = 0.84), 162.41 eV (FWHM = 0.84), 163.41 eV (FWHM = 0.84), 164.2 eV
(FWHM = 0.84), and 168.9 eV (FWHM = 1.48), respectively. These peaks are attributed to
monosulfide (S2−), disulfide (S2

2−), polysulfide (Sn
2−), elemental sulfur (S0), and sulfate

(SO4
2−) [29]. According to the fitting results in Figures 6d and 7c and the S species on

the ore sample surface as shown in Table 2, S2−, S2
2-, Sn

2−, S0, and SO4
2− were the major

species of S on the leaching residue surface. According to the S distribution on the surface of
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the ore sample, the oxidation of chalcopyrite was complex with multiple steps. According
to the number of electrons obtained, the oxidation of S2− proceeds in the following process:

S2− → S2−
2 → S2−

n → S0 → SO2−
4 (1)

Whether it was a low or a high redox potential, the leaching residue contained S2−,
S2

2−, Sn
2− and S0 after 23.5 h of leaching. Due to the presence of jarosite deposition at

high redox potential, 10.84% of the sulfur existed in the sulfate. However, sulfate was not
detected in the low redox potential group.

Table 2. XPS test results of the leaching residue.

Experimental Group
Percentage (%)

S2− S22− Sn2− S0 SO42−

400 mV 62.24 15.68 13.76 8.32 0
600 mV 56.10 13.19 12.23 7.65 10.84
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3.3.2. XRD and SEM-EDS Analysis

In the experimental group with redox potential fixed at 400 mV, Cu leaching rate
was significantly different in the initial and later stages. Therefore, leaching residue at
12 h and 23.5 h were selected for SEM detection as shown in Figure 6a,b, and area A of
the chalcopyrite surface and area B of the particles on the ore surface were selected for
EDS detection.

According to the SEM results, many granular intermediate products were generated
and attached to the chalcopyrite surface, and the intermediate products increased over
time. At 23.5 h, mineral particles were almost completely covered by particles formed by
intermediate products (Figure 6b), and the chalcopyrite leaching was inhibited at this time,
as shown in Figure 5b. Therefore, after leaching for a period of time, the covering of a large
number of intermediate products had a significant negative effect on chalcopyrite leaching.

The EDS detection depth is 1–2 µm, and the particle size formed by the intermediate
was 2 µm on average; thus, EDS detection could be used as the basis to judge the elements
contained in the intermediate products. The results (Table 3) show that the particles formed
by the intermediate products not only contain a large amount of S, but also Cu and Fe. The
area A that is not covered by the intermediate is still the intrinsic chalcopyrite.

The XRD result shows that the newly formed phase was elemental sulfur. In addition,
pyrite was nonreactive at low redox potential. With the leaching of chalcopyrite, the
characteristic peak of pyrite in the ore sample, as shown in Figure 6c, becomes more
apparent.
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Table 3. EDS results of the leaching residue.

Detecting Area
Percentage %

Cu Fe S

400 mV—A 26.51 25.33 48.16
400 mV—B 20.18 16.45 63.37
600 mV—C 27.02 26.69 46.29
600 mV—D 18.46 21.66 59.88

The surface morphology of chalcopyrite at a redox potential of 600 mV (Figure 7a) was
significantly different from that at a redox potential of 400 mV (Figure 6a,b). At high redox
potential, intermediate products such as polysulfide and elemental sulfur were oxidized
to sulfate, so the particles formed by the intermediate products on the ore surface were
significantly reduced. However, crystals with particle size less than 1 µm were formed
in large quantities, which not only existed in intermediate particles, but also densely
distributed on the mineral surface.

The XRD result (Figure 7b) shows that the newly produced phases included sulfur
elemental and hydroniumjarosite (H3OFe3(SO4)2(OH)6) at the redox potential of 600 mV.
EDS results show that the Fe content in area D was higher than that in area B, and the
sulfate detected by XPS indicates that the newly formed crystal could be hydroniumjarosite
detected by XRD. Although a large amount of hydroniumjarosite was attached to the
mineral particles, there was still a partially uncovered surface, such as area C.

4. Mechanism of Chalcopyrite Leaching

At 600 mV, the microstructure of the leaching residues showed that most of the surface
of chalcopyrite particles was still uncovered by elemental sulfur and jarosite. Therefore,
elemental sulfur and jarosite may not be the main cause of chalcopyrite passivation.

When the redox potential of the solution was higher than 450 mV, the Fe element
dissolved prior to Cu at the beginning of dissolution process, and then the presence of
polysulfide (S2

2− and Sn
2−) on the surface of chalcopyrite. Therefore, the chalcopyrite pas-

sivation may be caused by the formation of metal-deficient polysulfides on the chalcopyrite
surface due to the preferential leaching of Fe. Linge [2] obtained the same conclusion
when studying the electrochemical dissolution mechanism of chalcopyrite by a potentio-
metric titration technique. The thickness of a metal-deficient polysulfide passivation film
on the chalcopyrite surface is less than 1 µm [30]. Therefore, it was difficult to identify
metal-deficient polysulfides on the chalcopyrite surface by SEM. However, when the redox
potential reached 600 mV, the dissolution of chalcopyrite was accelerated. The possible
reason is that some of the polysulfides on the mineral surface were oxidized and dissolved
under high potential; thus, the passivation was weakened.

At 400 mV, elements Fe and Cu were leached simultaneously. Passivation of polysul-
fides appeared to have been overcome; however, XPS results showed that polysulfide films
still existed.

The Pourbaix diagram of chalcopyrite drawn by HSC Chemistry 6 software, as shown
in Figure 8. There was a deviation between ion activity and concentration in the actual
solution; therefore, Figure 8 is only for qualitative analysis. The upper boundary of
chalcopyrite stability region is connected with CuS and FeS2. At a redox potential of 400 mV,
Cordoba [23] found a presence of CuS in the chalcopyrite leaching process. Therefore, at
low pH, 400 mV may be the stable redox potential for the polysulfide and elemental sulfur
produced by the oxidation of chalcopyrite. In this study, the XRD result of the leaching
residue showed that the pyrite was not oxidized and stable at 400 mV. Therefore, 400 mV
could also be the stable potential for pyrite. Kametani [23] reported that pyrite began to
oxidize at 450 mV (vs. SCE, saturated calomel electrode).
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At a potential of 400 mV, the galvanic effect between pyrite and chalcopyrite may be
the reason for the rapid dissolution of chalcopyrite over the passivation of polysulfide.
The success of Galvanox™ processes also demonstrates the important role of pyrite in
overcoming the surface passivation of chalcopyrite [18]. At high potential, pyrite was
oxidized to destroy the galvanic effect, so the copper leaching rate decreased significantly.
At 400 mV, the dissolution of chalcopyrite could not be hindered until the granular inter-
mediates including elemental sulfur and polysulfides accumulated to a certain amount on
the chalcopyrite surface, as shown in Figure 7b.

The dissolution of chalcopyrite produces elemental sulfur, and 400 mV is the stable
redox potential of CuS and FeS2. Therefore, it is speculated that when chalcopyrite was
leaching at 400 mV, the reason for the increasing tendency of redox potential in the later
period may be caused by the formation of CuS and FeS2 by Fe2+, Cu2+ and elemental sulfur:

2S0 + 3Fe2+ = FeS2 + 2Fe3+ (2)

S0 + Cu2+ + 2Fe2+ = CuS + 2Fe3+ (3)

When the redox potential was fixed at 350 mV, almost all Fe in the solution existed
as Fe2+. Even though pyrite was stable, chalcopyrite was leached slowly under the action
of ferrous and sulfuric acid because of the weak oxidation capacity of the solution. Hi-
royoshi [31] believed that Fe2+ would inhibit the chalcopyrite leaching, but in the presence
of a large amount of Cu2+, Fe2+ could reduce chalcopyrite to Cu2S:

CuFeS2 + 3Cu2+ + 3Fe2+ = 2Cu2S + 4Fe3+ (4)

This reaction also revealed the reason why the solution redox potential had an upward
trend in the later stage, when the redox potential was fixed at 350 mV.

5. Conclusions

In this paper, chalcopyrite leaching tests were carried out with a redox potential
controlling device based on microcontroller technology. The effect of redox potential on
chalcopyrite leaching at 60 ◦C was studied. The preferential dissolution of Fe led to the
formation of Fe-deficient polysulfides on the surface of chalcopyrite, which hindered the dif-
fusion of ions from the chalcopyrite/passivation film interface to passivation film/solution
interface, thus resulting in passivation. At 400 mV, due to the presence of pyrite contained
in the raw ore or produced by chalcopyrite oxidation, the galvanic effect between chalcopy-
rite and pyrite overcame the passivation of chalcopyrite by metal-deficient polysulfides.
When the redox potential of the solution was increased, the pyrite was oxidized and the
galvanic effect between chalcopyrite and pyrite was destroyed, so the Cu leaching was
decreased. However, with the continuous increase in potential, the dissolution of polysul-
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fide was increased, and the Cu leaching was increased again. The possible reason is that
some of the polysulfides on the mineral surface were oxidized and dissolved under high
potential, thus the passivation was weakened.

At 400 mV, the granular intermediate produced on the chalcopyrite surface did not
inhibit the chalcopyrite leaching at the initial stage. However, the dissolution of chalcopy-
rite was significantly inhibited when the mineral particles were almost completely covered
by intermediate products due to the continuous accumulation of intermediate products.
In this study, there was not enough evidence to suggest that surface jarosite was the main
cause of chalcopyrite passivation.
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