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Abstract: This paper demonstrates a novel approach that uses wavelet tessellation in rapid analysis
of raw geochemical data produced by laser-induced breakdown spectroscopy (LIBS) to produce
pseudologs that are representative of stratigraphy. Single-line LIBS spectral data for seven major
rock-forming elements (Al, Ca, Fe, Mg, Si, Na and K) were collected from a synthetic 22-sample
rock-block comprising two distinct lithological groups based on mineralogy, chemistry and texture:
plutonic rocks and marble. Seven sublithologies are identified within the rock-block from traditional
laboratory whole-rock geochemical analysis: marble, Mg-marble, granite, quartz monzonite, foidolite,
granodiorite and gabbroic diorite. Two-domain clustering (k = 2) on raw spectral LIBS data combined
with wavelet tessellation was applied to generate a simplified lithological stratigraphy of marble
and plutonic rocks and generate a pseudolog identical to the rock-block stratigraphy. A pseudolog
generated from seven-domain clustering (k = 7) and wavelet tessellation successfully discriminated
most sublithologies within the rock-block slabs, especially marble slabs. Small-scale units were
identified within the more mineralogically and geochemically complex plutonic slabs. The spatial
resolution of the LIBS analysis, with a measurement spacing of ~0.35 mm, allowed for assessment of
individual mineral compositions and rock textures, and small-scale units within the plutonic rocks
can be correlated to specific coarse-grained minerals or mineralogical associations. The application
of the wavelet tessellation method to raw LIBS geochemical data offers the possibility of rapid
and objective lithogeochemical analysis and interpretations which can predate further analysis
(quantitative) and supplement geological logging.

Keywords: LIBS; wavelet tessellation; lithogeochemistry; geological logging; multivariate analysis;
k-means

1. Introduction

Classification and discrimination of rocks is commonly performed by geologists via vi-
sual inspection in the field during mapping or by geological logging of drill core. However,
visual interpretation of rock lithology is notoriously subjective to human interpretation
(e.g., Curnamona Province: [1,2]). For drill core analysis, significant advancements in
technologies that offer generation of rapid and standardized compositional data have been
realised, including new tools using laser-induced breakdown spectroscopy (LIBS; e.g., ELE-
MISSION Inc. Coriosity), X-ray fluorescence (XRF; e.g., Minalyzer CS®), and hyperspectral
imaging (e.g., Corescan® Hyperspectral Core Imager Mark III). The utilization of analytical
devices for collection of standardized data, coupled with rapid and reliable techniques for
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extracting geological information (e.g., clustering algorithms) has the potential to supple-
ment or replace traditional geological classifications done through visual inspection. This
will reduce inconsistency, generated from the subjective manual interpretation, therefore
improving rock classification and geological logging. Furthermore, rapid generation of
quantitative data brings about the possibility of automated workflows.

Advances in technologies for rapid collection of geochemical data also implies gen-
eration of increasingly larger datasets. Therefore, techniques able to extract geological
information in fast and effective ways are also in increasing demand. Such techniques
include the recently developed Data Mosaic web application [3,4], which utilises contin-
uous wavelet transform to identify geological boundaries from numerical data, such as
geochemistry, and can generate pseudologs. The conversion of streams of geochemical
data into pseudologs provides a useful visual summary of the information that can be
assessed at various scales to extract spatial information on broad lithological boundaries
and lithogeochemical characterisation [4–6]. Applications such as Data Mosaic have the
additional advantage of providing an objective assessment of geochemical data.

Of interest in this study is the application of rapid objective geochemical data analysis
to interpret LIBS spectral datasets collected from rocks in the context of mineral exploration.
The particular attraction of LIBS for lithogeochemical analysis is the ability to analyse
light elements (H, He, Li, Be, B, C, N, O, Na, Mg) that can be present in abundance within
natural materials but are difficult to determine by many other analytical techniques, such as
X-ray fluorescence (XRF) [7]. LIBS is also able to detect all elements with limits of detection
mainly in the ppm range [8]. Rapid LIBS geochemical datasets can be generated in a
laboratory or in the field/on-site during a mineral exploration campaign using handheld
equipment [7], or drill core scanners [9,10]. LIBS also has the advantage in that it has
been successfully applied to solve geological problems in harsh environments, including
for sediment and rock characterisation on Mars (ChemCam instrument: [11–13]), and in
situ characterisation of geological samples at active hydrothermal vents in the deep sea
(ChemiCam instrument: [14]).

Here it is introduced the use of wavelet tessellation for rapid analysis of geochem-
ical data generated by LIBS to produce pseudologs that are representative of geological
stratigraphy. This has been performed by collecting LIBS spectral data on a 22-sample
block comprising glued domestic plutonic rocks and marble slabs that have been well
characterized mineralogically (XRD) and geochemically (XRF). Clustering algorithms were
performed on the LIBS data to separate groups representative of rock-types. Wavelet tessel-
lation was undertaken to produce pseudologs of the rock slab stratigraphy. Comparison of
the laboratory data and known rock lithology with the wavelet tessellation pseudolog is
presented and shows the potential of application of wavelet tessellation technique in rapid
interpretation of raw geochemical data produced by LIBS.

2. Methodological Background
2.1. LIBS Applications

LIBS is a method of atomic emission spectroscopy. In its basic form, a LIBS measure-
ment is carried out by forming a laser plasma on or in a sample and then collecting and
spectrally analysing the plasma light. Using calibrated samples, qualitative and quantita-
tive analyses are performed by monitoring emission line positions and intensities [15,16].
LIBS is a technique of high interest due to its simple set up, ability to excite samples in
all states of matter and analyse almost every element in the periodic table at variable
distances from the target. Furthermore, limited or no sample preparation is required.
The technique has several industrial applications, including agriculture and food [17,18];
biomedicine [19]; steel and metal [16,20]; and mining and mineral exploration [10,21,22].
In particular, industrial applications are frequently very profitable because of the relatively
low cost and rapidity of the technique [18].

The mentioned characteristics together with recent significant technological develop-
ments, including miniaturization and ruggedization of the components (lasers, spectro-
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graphs, detectors) [16,23], contributed to the development of deployable LIBS apparatus
able to analyse and classify in situ geological materials, operate in harsh environments
such as in deep sea [14,24] and on Mars [11,13], and to the recent advancement of handheld
and top-of-hole techniques and workflows for rapid geochemical analysis.

Gómez-Nubla et al. (2018) [25] present a rapid, simple and cost-effective alternative
for in situ analysis of terrestrial analogues to meteorites utilizing handheld LIBS equipment.
Harmon et al. (2019) [7] through a series of case studies show the wide potential of LIBS
in mineral exploration, prospect evaluation, deposit exploitation, and quality control in
mining activities. Harmon et al. (2019) [7] also demonstrate that the technique is ideally
suited for field exploration programs that would benefit from rapid chemical analysis under
ambient environmental conditions. Finally, Rifai et al. (2018) [10], in response to the need
of the mining industry to perform in situ and real-time measurements of mineral content
of drill cores, demonstrate an approach for fast high-resolution multielemental mapping of
geological samples with no or minimal sample preparation using a LIBS scanner device.

2.2. Wavelet Tessellation Method for Geochemical Analysis

The wavelet tessellation method involves using edge detection algorithms to identify
points of sharp variation in a measured signal. These edges (or boundaries) separate
regions of low variation, which can be interpreted to represent objects in a signal [3] that
can be classified into different domains. Wavelet transform [26] is an edge detection method
that describes signals qualitatively and can manage the ambiguity of scale in an organized
way. Several studies have applied the wavelet transform to detecting geological features
from drill hole data, primarily for wireline log data [27–30].

The wavelet tessellation method was used by Hill et al. (2015) [3] to determine
lithological contacts from downhole geochemical data. It incorporates spatial information
and applies a rectangular tessellation to the wavelet transform producing two-dimensional
scale-space plots with hierarchical boundaries detected over all scales of observation. Large
scale domains represent rock packages of common geochemistry (i.e., stratigraphic unit)
and are composed of progressively smaller scale domains. Smaller domains have more
subtly different chemistry and may represent features such as individual rock lithologies
(Figure 1). The tessellation is intuitive to geologists as it resembles a traditional geological
log but with multiple potential scales of boundary selection [30].

The wavelet tessellation method has been successfully used for classification of ge-
ological units in mining and mineral exploration scenarios. Le Vaillant et al. (2017) [6]
utilised wavelet tessellation with univariate data as a repeatable and less subjective al-
ternative for geological classification prior to 3D modelling at the Kevitsa Ni-Cu-(PGE)
deposit. In the mineral exploration context, Hill and Uvarova (2018) [5] extracted geological
information from geochemical data derived from exploration drill holes and generated
pseudologs with less misclassifications when compared with geologists logging of the
same drill cores. Both of those applications were using univariate datasets, and more
recently, a multivariate version of the wavelet tessellation method, Data Mosaic, is de-
scribed in Hill et al. (2020) [4] which is accessible through the Data Mosaic web app
(https://datamosaic.geoanalytics.group/) (access date: 28 January 2021).

Hill et al., (2020) [4] highlight that success in generating pseudologs utilising the Data
Mosaic method is dependent on factors including: regular sampling intervals at the highest
possible resolution; at least one pure (nonmixed) sample for correct classification of rock
units (i.e., the smallest lithology intersection must be at least two sampling intervals in
length); the careful selection of variables that represent geological processes of interest for
the application. For example, if the goal is primary rock type classification, then selection
of immobile elements is more appropriate than trace metals or highly mobile elements. The
quality of the pseudologs is limited by the quality of the data, for instance the noise from
measurement error or natural compositional variation in rocks will impact the boundary
depth accuracy estimate, e.g., XRF measurement of light elements, such as Al, may present
low signal-to-noise ratios and therefore are unreliable.

https://datamosaic.geoanalytics.group/
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interpret a multielement geochemical dataset after Hill et al. (2020) [4]. Plots were produced using the Data Mo-
saic online web application (https://datamosaic.geoanalytics.group/) (access date: 28 January 2021). (a) Plots of 
scaled signals of elements of interest; (b) sample classification pseudolog at scale 0.0, samples are coloured by 
lithogeochemical classification at lowest boundary strength (domain classification) equals 0.0; (c) multiscale 
domains coloured by lithogeochemical classification. 
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Twenty-two rock samples were selected based on two criteria: 1. to fall within two 
discrete rock types with considerably different chemistry: plutonic rocks (mainly granit-
oids) and marble; 2. so that each discrete rock type includes lithological subcategories of 
more subtle geochemical difference (e.g., dolomite vs. calcite marble and granite vs. dio-
rite). The 22 rock slabs were glued together to produce a stratigraphically diverse, contin-
uous block of approximately 16 cm length (Figure 2). The rock slabs were positioned in 
such a way that similar rocks occur next to each other (i.e., geochemically subtle bound-
ary) or are separated by contrasting rock-types (i.e., geochemically obvious boundary). 
Prior to LIBS analyses, the rock-block surface was slightly polished to remove any saw 
marks. 

Figure 1. Example of input data and resulting plots generated from using the wavelet tessellation method to interpret
a multielement geochemical dataset after Hill et al. (2020) [4]. Plots were produced using the Data Mosaic online web
application (https://datamosaic.geoanalytics.group/) (access date: 28 January 2021). (a) Plots of scaled signals of elements
of interest; (b) sample classification pseudolog at scale 0.0, samples are coloured by lithogeochemical classification at lowest
boundary strength (domain classification) equals 0.0; (c) multiscale domains coloured by lithogeochemical classification.

The primary advantage of the Data Mosaic wavelet tessellation method [4] is its
multivariate capability in which multiple variables can be integrated by combining their
boundary locations and strengths, generating multivariate mosaic plots. Boundaries are
extracted for each variable, boundaries strengths, which are based on first wavelet coeffi-
cients, are rescaled for each variable, so the boundaries are comparable and boundaries for
all variables are added into a single set. If two boundaries are at the same location, then
they are combined into a single new stronger boundary. Lastly, the boundary strength is
rescaled again, e.g., [0,1] (In Figure 1 observe that the strongest boundary around depth
600 m is result of a sharp variation in all variables).

The mosaic plots are classified according to an independent classification system
applied to the data (e.g., clustering algorithms). A clear understanding of the objective
of the analysis as well as the available datasets (e.g., utilisation of immobile elements for
lithogeochemical classification and the use of the right pathfinders for mineral exploration)
is critical to ensure optimal variable and algorithm selection for subsequent meaningful
interpretation. Dimensionality reduction methods (e.g., principal component analysis—
PCA; low variance filter) can be applied beforehand and help on the understanding of the
data thus on the variable selection.

There are several commonly used clustering algorithms for geochemical data and
no general consensus on which performs best for clustering rock types from drill hole
data or to be the most useful for compositional geology data in general [31]. Each method
has inherent limitations in its application and algorithm selection is often dependant on

https://datamosaic.geoanalytics.group/
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the question being asked, the available data, and user preference. For example, Hill et al.
(2020) [4] applied the k-means method for the generation of 20 clusters correspondent to
the 20 logged lithological units for lithogeochemical analysis through wavelet tessellation
and analysis of classified mosaic plots. The choice of the k-means method was based on its
common application as a benchmark machine learning algorithm for comparison to other
algorithms and that that k-means generally works reasonably well for large datasets.

The final objective of the analyses demands a strategy that should drive the choice of
the selected variables, and the classification system to be applied to the data should be fit
for purpose (see also [4]). The number of clusters selected can be approximately equivalent
to the number of rock types logged by other methods [4], or it can be less if the objective is
upscaling the classification [6].

Applying the wavelet tessellation method to raw LIBS data for lithogeochemical
interpretation is facilitated as the method utilises numerical values of interval or ratio
scale for tessellation. Therefore, raw LIBS data, which corresponds to counts at specific
wavelengths that correspond to known chemical elements, can be directly input into the
Data Mosaic web application, without the need for extensive data manipulation. Moreover,
if the data is collected at a small enough scale, then it may be used to assess mineralogy
and interpretation can be done in order to minimize the effect played by heterogeneous
and coarse-grained textured surfaces on laser-beam sampling techniques.

3. Materials and Methods
3.1. Sample Selection

Twenty-two rock samples were selected based on two criteria: 1. to fall within two
discrete rock types with considerably different chemistry: plutonic rocks (mainly granitoids)
and marble; 2. so that each discrete rock type includes lithological subcategories of more
subtle geochemical difference (e.g., dolomite vs. calcite marble and granite vs. diorite).
The 22 rock slabs were glued together to produce a stratigraphically diverse, continuous
block of approximately 16 cm length (Figure 2). The rock slabs were positioned in such a
way that similar rocks occur next to each other (i.e., geochemically subtle boundary) or are
separated by contrasting rock-types (i.e., geochemically obvious boundary). Prior to LIBS
analyses, the rock-block surface was slightly polished to remove any saw marks.

3.2. Whole-Rock Geochemistry and Lithological Classification

Circular cut-off pieces of approximately 75 mm diameter (~200 g of material) were
used for whole-rock XRF analysis by Labwest Minerals analysis, Perth, Australia. Pulps of
the cut-off pieces of 22 rock slabs, were prepared at the CSIRO (Commonwealth Scientific
and Industrial Research Organisation) Mineral Resources XRF lab at Clayton. These
samples were ground and analysed by conventional X-ray fluorescence Fusion for major
oxides (SiO2, Al2O3, CaO, Na2O, Fe2O3, K2O, Mn3O4, P2O5, and TiO2). Lithological
classification was done using discriminant diagrams; a CaO-MgO-Fe2O3 diagram was
utilised to classify marble slabs and the commonly used total alkali versus silica diagram
(TAS) for plutonic slabs. Laboratory whole-rock geochemistry to classify the rock slabs was
used to provide an objective lithological assignment that is independent of the LIBS data
being tested.

3.3. XRD Analysis

The pulps prepared at the CSIRO Clayton Lab were subsequently analysed by X-
ray diffraction (XRD), a subsample (<1 g) of ~200 g of homogenised pulverized material
for each sample was used in the XRD analysis. The analyses were conducted at CSIRO
Kensington using a lab-based Bruker D4 Endeavor AXS instrument operating with Co
radiation at CSIRO Mineral Resources, ARRC (Australian Resources Research Centre) in
Perth, Western Australia. Data was collected for a range of 2θ angle from 5 to 90◦, with a
step size of 0.02◦ and data collection time of 7 min per sample. Sample preparation for the
analysis on the Bruker instrument required the material to be backpacked into a sample
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holder which may cause preferred orientation effect for crystallites, particularly of platy
shape (e.g., micas, chlorites), which has implications for their quantification.
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Figure 2. Rock block assembled for this study. (a) Rock block of approximately 16 cm length,
composed of 22 distinct rock slabs; (b) lithogeochemical log of the rock block. Lithologies assigned
according to CaO-MgO-Fe2O3 (for marbles) and total alkali versus silica (for igneous plutonic rocks)
discrimination diagrams and using whole-rock geochemical data.

The obtained XRD patterns were processed using the software package DIFFRAC.EVA
which is based on the reference intensity ratio [32]. The final outcome of XRD analysis is
the identification of all mineral phases (with mineral abundances greater than the limit of
detection, which is typically around 3%) in the sample and an estimate (semiquantitative)
of their abundance.

3.4. LIBS Analysis

LIBS analyses were conducted on the rock block assembled for this study using
a 1064 nm pulsed Nd:YAG laser, manufactured by Montfort LaserTM (Götzis, Austria),
firing at a repetition rate of 5 Hz on the target mounted on a motorized stage moving
the sample across the laser at 10 mm/min. The analysis took approximately 16 min to
be conducted. The laser spot size at the sample surface was approximately 0.025 mm.
Therefore, the stepper motor velocity and pulse frequency were selected such that the
distance between each analysis pulse was 0.033 nm, which provided a clear separation
between analysis pulses. Subsequently each 10 analyses were averaged into one spectrum.
Individual analyses from the edges and between two rock slabs exhibiting considerably
lower counts compared to adjacent analyses were removed in order to not create or enhance
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chemical boundaries on the spatialized LIBS data. The intervals referring to the discarded
analyses were averaged and distributed along the single analysed pass length. In total,
460 spectra distributed along 161 mm were utilised for this study. Therefore, each spectrum
corresponds to approximately 0.35 mm.

Data in the spectral range of 190 to 830 nm was collected using a time-gated, charge
coupled device detector system and two spectrometers, manufactured by Ibsen photonics
(Denmark), each covering the wavelength intervals of 190 to 435 nm and 360 to 830 nm.

Raw LIBS data for Al (309 nm), Ca (317 nm), Fe (259 nm), Mg (285 nm), Si (288 nm),
Na (588 nm) and K (769 nm) was generated by monitoring wavelength and intensity of
emission lines and converted into a numbers signal reflective to the number of counts at
specific wavelengths. The emission line for a given element was selected based on the most
commonly used emission line for calibration described in the literature, peak intensity,
presence in all samples, as well as to minimise peak overlaps. The specific wavelength
intervals of a given emission line were matched to corresponding chemical element and
the peak area was calculated for each emission line thus generating geochemical data. The
raw LIBS data utilised in this study can be found in the supplement material section.

3.5. Data Mosaic Analysis

Raw LIBS geochemical data was analysed using the free online web application Data
Mosaic (https://datamosaic.geoanalytics.group/) (access date: 28 January 2021) following
the Data Mosaic workflow of Hill et al. (2020) [4]. Analysis included sample clustering
using the k-means algorithm, wavelet tessellation and the generation of mosaic plots and
pseudologs for comparative purposes.

In this study, classification systems for two and seven clusters (k = 2 and k = 7)
were created using k-means clustering for rock-type discrimination, corresponding to the
number of major and sublithology types manually identified. The major elements Al, Ca,
Fe, Mg, Si, Na and K were used as these are the dominant elements controlled by the
expected mineralogy of granites and marbles, and all have well resolved and characterized
LIBS emission lines.

The data visualization provided by the classified mosaic plots offers an intuitive
display of multiscale analysis that can be used as a geological log, and the results can be
directly compared to the input data and to the original samples as it retains information
at all scales. The high spatial resolution of the LIBS data (each analysis corresponds to
~0.35 mm) was used to investigate individual minerals and the textural composition of the
rock slabs through integration of mosaic plots with XRD data.

4. Results
4.1. Rock Slab Chemical Composition

Whole-rock geochemical data for all slabs is given in Figure 3.
The marble slabs are mainly composed of CaO (30.9 to 54.2%) and MgO (0.56 to 22%),

with lesser SiO2 (<7.61%), Fe2O3 (<0.69%) and Al2O3 (<0.92%) (Figure 3).
For the plutonic rocks (slabs 2, 6, 7, 9, 10, 11, 13, 14, 18, 19, 20, 21), SiO2 is the dominant

chemical component and ranges from 49.02 to 74.8%. Significant other major element
concentrations include Al2O3 (8.73 to 25.5%), CaO (0.27 to 11.2%), Fe2O3 (0.59 to 8.43%),
Na2O (1.22 to 11.14%) and K2O (0.24 to 6.44%).

The marble slab samples plot into two main groups on the CaO–MgO–Fe2O3 ternary
diagram (Figure 4a) and are split by their relative CaO and MgO content. Seven samples
are dominated by CaO (>44.7%) with lesser MgO (<6.31%) and are classified as ‘marble’.
Three samples are classified as ‘Mg-marble’ (MgO > 18.5%; CaO < 36.6%).

The plutonic rocks are subdivided into five distinct lithologies based on the TAS
diagram: granite (slabs 6,10,13,18, 20), granodiorite (slab 7), quartz monzonite (slabs 2, 11),
gabbroic diorite (slabs 14, 19, 21) and foidolite (slab 9) (Figure 4b).

https://datamosaic.geoanalytics.group/
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Figure 3. Results of whole-rock geochemical analysis for the 22 rock slabs in oxides. Samples dominated by CaO (blue
colour) are marbles. Samples dominated by SiO2 (grey colour) are plutonic rocks (mainly granitoids). Detail on rock slab
lithology is given in Figure 4. (Note: Loss on ignition (LOI) is not reported here. It is expected that carbonate-dominated
samples will have high LOI (~40–50%) due to CO2 generation during heating.

The resulting lithogeochemical log for the rock slab pseudostratigraphy based on
whole-rock geochemical data is shown in Figure 2b.

4.2. Rock Slab Mineralogical Composition

Results of XRD analysis are presented in Figure 5.
The marble slabs are dominated either by calcite or dolomite, which are the only

carbonate phases present. Slabs 1, 4, 5, 12, 15, 16, 22 are calcite dominated, with 60–98%
modal abundance. Slabs 3, 8, 17 are dominated by dolomite (52–99%). Slab 4 comprises
~35% brucite and is otherwise dominated by calcite (~60%) with minor dolomite (~5%).
Minor mineral phases in the marble slabs are muscovite (<~7%) and quartz (<3%).

The main rock-forming minerals in plutonic rocks include quartz (15–31%), microcline
(0–47%), albite (0–55%) and anorthite (0–81%). Biotite is found in the majority of the
plutonic samples and is of highest abundance in slabs 7 (32%), 18 (34%) and 19 (61%).
Other micas include muscovite (<28%) and chlorite (<8%). Sodalite (foid) constitutes 20%
of slab 9. Pyroxene and magnetite are restricted to slab 14, and amphibole to slabs 2 and 12.

It is important to clarify that as conventional XRD is a semiquantitative technique that
these mineral abundances should be considered as semiquantitative with errors of ±3%.
There are also inherent complexities in the quantification of mica minerals (muscovite,
chlorite, and biotite) which results in overestimation due to the preferred orientation effects.
This preferred orientation is a common effect for minerals that have platy crystallites when
the sample is prepared using the back-packed technique for conventional XRD analysis.

4.3. Mosaic Plots and Pseudologs
4.3.1. k = 2 Clustering

K-means clustering with k = 2 was undertaken to represent a simplified lithological
stratigraphy of the two known rock types, marble and plutonic rocks. The simplified
two rock type stratigraphy is based on whole-rock geochemical data (Figure 4) and visual
inspection of the slab mineralogy. Slabs 1, 3, 4, 5, 8, 12, 15, 16, 17, and 22 were classified as
marble, and slabs 2, 6, 7, 9, 10, 11, 13, 14, 18, 19, 20 and 21 as plutonic. K-means clustering
was applied on raw LIBS data using the peak areas from the major emission lines for seven
major chemical elements (Al 309 nm, Ca 317 nm, Fe 259 nm, Mg 285 nm, Si 288 nm, Na
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588 nm and K 769 nm) (Figure 6a). Those same elements were input into the Data Mosaic
multivariate wavelet tessellation for boundary detection, and the units identified by the
wavelet tessellation were classified based on the clustering results (Figure 6b).
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the plutonic rocks. Numbers shown next to sample points correspond to the rock slab number shown in Figure 2a. Sample
colours legend is shown in Figure 2c.
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Figure 6. Results for k = 2 cluster analysis of raw laser-induced breakdown spectroscopy (LIBS) data based on classification
by k-means clustering. (a) Scaled variables; (b) multiscale mosaic plot showing the boundaries detected by wavelet
tessellation from raw LIBS data with the k = 2 cluster classification applied; (c) simplified marble vs. plutonic rocks block
stratigraphy based on laboratory whole-rock geochemistry; (d) pseudolog of the domain classification at domain scale = 0.
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At domain scales from 0 to ~15, a pseudolog showing only the domain classification
boundaries from the mosaic plot matches well with the geological log (compare Figure 6c
to Figure 6d). In this domain classification pseudolog, the blue blocks correspond to areas
of chemistry dominated by Ca and Mg, and the lack of variation in chemistry across
individual slabs is evidenced by the relatively few boundaries detected by the wavelet
tessellation in those regions (Figure 6b). The blue regions match well with the marble in
the rock slab stratigraphy and are therefore able to be labelled as such (Figure 6c,d). Within
the red blocks in the pseudolog, the chemistry is highly variable, and this is reflected
in the many small-scale boundaries detected by the wavelet tessellation in those region
(Figure 6b). These blocks match well with the plutonic slabs in the rock slab stratigraphy
and are therefore labelled plutonic rocks (Figure 6c,d).

Comparison between the mosaic plot (Figure 6b) and the input data (Figure 6a)
provides a visualization of how the boundary locations are related to the signals input
into the tessellation. Boundaries between marble and plutonic rocks are controlled by the
strong negative correlation between Ca and Mg, mostly present in marble slabs, and Si, Al,
K, Na, Mg and Fe, mainly found within plutonic samples. The multivariate nature of these
boundaries accounts for their strength in the multiscale domain plot, in which they extend
to the higher domain scales (>30) (Figure 6b). Boundaries between slabs of same lithology
can also be observed along the input data, and this is reflected in the multiscale domain
plot. For instance, among plutonic slabs at depth = 100 mm a Si, Al and Na rich slab is in
contact with a Fe and Mg dominated slab evidenced by the strong (scale ~90) boundary
detected by the tessellation, and around 30 mm depth a Mg rich marble slab is adjacent
to relatively Mg poorer marble slab which is shown by the weaker boundary of scale ~30.
The relative strength of 100 mm and 30 mm boundaries is related to the multivariate, and
univariate nature. While the classification here follows a k = 2 clustering analysis and no
further classifications are made at those points, the wavelet tessellation method clearly
identifies those boundaries, indicating that there is a change in sample chemistry and that
perhaps a classification scheme with more clusters (k > 2) should be pursued to better
describe the stratigraphy.

4.3.2. k = 7 Clustering

Seven domain clustering was done to assess the ability of the wavelet tessellation
method to discriminate between the seven sublithologies within the sample set as identified
from whole-rock geochemistry and rock-discriminant plots: marble (slabs 1, 3, 5, 12, 15, 16,
22), Mg-marble (slabs 4, 8, 17), granite (slabs 6, 10, 13, 18, 20), gabbroic diorite (slabs 14,
19, 21), quartz monzonite (slabs, 2, 11), granodiorite (slab 7), and foidolite (slab 9). Raw
LIBS data of the same seven major rock-forming elements (Al, Ca, Fe, Mg, Si, Na and K) as
applied to the two-domain analysis were used in the seven-domain analysis (Figure 7a)
and applied to wavelet tessellation. The resultant mosaic plot produced using wavelet
tessellation and k = 7 clustering analysis is shown in Figure 7b.

A domain classification pseudolog that is most similar to the rock-block stratigraphy
defined from the whole-rock geochemical data occurs at a domain scale of 20 at domain
scale 20 (Figure 7c,d, also see Figure 2b). This domain scale captures the boundaries of some
slabs that are well defined from domain scales of 0 to ~80 (e.g., boundaries of slabs 7, 8 and
9). However, at domain scales higher than 30 the mosaic plot starts to show classifications
that are not related to the composition and distribution (spacing) of the slabs (Figure 7d).
Conversely, some classifications at domain scale 20 and lower show more variations than
are observed in the rock-block stratigraphy (intradomain classifications), which may be
attributed to smaller scale features of individual rock slabs (e.g., mineralogical variation).

Of the 22 rock-slabs, 16 were similarly classified and with boundaries almost identical
to the rock block stratigraphy (compare Figure 7c,d). Marble and Mg-marble sublithology
slabs were remarkably well classified with clearly defined boundaries. The only exception
is the contact between slabs 7 (granodiorite) and 8 (Mg-marble). The plutonic slabs are
mineralogically, and therefore geochemically, more complex than the marble slabs. This is
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reflected in the scaled variables (Figure 7a), in the classified mosaic plot (Figure 7b) and in
the domain classification pseudolog as multiple classifications being identified within a
single plutonic rock slab (e.g., Figure 7c, slabs 2, 11 and 14).
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The classification of marble is representative of portions relatively rich in Ca with lesser
Mg and low Al, Fe, Si, Na, and K counts. Mg-marble classification is also characterised by
high Mg and Ca counts in relation to Al, Fe, Si, Na, and K counts, however Mg counts are
always dominant.

The quartz monzonite classification correlates with the quartz monzonite slabs (2
and 11), but also occurs as part of the granite slab 6. Pairing the mosaic plot to the scaled
variables, it is noticeable that quartz monzonite classification is associated to high K counts.
The alkali-rich granitoid classification is characterised by relatively high K, Na, Al and Si
high counts over low Fe, Mg and Ca counts and in the mosaic plot corresponds to slabs
9, 10 and 6 and parts of slabs 20, 13 and 11. The granite classification in the mosaic plot
mainly corresponds to slabs 13, 18, and 20, and to a lesser extent parts of slabs 2, 6 and 11.
The granite classification shows a similar geochemical signature to alkali-rich granitoid but
has relatively higher Si counts.

The mafic plutonic rock classification corresponds mostly to Slab 7 (granodiorite),
parts of gabbroic diorite slabs (14, 19, and 21), and minor parts of quartz monzonite slabs
2 and 11. The mafic plutonic rock classification is associated with relatively high Fe and
often Al counts as well as variable K and Mg counts. The Fe and Mg rich plutonic rock
classification applies to slab 14, which exhibits the highest Fe counts followed closed by
Mg and less obviously by Si.

5. Discussion
5.1. Assigning Pseudostratigraphy

Assigning pseudostratigraphy for the k = 2 classification was relatively simple as
plutonic rocks (mainly granitoids) and marble are chemically distinct. The strong negative
correlation between Ca and Si, mainly found within marble and plutonic samples respec-
tively, drives the classification and detection of the main boundaries between the two rock
types (Figure 8). The strongest boundaries are multivariate boundaries, in this case relative
to correlated sharp variations on Si and Ca signals.

The mosaic plot generated by applying the wavelet tessellation method on LIBS
data (Figure 6b) closely relates to the two-lithology simplified rock-block stratigraphy
(Figure 6d). Due to its multiscale nature, the mosaic plot provides more detail in a 2D
visualization than a conventional stratigraphic column. Simplifying stratigraphy to larger
scale domains would be useful for very large-scale interpretation (e.g., building a regional
3D geological model). However, it is not suitable for detailed geological interpretations and
lithogeochemical analysis, as the domain detection by wavelet tessellation indicates that
there is greater complexity in the system, mainly within plutonic rock slabs, that cannot be
fully described by two classifications (Figures 6b and 8). To investigate this further, k = 7
clustering was performed.

Each of the seven coloured classifications (Figure 7b,c) corresponds to a characteristic
chemistry. Therefore, each of these coloured classifications can be assigned a lithological
description based on the characteristic chemistry of each other (k = 7 clustering section), and,
ultimately be tested by comparing it to whole rock geochemical (XRF) and mineralogical
(XRD) data. Classifications from domain scale 0 to 30 (Figure 7b) display geological
meaning. The pseudolog of the classification boundaries generated at domain scale 20 is
the closest match in slab divisions to the known stratigraphy (Figure 7d). It also shows
finer scale boundaries within the stratigraphy. Both marble and Mg-rich marble rock-slabs
are well classified and delimited in the pseudolog (Figure 7c). The exception is a small part
of slab 8 (Mg-marble) that is in contact with slab 7 (granodiorite) and that is classified as
marble. This misclassification is suggested to be the result of inadequate laser focusing and
consequently poor plasma generation in between two slabs resulting in lower counts.

In the pseudolog of the classification boundaries, slabs 2, 6 and 11 are partly classified
as quartz monzonite (Figure 7c). The quartz monzonite classification is characterised by
relatively high K counts, followed by less abundant Si, Al, Na, and Fe counts (Figure 7a,b).
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The dominant K-bearing mineral of slabs 2, 6 and 11 is microcline, with lesser biotite
(Figures 5 and 9).
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Figure 8. Ca (317 nm) and Si (288 nm) LIBS data combined boundaries generated through wavelet
tessellation. Note that superimposed sharp variations on Ca and Si counts are related to the strongest
boundaries (multivariate boundaries) and the presence of intraslab boundaries suggests the possibil-
ity of refined classifications, mainly relative to plutonic slabs. (M = marble, P = plutonic; classification
from whole rock geochemistry data, Figure 4).

The alkali-rich granitoid classification corresponds to slabs 9 and 10 and parts of slab
6 and 11. Slabs 6 and 10, which are classified mostly as alkali-rich granitoid, are slightly
enriched in alkalis (K2O + Na2O > 8.16%) compared to slabs 13, 18 and 20, which are
classified as granite (K2O + Na2O < 7.53%). Slab 9 (foidolite) is also classified as alkali-rich
granitoid. The high Na content of slab 9 is attributed to its mineralogy being dominated
by albite (46%) and sodalite (20%), which is responsible for grouping it along other high
alkali granitoid.
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Figure 9. Detailed examination of slabs 6, 13, 14 and their classified data mosaic plots for mineralogical and textural analysis
showing the hand specimen (left), scaled variables (middle) and seven-domain analysis multiscale mosaic classifications
for domain scale 0–40 (right). LIBS data were normalised from 0 to 1. Each point along the scaled variables represents one
LIBS measurement, corresponding to ~0.35 mm distance.
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The mafic plutonic rock classification has a signature of high Fe and Al and corre-
sponds to slabs 19 and 21 (gabbroic diorite) and 7 (granodiorite) and smaller portions of
slabs 2, 11, and 14. Slabs 7, 19, 20 and 21 contain chlorite ranging from 3 to 8% modal
abundance. Slabs 7, 19 and 21 also contain biotite (10–61%). The abundances of both micas
likely contribute to the mafic plutonic rock classification chemical signature.

The Fe + Mg rich plutonic rock classification applies to portions of slab 14, which
exhibits the highest Fe counts of all the slabs. The XRD data shows that Slab 14 is mainly
composed by plagioclase and pyroxene, with minor magnetite (Figure 5). The two discrete
Fe and Mg peaks observed in slab 14 (Figure 7a) are interpreted to reflect the high pyroxene
content of slab 14, while other measurements within the slab are reflective of a mixture of
the bulk mineralogy.

5.2. Using Small Domain Scale for Additional Interpretation
5.2.1. Mineralogy

Due to the ability to collect very high resolution chemical data (~10 µm per spot), LIBS
has been used for extremely detailed imaging systems in mineralogical and petrological
studies, including analysis of individual particles, mineral grains or inclusions (inclusive
of chemically zoned minerals) [7,8]. Hill et al. (2020) [4] state that, for correct classification
with the Data Mosaic method, at least one pure (nonmixed) sample is required. Therefore,
as each LIBS spectrum in this study corresponds to ~0.35 mm, the smallest distinctive
object whose boundaries can be detected must be at least two sampling intervals in length
(>~0.7 mm). For the analyses in this study, a single spot measurement (~0.35) can be
interpreted as the chemical composition of a single mineral grain, rather than a mixture
of different mineral grains due to their coarse grained or monomineralic/homogenous
nature. Integration with fundamental petrological and mineralogical knowledge may allow
inferences of mineralogy and rock texture from raw LIBS data analysis using Data Mosaic
to be made.

The marble slabs used in the rock block are mostly fine-grained, monomineralic, and
preserve a massive texture (Figure 2), thus relatively flat patterns for their main chemical
components are observed (e.g., Ca and Mg; Figures 2, 5 and 6a). Conversely, the plutonic
slabs preserve heterogeneous mineralogy, coarse-grained textures, and have variable
chemical response in LIBS data across individual slabs (Figures 2, 5 and 6a), related to
mineral grains big enough to be recognized directly from continuous LIBS data (Figure 9).

Comparison of the mineralogy of selected samples as taken from the analysed hand
specimen and informed by XRD data with the domain (rock) classification as based on LIBS
chemical data demonstrates, and the analysed hand specimen shows that mineralogy can
be deduced at smaller domain scales (Figure 9). For instance, in slab 6 the region classified
as quartz monzonite corresponds to an area dominated by biotite and microcline and with
high K counts in the LIBS data. The smaller region classified as granite is representative
of abrupt relative decrease in Al and Na and higher Si. The mineralogy of this region is
not as distinctive in the hand specimen but appears to be dominated by a mixture of a
quartz and K-feldspar. In slab 13, the granite classified regions are coincident with a mixed
quartz ± albite mineralogy (Figures 7 and 9). The region classified as alkali-rich granitoid
is characterized by a relative decrease in Si and increase in Al, Na, and Ca and corresponds
to one albite grain in the hand specimen (Figure 9). Slab 14 is mostly classified as Fe + Mg
rich plutonic rock (Figure 7b,c and Figure 9), which is coincident with areas dominated by
pyroxene grains (Figure 9). The remainder of the slab is classified as mafic plutonic rock
and is characterized by variable Fe, Mg, Si, Al, and Ca and relatively low K and Na. In hand
specimen, this region corresponds to a mixture of plagioclase and pyroxene (Figure 9).

5.2.2. Texture

Linking the densely spaced LIBS signal at lower domain classification with mineralogi-
cal (XRD) data can be used to provide indirect information about rock texture, namely grain
size. For instance, slab 14 has a dominantly bimodal mineralogy comprising plagioclase
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(81%) and pyroxene (19%), both of which can be seen in the hand specimen (Figure 9).
Pyroxene-dominated regions are classified as Fe + Mg rich plutonic rock over two contin-
uous intervals that correspond to ~2.8 mm (eight LIBS spots) and ~2.35 mm (seven LIBS
spots) length (Figure 9). These measurements may be considered indicative of the size of
the grains. Applying the same logic to slab 6 it is possible to infer that K-feldspar crystal
analysed along the transect in that rock can be as big as 5.6 mm (16 LIBS spots). In slab 13,
quartz grains can reach at least 2.35 mm and albite grains 1.05 mm (Figure 9).

The inferred grain size from this analysis is considered purely indicative and is based
on a limited number of examples. Limitations include not being able to account for mineral
aggregates, which means the grain size approximation in this estimation is too large. The
estimation also cannot account for the orientation of the grain relative to the analysed
surface and therefore whether the grain is larger than the area over which it is exposed
at the sample surface. In this case, the estimated grain size is too small. A more accurate
estimate of grain size may be gained by a larger sample population.

Furthermore, the variations in classification at smaller domain scales will also be influ-
enced by diversity in mineralogy and the number of clusters selected for the classification
algorithm. In this study, the plutonic slabs are mineralogically diverse (Figure 5), which
allows for the clear distinction between the plagioclase- versus pyroxene-dominant zones
in the domain classification of slab 14, for example. However, the marble slabs, which are
relatively mineralogically less diverse, show relatively lower variation in classification at
smaller domain scales (Figure 6b). Therefore, clear distinctions between different grains is
less obvious and it is difficult to infer grain size from the LIBS data.

5.3. Broader Implications

The combination of raw LIBS geochemical data, k-means clustering, and the wavelet
tessellation method offers the possibility for rapid lithogeochemical analysis and classifica-
tion with multiscale stratigraphic boundary interpretation which complements conven-
tional geological logging.

Quantitative LIBS analysis can be performed using calibration curves derived from
analysis of certified reference materials. However, the disadvantage of this technique is that
reference samples should be matrix-matched, and references materials with a composition
similar to unknown samples are not always available e.g., complex rocks having several
mineralogical phases in a variety of concentrations [33]. Multivariate algorithms that make
use of the information contained in the entire spectrum can also be applied to derive
accurate geochemical compositions from geological materials [34,35]. However, although
the results are frequently outstanding, the algorithms need a substantial training dataset to
acquire an accurate classifier and require a long training period [36].

Integration of raw LIBS data and wavelet tessellation has the potential to be applied
prior to collection of quantitative data and rapidly offer meaningful results. LIBS does not
require time-consuming sample preparation and offers the possibility of standoff analyses
in atmospheric conditions [15], therefore saving time on organising elaborate setups. More-
over, the wavelet tessellation method demands the input of continuous numerical values of
interval or ratio scale, rather than compositional data (e.g., proportions, percentages, ppm)
therefore raw LIBS data (element counts) can be applied directly to the wavelet tessellation.
However, it is important to note that the methodology presented here for lithogeochemical
rock-type classification, based on the application of the k-means clustering algorithm on
raw LIBS data, does not substitute for traditional classification based on whole-rock geo-
chemistry data and discriminant plots (e.g., TAS diagram, Figure 4b) or a geologist logging.
Rather, the method presented here is supplementary.

Depending on the selection and number of variables, distinctive descriptive classifi-
cations can be generated. In this study, for the plutonic samples, comparison was made
between a TAS classification (based on SiO2, K2O and Na2O contents) and k-means cluster-
ing using Al, Ca, Fe, Mg, Si, Na, and K raw LIBS data for the generation of seven clusters
(k = 7). As result of the k = 7 k-means clustering foidolite (slab 9) and granite (slabs 10
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and 6) were lumped and classified as alkali-rich granitoid, and gabbroic diorite (slab 14)
was partly reclassified as Fe-Mg rich plutonic rock owing to high Fe and Mg counts cor-
responding to the presence of pyroxene grains (Figure 9). Also, granodiorite (slab 7) is
reclassified as mafic plutonic rock and grouped mainly with gabbroic diorite (slabs 19 and
21). Furthermore, fit for purpose classification schemes and workflows using the integrated
LIBS and wavelet tessellation method presented here could be created to identify target
lithogeochemical horizons. A similar strategy was applied by Wilde et al. (2017) [30],
who undertook wavelet tessellation on downhole gamma data to target key horizons in
investigating sandstone-hosted uranium deposits. The advantage of LIBS being able to
analyse for elements lighter than Mg opens the possibility of using the method developed
here to rapidly map out alteration halos of key enriched or depleted pathfinder elements
(e.g., Na alteration haloes in IOCG systems; identification of zones of Li enrichment).
Moreover, the ability to undertake simplified geological classifications (e.g., two domain
clustering) can be of practical value for more regional geological understanding and/or
for generation regional 3D geological models (for example). For example, Le Vaillant et al.
(2017) [6] utilised wavelet tessellation for reducing the total number of geological units
and identifying rocks of interest in a primarily ICP-MS (Inductively Coupled Plasma Mass
Spectrometry) whole rock geochemical drill hole database from the Kevitsa Ni-Cu-(PGE)
deposit as a repeatable and less subjective alternative for geological classification prior to
3D modelling.

Combining wavelet tessellation with densely spaced LIBS data enables analysis on
textural and mineralogical scales (Figure 9), depending on the variability of rocks mineral
composition and textures and the measurement resolution. Therefore, not only can litho-
logical boundaries be assigned, but also mineralogical boundaries (Figure 9). The collection
and use of complimentary XRD data will facilitate the creation of a specific workflow
for mineralogical identification. This may be useful in cases where visual examination
is difficult (e.g., planetary science; deep sea environments). The ability to collect high
resolution data as scanning lines or raster grids using LIBS could also be useful in cases
where visual examination is not possible (e.g., downhole geochemical analysis by LIBS–
MinEx CRC Real-Time Downhole Assay project https://minexcrc.com.au/program-two-
data-from-drilling/project-3-real-time-downhole-assay) (access date: 28 January 2021)
or not conclusive (very fine-grained textures) for effective sampling and attenuation of
effects produced by heterogenous mineralogy and textures. For future studies, mineralogy
(e.g., TIMA®, QEMSCAN®) could be used as a complimentary analytical technique for
textural and mineralogical characterisation as well as validation of mineralogy interpreted
from the LIBS data and wavelet tessellation analysis. Mineral interpretation could also be
attempted from bigger datasets and samples including from several transect measurements
along the same target.

The mosaic plots generated by the wavelet tessellation method are two-dimensional,
scale-space plots that by offering the possibility of observation of hierarchical boundaries
over scales from local (mineralogical) through to regional (stratigraphic). For LIBS analyses
on geological materials, Fabre (2020) [8] recommends several 1D lines or 2D raster grids
with a spacing finely tuned to cover any heterogeneity. The results presented here could
therefore be enhanced by extra transect measurements. However, limitations in comparison
of LIBS spot analyses to bulk geochemical analysis needs to be recognised and considered as
LIBS data is collected from the sample surface, whereas bulk analysis data is obtained from a
larger volume of the same sample. The optimal number of LIBS spot analyses for any given
length or volume of rocks is still unknown [8]. Developments on LIBS sampling strategies
are important to the development of new workflows for lithogeochemical analyses utilising
handheld equipment, drill core and downhole deployable tools, including the utilisation
of the wavelet tessellation method.

https://minexcrc.com.au/program-two-data-from-drilling/project-3-real-time-downhole-assay
https://minexcrc.com.au/program-two-data-from-drilling/project-3-real-time-downhole-assay
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6. Conclusions

Rapid and objective lithogeochemical analysis and interpretations can be made by
applying raw LIBS data collected on rocks to the wavelet tessellation method with clas-
sification by k-means clustering. Pseudologs, representative of stratigraphy, can predate
further analysis (quantitative) and supplement geological logging. The ability to analyse
almost every element in the periodic table with limited or no sample preparation, simple
setup, and the possibility of using raw data (qualitative), with no need of data filtering and
extensive processing facilitates and accelerates results and the interpretations made by the
method herein presented. Previous objective knowledge is demanded. Multiple variables
can be integrated, and objects are delimitated by multivariate changes in continuous data
(e.g., increase in Si counts followed by a decrease in Ca counts at a marble-plutonic rocks
contact). Therefore, the selection of the right variables is important. An advantage of using
LIBS in wavelet tessellation for lithological characterisation is that light elements (e.g., Na
and Mg) can be precisely analysed by LIBS.

As the wavelet tessellation method is based on an independent classification system
applied to the data, simplified classifications can be yielded (e.g., two-clustering domain)
in order to upscale classifications and generate a “lumped” rock stratigraphy, which is ad-
vantageous for regional studies and generation of large-scale geological models. Likewise,
detailed classifications can be applied for meticulous lithogeochemical interpretations,
which might include mineralogical and textural analysis. The two-dimensional scale-space,
mosaic plots with hierarchical boundaries allow observations over all scales and integration
of knowledge from different scales (e.g., lithogeochemical interpretation + mineralogical
and textural inferences). While, a methodology for direct comparison of LIBS characterisa-
tion to whole-rock chemical assay is unknown, the wavelet tessellation method combined
with mineralogical analyses (e.g., XRD and image analysis) can assist on the development
of new sampling strategies and workflows by highlighting the impact of different rock
textures and compositions on streamed geochemical data. The methodology proposed in
this study has potential application in scenarios where geochemical data is, can, or could
be rapidly produced in future, such as in mineral exploration.
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