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Abstract: The family of layered vanadates, arsenates, and phosphates is discussed in terms of a mod-
ular concept. The group includes minerals vésignéite and bayldonite, and a number of synthetic
analogous and modifications which are not isotypic, but their crystal structures comprise similar
blocks (modules) consisting of a central octahedral layer filled by atoms of d elements (Mn, Ni,
Cu, or Co) and adjacent [VO4], [AsO4], or [PO4] tetrahedra. The octahedral layers are based on
the close-packing of oxygen atoms. Within these layers having the same anionic substructure, the
number and distribution of octahedral voids are different. In the crystal structures of compounds
participating in the polysomatic series, these blocks alternate with various other structural fragments.
These circumstances define the row of structurally-related vanadates, arsenates, and phosphates
as a mero-plesiotype series. Most of the series members exhibit magnetic properties, representing
two-dimensional antiferromagnets or frustrated magnets.

Keywords: modular structures; polysomes (series); synthetic analogues of minerals; transition metal
phosphates; X-ray diffraction; antiferromagnets; frustrated magnets; kagomé lattice

1. Introduction

The modular approach for interpreting the crystal structures of minerals is well known.
Its intensive use in modern crystal chemistry has become possible after the pioneer works
of Thomson [1–3] and Veblen [4]. The modular concept operates with large segments
(modules), which represent stable polyhedral complexes of definite topology and size, and
can differ in structure and/or composition. Within this concept, the crystal structure can
be interpreted as a derivative of diverse modules; then it is meant as a polysome. The
polysomatism considers a particular crystal structure in required connection with other
structures, assembled from the same modules. This method allows distinguishing series
of non-isotypic, but crystal chemically-related phases, so-called polysomatic series, with
structures built by fragments of the same topology taken in various combinations. The
stability of repeating fragments is controlled by the energetic advantage of the associations
of polyhedra forming these modules. Obviously, one can use the modular approach only
in the case of several compounds (at least two) containing similar substructural segments
(modules), with clearly pronounced rules for their spatial arrangement and alternation.

To expand the field of structurally-related compounds within the polysomatic series,
Makovicky [5] proposed to adopt a possibility of variations both in the structure and in the
chemical composition of modules still keeping their topological similarity. These advanced
sequences of compounds were called mero-plesiotype series. In the framework of this
concept, a “common” fragment for all of the structures shows clear variability; besides,
modules of another type are dissimilar for different members of the series [6,7].

Through efforts of numerous scientific schools, this methodology has allowed the
introduction of many families of inorganic compounds, including minerals, as polysomatic
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series of oxides, sulfosalts, silicates, manganates, phosphates, etc. [8–21]. Several aspects of
modular analysis such as symmetrical, topological classification can be mentioned. Usually,
they are all interconnected; all are presented and complement each other in the study. In
addition, the polysomatic model facilitates the representation of mineral transformation
and substitution reactions and also allows predicting possible topological constraints in the
propagation of mineral reactions [22]. It is difficult to overestimate the heuristic potential of
this approach, since the prediction of the structural state of atoms and atomic groups, the
way of their interaction within the crystal, ion migration paths, and the features of chemical
bonds are extremely important in the context of the targeted selection of compounds for
studying their physical properties that underlie the creation of new materials.

Within a program to explore the synthesis and crystal chemistry of compounds, po-
tentially interesting as possible battery electrodes and/or magnetic materials, we have
established crystal structures of two transition and alkaline metal phases synthesized under
hydrothermal conditions, namely the first vanadate carbonate, K2Mn3[VO4]2(CO3) [23]
and the sodium nickel hydroxide phosphate, Na2Ni3(OH)2(PO4)2 [24]. A structural study
of the K2Mn3[VO4]2(CO3) was carried out on a crystal showing [110] twinning by mero-
hedry. [110] is a twofold axis of the lattice (point group 6/mmm) but not of the structure
(point group 6/m) and can act as twinning operation. Both structures are built of similar
slabs consisting of a central octahedral layer partially filled by atoms of d elements Mn/Ni
and adjacent [VO4] or [PO4] tetrahedra. A noticed similarity of their crystal architecture
completed with research on structurally-related synthetic phases and minerals allowed us
to establish a new polysomatic series of vanadates, arsenates, and phosphates with densely
packed octahedral layers decorated by tetrahedra, as repeating fragments.

2. The Main Module Topology

The core structural module upon which the whole family is built presents the block
centered by an octahedral layer filled by atoms of d elements Mn/Ni/Cu/Co and adjacent
from both sides [VO4], [PO4], and [AsO4] tetrahedra. (In all the following figures, Mn,
Ni and Cu atoms are shown in pink, green, and turquoise colors, respectively; P-, As-,
and V-centered tetrahedra are colored yellow, blue, and olive green). The central layer is
based on a closest sphere packing of oxygen atoms. The octahedral voids within the layer
may be differently populated by the cations; therefore, various arrangements of filled and
empty octahedra arise. Sheets of the brucite type (the so-called trioctahedral layers) are the
densest, since they have fully occupied MeO6 octahedra sharing edges. If 2/3 of the voids
are filled, a gibbsite sheet (dioctahedral) is formed. These two varieties of layers present
essential structural fragments of phyllosilicates and clay minerals. In the crystal structures
under consideration, a fraction of the empty octahedral voids inside the oxygen sphere
packing can be equal to 1/3 or 1/4. Besides, these voids can be differently distributed
within the layer, causing differences in the structure design. From both sides of the empty
octahedral voids, the tetrahedral groups are attached by sharing three vertices with O
atoms of the layer, while the apical vertex is pointing outside towards the next module that
is individual for each structure, thus defining the polysomatic series as the mero-plesiotype
row. The formulae of the basic blocks may be written as {Me2[TO4]2}, or {Me3(OH)2[TO4]2},
according to the number of the empty octahedra in the layer.

It is worth mentioning that the crystal structures of minerals reppiaite, Mn5(OH)4[VO4]2 [25],
cornubite, Cu5(OH)4[AsO4]2 [26], and their synthetic arsenate formula analogue Ni5(OH)4[AsO4]2 [27]
are also based on the closest sphere packing of O atoms. In all three cases, the atoms of
transition metals occupy 5/6 of the octahedral voids (Figures 1 and 2). However, the
way of the empty octahedra arrangement in the monoclinic reppiaite and isotypic Ni
arsenate structures on one hand, and in the structure of triclinic cornubite on the other,
are different, providing a diverse topology of their cationic substructures, as dual-width
stripes of the triangular net separated by honeycombs or dual-width stepped stripes of
the triangular net separated by honeycombs (Figure 3). Note that both arrangements, as
well as other diagrams shown in Figure 3 may be obtained as vacancy-modified triangular
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nets. The tetrahedral groups are placed on both sides of the layer just above and under
empty octahedra with the formation of the {Me5(OH)4[TO4]2} block. In all three structures,
the similar blocks are stacked together in a direction normal to the plane of the layer
through oxygen-bridging contacts. The neighboring modules are semi-translationally
displaced in one direction to form an AA′ sequence with a period value of about 9.4 Å
(Table 1). Accordingly, it can be concluded that these phases with the crystal structures built
exclusively from basic modules, on which the polysomatic series of vanadates, arsenates,
and phosphates is based, represent the archetype structures.
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Table 1. Mero-plesiotype series of vanadates, arsenates, and phosphates of the first-row transition metals.

Mineral/
Synthetic Phase
Ref.

Unit-cell Parameters
a, b, c (Å) and
Angles α, β, γ (◦)

Space Group, V (Å3), Z Fraction of Filled Octahedra, Layer
Topology, Module Sequence

Magnetic Behavior

Phases with archetype crystal structure

Reppiaite Mn5(OH)4[VO4]2
[25]

a 9.604(2)
b 9.558(2) β 98.45(1)
c 5.393(1)

C2/m
489.7
2

5/6, dual-width triangular stripes separated
by honeycombs, (AA′)

Canted antiferromagnetic ordering below 57 K

Ni5(OH)4[AsO4]2
[27]

a 9.291(2)
b 9.008(2) β 98.70(3)
c 5.149(1)

C2/m
426.0
2

5/6, dual-width triangular stripes separated
by honeycombs, (AA′)

——-

Cornubite Cu5(OH)4[AsO4]2
[26]

a 6.121(1) α 92.93(1)
b 6.251(1) β 111.30(1)
c 6.790(1) γ 107.47(1)

P1
227.1
1

5/6, dual-width triangular stepped stripes
separated by honeycombs, (AA′)

——-

Compounds forming the mero-plesiotype series

K2Mn3[VO4]2(CO3)
[23]

a 5.201(1)
c 22.406(3)

P63/m
524.9
2

2/3, honeycomb
(ABA’B’)

The honeycomb substructure orders
antiferromagnetically at 85 K;
the triangular substructure displays two ordered
states at 3 and 2.2 K

K2Co3[VO4]2(CO3)
[28]

a 5.0931(2)
c 22.1551(13)

P63/m
497.7
2

2/3, honeycomb
(ABA’B’)

Canted antiferromagnetic ordering below 8 K

Rb2Mn3[VO4]2(CO3)
[28]

a 5.2488(3)
c 22.7020(14)

P3
1c 541.6
2

2/3, honeycomb
(ABA’B’)

The honeycomb substructure orders
antiferromagnetically at 77 K;
the triangular substructure exhibits two transitions
at 2.3 K and 1.5 K

BaNi2[VO4]2
[29]

a 5.028(1)
c 22.345(3)

R3
489.4
3

2/3, honeycomb
(ABA’B’A”B”)

Antiferromagnetic long-range ordering close
to 50 K

BaCo2[PO4]2
[30]

a 4.8554(6)
c 23.2156(17)

R3
474.0
3

2/3, honeycomb
(ABA’B’A”B”)

Competing short range magnetic orders below TN1
∼ 6 K and TN2 ∼ 3.5 K.

BaCo2[AsO4]2 *
[31]

a 5.007(1)
c 23.491(5)

R3
510.0
3

2/3, honeycomb
(ABA’B’A”B”)

Frustrated magnet
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Table 1. Cont.

Mineral/
Synthetic Phase
Ref.

Unit-cell Parameters
a, b, c (Å) and
Angles α, β, γ (◦)

Space Group, V (Å3), Z Fraction of Filled Octahedra, Layer
Topology, Module Sequence

Magnetic Behavior

Compounds forming the mero-plesiotype series

NaNi[AsO4]
[32]

a 4.955(3)
c 26.47(3)

R3
562.8
6

2/3, honeycomb
(ABA’B’A”B”)

—–

KNi[AsO4]
[32]

a 4.97208(2)
c 28.52606(10)

R3
610.7
6

2/3, honeycomb
(ABA’B’A”B”)

—–

Vésignéite BaCu3(OH)2[VO4]2
[33]

a 10.270(2)
b 5.911(1) β 116.42(3)
c 7.711(2)

C2/m
419.2
2

3/4, kagomé
(AB)

Strong antiferromagnetic interactions, no
long-range order down to 16 K

BaNi3(OH)2[VO4]2
[34]

a 10.213(6)
b 5.816(3) β 117.01(4)
c 7.888(4)

C2/m
417.4
2

3/4, kagomé
(AB)

Glassy transition at 19 K, magnetic frustration from
a competition between ferro- and
antiferromagnetic ordering

Na2Ni3(OH)2[PO4]2
[24]

a 14.259(5)
b 5.695(2) β 104.28(3)
c 4.933(1)

C2/m
388.2
2

3/4, triangular stripes separated by
honeycombs,
(ABA′B′)

Antiferromagnetic ordering at 33.4 K

Na2Co3(OH)2[VO4]2
[35]

a 14.5847(11)
b 5.9552(4) β 104.068(2)
c 5.1414(4)

C2/m
433.2
2

3/4, triangular stripes separated by
honeycombs,
(ABA′B′)

Antiferromagnetic ordering at 4.4 K

K2Mn3(OH)2[VO4]2
[36]

a 15.204(2)
b 6.159(1) β 105.40(1)
c 5.400(1)

C2/m
487.5
2

3/4, triangular stripes separated by
honeycombs,
(ABA′B′)

Antiferromagnetic ordering at 50 K

Bayldonite Pb(Cu,Zn)3(OH)2 [AsO4]2
[37]

a 10.147(2)
b 5.892(1) β 106.05(1)
c 14.081(2)

C2/c
809.0
4

3/4, kagomé
(ABA′B′)

—–

Cu13(OH)10F4[VO4]4
[38]

a 5.802(2) α 110.043(3)
b 10.239(4)β 104.320(4)
c 10.914(5) γ 96.662(3)

P1
675.6
2

3/4, triangular stepped stripes separated by
honeycombs;
triangular net; (AB)

Antiferromagnetic ordering at 3 K

* Plus other isotypic BaMe2[TO4]2 (Me = Co, Ni; T = P, V, As) compounds [39–41].



Minerals 2021, 11, 273 7 of 15

3. The Mero-Plesiotype Series of Structurally-Related Phases

All crystal structures of the series can be represented as an assembly of alternating two-
dimensional core module A and other slabs of diverse composition and design (Table 1).

The crystal structure of the “mineralogically probable” divanadate carbonate
K2Mn3[VO4]2(CO3) [23] is formed by two types of modules alternating along the c axis
of the hexagonal unit cell (Figure 4a). Gibbsite-like layer parallel to the ab plane has a
honeycomb arrangement of Mn2+ cations (Figure 3a) at the centers of octahedra sharing cis
and trans edges (Figure 5a). The [VO4] tetrahedra at both sides of the dioctahedral layer
complete the main block to the Mn2[VO4]2 composition and provide its linkage along the
c axis with the second {K2MnCO3} module formed by Mn-centered trigonal bipyramids,
[CO3] triangles, and K atoms. The MnCO3 cellular layer is topologically identical in the ab
plane to the kalsilite network built of Si and Al tetrahedra (Figure 5b). From both sides,
these layers are attached by sheets of K nine-vertex polyhedra sharing vertices. Thus, the
structure can be represented as an alteration of negatively charged {Mn2[VO4]2}2− and
positively charged {K2MnCO3}2+ modules. Recently published, two novel vanadate car-
bonates K2Co3[VO4]2(CO3) and Rb2Mn3[VO4]2(CO3) have similar crystal structures [28].
Moreover, the Mn and Co containing formula analogues are isotypic, while the Rb, Mn
variety possess trigonal symmetry. The authors of [28] noted the effect of the larger size of
Rb+ in comparison with the size of K+ on the structure transformation that occurs when
the [VO4] tetrahedra adjacent along the c axis rotate around the [001] direction by 180o.
Thus, two vanadate tetrahedra of {Me2[VO4]2} modules adjacent along the c axis have the
same vertex orientation “up, up” (or “down, down”) in the hexagonal K2Mn3[VO4]2(CO3)
structure, while the opposite “up, down” orientation of these tetrahedra characterizes the
trigonal Rb formula analogue (Figure 4). Nevertheless, both compounds have similar to
the K2Mn3[VO4]2(CO3) structural blocks, alternating {Me2[VO4]2} (A) and {A2MeCO3} (B)
modules. In accordance with the action of the 63 or 3 axis, the symmetrically multiplied
structural A′B′ fragment is shifted by 1/2 of the translation vector along the [001] direction.
The sequence of the modules’ alternation (ABA′B′) corresponds to the value of the c axis of
the unit cell that is in the range from 22 to 23 Å.
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[27] 
a 9.291(2)  
b 9.008(2) β 98.70(3)  
c 5.149(1) 
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426.0 
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⅚, dual-width triangular 
stripes separated by 
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------- 

Cornubite Cu5(OH)4[AsO4]2 

[26] 
a 6.121(1) α 92.93(1)  
b 6.251(1) β 111.30(1)  
c 6.790(1) γ 107.47(1) 

P1 
227.1 
1 

⅚, dual-width triangular 
stepped stripes separated 
by honeycombs, (AAʹ) 

------- 

Compounds forming the mero-plesiotype series  

Figure 5. Gibbsite-like (a) and kalsilite-like (b) layers in the ab projection of the K2Mn3[VO4]2(CO3) crystal structure.

The same blocks built of octahedral layers of the gibbsite-type and adjacent [VO4]
tetrahedra, form the crystal structure of BaNi2[VO4]2 [29] with similar parameters of the
trigonal unit cell, but with the R Bravais lattice (Table 1). Due to the R lattice translation,
neighboring blocks of the Ni2[VO4]2 composition are shifted in the [110] direction. Along
the c axis, they alternate with layers of large barium 12-vertices polyhedra sharing edges
(Figure 6). In the structures of vanadate-carbonates, similar blocks alternate with the
{A2MeCO3} modules, as shown above. The formal transformation of the structure can
be restored as a result by an extraction of [MeCO3]∞ layers from the A2Me3[VO4]2(CO3)
crystal structure with the simultaneous exchange of Me2+ ions in octahedra for Ni2+, and
one Ba2+ for two K+ or two Rb+ ions. Then, the BaNi2[VO4]2 structure is obtained as
a derivative of the vanadate-carbonate architecture. Translation period for the module
alternation (ABA′B′A′ ′B′ ′) defines the unit cell c parameter equal to 22.3 Å (Table 1). The
same structural features demonstrate isotypic cobalt phosphate BaCo2[PO4]2 [30] and
arsenate BaCo2[AsO4]2 [31].

Let us mention here two isotypic arsenates, KNi[AsO4] and NaNi[AsO4] [32] which
crystallize in the same R3 space group inherent to the BaNi2[VO4]2, but their crystal
structures include twice more alkali cations between {Me2[TO4]2} modules as compared
with the amount of alkali earth Ba atoms in the vanadate. Consequently, the increased c
parameters of KNiAsO4 and NaNiAsO4 to 28.53 and 26.47 Å correspond to two-layer blocks
of sharing edges seven-vertex K- or Na-centered polyhedra between the main modules of
the arsenate structures.
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Synthetic phases Na2Ni3(OH)2[PO4]2 [24] and K2Mn3(OH)2[VO4]2 [36] present an
example of isotypic compounds from different chemical classes. A virtual exchange of all
cations (except H+) at four symmetrically independent structural positions (Na+, Ni12+,
Ni22+, and P5+) in the Na2Ni3(OH)2[PO4]2 structure for cations in the same oxidation state
of a larger radius, (K+, Mn12+, Mn22+, and V5+) leads to the formation of the isostructural
phase, K2Mn3(OH)2[VO4]2, of the same symmetry (space group C2/m), but with obviously
increased values of the unit cell parameters and the monoclinic angle (Table 1). In both
cases, the layers of edge-sharing MeO4(OH)2 octahedra include 1

4 of vacancies giving rise to
the cationic substructure formed of stripes of the triangular net separated by honeycombs
(Figure 3c). Distances between the modules with central layers built of Ni or Mn octahedra
are 4.2 and 4.8 Å accordingly, and depend mainly on the sizes of [PO4] and [VO4] tetra-
hedra and the hydrogen bond lengths. The naturally smaller space between neighboring
{Ni3(OH)2[PO4]2} blocks in the phosphate structure suits perfectly for being filled by Na
atoms (Figure 7). The similar modules alternate with the layers of KO7 or NaO7 polyhedra
of the same topology (Figures 7 and 8).
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The described above lattice (Figure 3c) stands between the honeycomb lattice (Figure 3a),
characteristic of the recently discussed divanadate carbonates, and the kagomé lattice
(Figure 3b), inherent in the isostructural synthetic phase BaNi3(OH)2[VO4]2 [34] and
mineral vésignéite, BaCu3(OH)2[VO4]2 [33]. In the vésignéite structure, the octahedral
voids of the central layers of the main modules are also filled for 3

4 by the Ni or Cu atoms,
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but the distribution of the empty voids inside the octahedral layers corresponds to the
regular kagomé lattice (Figure 9a). Along the [001] direction, these modules (A) alternates
with layers formed by the large Ba-centered polyhedra presenting the second-type slabs B
(Figure 9b). The AB sequence of their repetition along the [001] direction defines the value
of the c axis close to 8 Å for both compounds (Table 1).
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The cationic arrangement inside the layer centering the basic block of the
{(Cu,Zn)3(OH)2[AsO4]2} composition in the monoclinic crystal structure of mineral bayl-
donite, Pb(Cu,Zn)3(OH)2[AsO4]2 [37] also shows the layers with 3/4 of octahedral voids
populated by the Cu/Zn atoms. It corresponds to the same ordinary kagomé configuration
as in vésignéite (Figure 3b). Along the [001] direction, these blocks (A) alternate with layers
of Pb eight-vertex polyhedra (tetragonal antiprisms) (B) (Figure 10). However, differently
to the similarly monoclinic (sp. gr. C2/m) vésignéite structure, in the present case, the
modules are twice multiplied along the c axis due to the symmetry (sp. gr. C2/c), forming
the ABA’B’ sequence with a period of 14 Å.
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A unique distribution of the filled and empty octahedral voids inside the closest packing
of oxygen atoms is established in the crystal structure of the synthetic oxyfluoride vanadate
Cu13(OH)10F4[VO4]4 [38]. Here, the core module A includes 1/4 of the empty octahedra,
but differently to the structures discussed above, an exclusive cationic arrangement within
the layer arises. It can be described as stepped stripes of the triangular net separated by
honeycombs (Figure 3e). The negatively charged A modules {Cu3(OH)2[VO4]2}2− formed
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by such octahedral layers with adjacent vanadate tetrahedra, alternate along the b axis with
B fragments of the brucite-type structure with a triangular sublattice (Figure 3d). These
positively charged B-modules {Cu3.5(OH)3F2}2+ are based on the densely packed oxygen
and fluorine atoms, with all octahedral voids occupied by Cu. The AB repetition of the
modules fixes the value near 10.2 Å of the b parameter (Figure 11) of the triclinic unit
cell (Table 1).
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4. Magnetic Behavior of the Series Members

Recently, studies of quantum-spin systems have been of considerable interest. On the
basis of low-dimensional magnetic systems, exotic quantum ground states of matter can be
realized including gapped and gapless spin liquids [42], spin ice [43,44], spin glass, and
various peculiar forms of long-range magnetic order [45–47]. If the way of the distribution
of spin carriers can be described by a special lattice constructed of triangles sharing vertices
or edges, such as kagomé and triangular lattices [48–50], the three-dimensional magnetic
order tends to be suppressed due to spin frustration [38]. The presence of ions with an
open shell Mn2+, Ni2+, Co2+, or Cu2+ inside the octahedral layers causes the appearance of
two-dimensional antiferromagnetic or frustrated magnetic properties for the compounds
considered in this work. Anionic tetrahedra [PO4]3−, [VO4]3−, or [AsO4]3− serve as ideal
non-magnetic separators between transition-metal 2D planes and contribute to the octa-
hedral environment of oxygen atoms around cations. Moreover, these units can prevent
distortions of the Me-centered octahedra to preserve the planar geometry of the magnetic
substructures. The way in which magnetically active ions fill octahedral voids inside the
closely packed oxygen/fluorine atoms determines the type of magnetic structure (Figure 3)
that inevitably contains geometric frustrations.

The kagomé lattice should provide a much stronger frustration than the simplest
triangular lattice (due to the chirality degeneration), and, as a consequence, the absence
of long-range magnetic order [51]. The classical kagomé lattices describe the cationic sub-
structures of the vésignéite BaCu3(OH)2[VO4]2 and BaNi3(OH)2[VO4]2. At 53 K, vésignéite
demonstrates a strong antiferromagnetic interaction between spins of nearest-neighbors
without long-range magnetic order up to 2 K, and its ground state is assumed to be a gapless
spin liquid [52]. In BaNi3(OH)2[VO4]2, magnetic frustration arises due to the competition
between ferromagnetic and antiferromagnetic ordering, which leads to a glassy transition at
19 K [34]. According to [51], in the honeycomb-type substructure should be no frustration,
except in the presence of next-nearest-neighbor exchange interactions. The honeycomb
lattices characterize isostructural BaMe2[TO4]2 (Me = Co, Ni; T = P, V, As) compounds,
which display quite different magnetic properties. Thus, BaNi2[VO4]2 demonstrates the
onset of antiferromagnetic long-range ordering near 50 K [29]. BaCo2[PO4]2 is a rare highly



Minerals 2021, 11, 273 12 of 15

frustrated, quasi-2D magnetic material with the honeycomb substructure that displays
competing for short-range magnetic ordering below TN1 ∼ 6 K and TN2 ∼ 3.5 K, but resists
long-range magnetic order and spin freezing [44]. The complex magnetic ordering and spin
dynamics in BaCo2[AsO4]2 has been investigated several times, but still remains an open
problem. The BaCo2[AsO4]2 frustrated magnet with the honeycomb distribution of Co
atoms sharply ordered at T ~ 5.4 K with a probable formation of a helical design [53], but
repeated research revealed its quasi-collinear incommensurate ground-state structure [54].

Another type of frustrated substructure, described as built from stripes of triangular
nets separated by honeycombs, which is a compromise between honeycomb and kagomé
lattices, should not have an antiferromagnetic order of the Néel-type, but should have
geometric magnetic frustration [51]. The same lattice characterizes the isotypic crystal
structures of Na2Ni3(OH)2(PO4)2, Na2Co3(OH)2[VO4]2, and K2Mn3(OH)2[VO4]2; they
all demonstrate low-dimensional antiferromagnetic ordering of various origins. In the
phosphate compound, it arises as a result of the presence and competition of ferro- and
antiferromagnetic interactions [24]. Mn vanadate exhibits geometric frustration and low-
dimensionality effects and spin–lattice coupling [51]. Cobalt phase shows evidence of
spin–orbit coupling in Co2+ ions with antiferromagnetic ordering at 4.4.K and highly
anisotropic field-dependent behavior with multiple metamagnetic transitions [35]. Dual-
width stripes of triangular net are surrounded by honeycombs in the substructure of
reppiaite, Mn5(OH)4[VO4]2. This 2D magnet displays Curie−Weiss behavior above 100 K
with significant antiferromagnetic coupling and canted antiferromagnetic order below
57 K [55].

In crystal structures of some compounds, magnetic cations form two types of magnetic
arrangements. Thus, the complex structure of Cu13(OH)10F4[VO4]4 is described by the
triangular lattice, which alternates with a unique substructure of dual-width stripes of the
triangular net separated by honeycombs. The magnetic system of Cu13(OH)10F4[VO4]4
created in this way exhibits long-range antiferromagnetic ordering at ∼3 K, a strong
spin-frustration effect, and a spin-flop transition at 5 T [38]. Each member of the vanadate-
carbonate family is also characterized by two magnetic subsystems, honeycomb- and
triangular-type in their crystal structures. They all order antiferromagnetically but at
different temperatures due to diverse sorts of transition cations. K2Mn3[VO4]2(CO3)
showed a two-step formation of long-range magnetic order at low temperatures [23].
The following study showed that triangular and honeycomb magnetic layers undergo
sequential magnetic ordering and act as nearly independent magnetic subsystems. The
honeycomb substructure orders at about 85 K in a Néel-type antiferromagnetic structure,
while the triangular arrangement displays two consecutive ordered states at much lower
temperatures of 3 and 2.2 K [56]. Likewise, the Rb-analogue Rb2Mn3[VO4]2(CO3) exhibits
three magnetic transitions at 77 K, 2.3 K, and 1.5 K. At 77 K, it orders in the honeycomb layer
in a Néel-type antiferromagnetic orientation, while the lower temperature spin structure
has either a collinear or a canted magnetic structure for the triangular Mn lattice [28].
K2Co3(VO4)2CO3 displays a canted antiferromagnetic ordering below TN = 8 K [28].

5. Conclusions

We have shown [57] that the crystal structures of the mero-plesiotype series of natural
and synthetic vanadates, phosphates and arsenates with first row transition metals are
formed of similar 2D modules, which alternate in one direction with other structural frag-
ments, diverse for different members of the series. The core modules are built of a central
octahedral layer filled with d elements (Mn, Ni, Cu, or Co) and adjacent anionic (VO4, PO4,
AsO4) tetrahedra. The central layer is based on the closest packing of oxygen (and fluorine)
atoms. Changed amounts of the octahedral voids and their varying distribution differ
from one structure to another in a framework of the same anionic substructure. Seven
“magnetic” topologies of the transition metal distribution within the layers have been
identified: triangular, honeycomb, kagomé, and different combinations of fragments of
the triangular and honeycomb lattices (Figure 3). The crystal structure constitution based



Minerals 2021, 11, 273 13 of 15

on the same repeating modules establishes the 2D character design for all polysomes.
Consequently, they all have similar translations inside the module plane equal of about
5 Å, while the values of the unit cell axis perpendicular to the sheet is defined by the size
of the second module and the sequence of the module’s alternation. The only basic type of
modules with similar dimensions reproduces in one direction in the structures of minerals
reppiaite Mn5[VO4]2(OH)4 and cornubite Cu5(OH)4[AsO4]2, as well as synthetic arsenate
Ni5(OH)4[AsO4]2. Therefore, these phases with the crystal structures built exclusively
from the main modules, on which the polysomatic series of vanadates, arsenates, and
phosphates is based, represent the archetype structures.

When additional (B) slabs of the alkaline (or alkaline-earth) metals interrupt the basic
(A) modules, a few combinations within the mero-plesiotype series are formed: (AB) for
vésignéite BaCu3(OH)2[VO4]2 and its Ni-analogue BaNi3(OH)2[VO4]2 with approximately
7.8 Å period along the modules’ alternation, (ABA′B′) for bayldonite Pb(Cu,Zn)3(OH)2[AsO4]2,
Na2Ni3(OH)2(PO4)2 and K2Mn3(OH)2[VO4]2 with about 14.5 Å period, and (ABA′B′A′ ′B′ ′)
for BaNi2[VO4]2 with 22.3 Å translation. Another kind of supplementary slabs present the
octahedral layers of brucite topology, which interconnect with the basic modules in the
Cu13(OH)10F4[VO4]4 crystal structure resulting the (AB) translation period equal to 10.2 Å.
In the crystal structures of vanadate-carbonates K2Mn3[VO4]2(CO3), K2Co3[VO4]2(CO3),
and Rb2Mn3[VO4]2(CO3), two different modules alternate in a sequence (ABA′B′) along
the c axis of about 22.4 Å. The main block is a core module based on the gibbsite-type
octahedral layer. The second one is the block formed by the kalsilite-like sheet of Mn
bipyramids and CO3 triangles that is sandwiched between two layers of alkaline metals.

It is important to note that the minerals and laboratory-synthesized compounds con-
sidered here exhibit magnetic properties, representing two-dimensional antiferromagnets
or frustrated magnets. Obviously, their magnetic behavior is directly related to the crystal
structure peculiarities. In particular, the way in which magnetically active Mn2+, Ni2+,
Co2+, or Cu2+ ions occupy the octahedral voids between the densely packed oxygen atoms
is crucial.
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