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Abstract: Ilmenite disseminated grain size is relatively fine, and it must be finely ground to fully
separate ilmenite from gangue and then produce fine-grained minerals, which deteriorates flotation.
A novel method using buoyant carriers to improve the recovery of fine ilmenite in froth flotation was
introduced in this study. Hydrophobized glass bubbles (HGB) as carrier materials were obtained by
an efficient, simple modification of ordinary glass bubbles. The carrier flotation of fine ilmenite in
the presence of HGB was investigated by micro flotation tests, X-ray diffractometer analysis, Fourier
transform infrared (FTIR), optical microscope observation, and the extended DLVO theory (XDLVO).
Micro-flotation results showed that the recovery of fine ilmenite in presence of HGB was 37.7%
higher than that when using NaOL alone at pH 6. FTIR analysis and optical microscope observation
revealed that fine ilmenite particles can be closely attached on the HGB surface to increase apparent
particle size considerably. The data calculated from the DLVO theory indicated that the acid–base
interaction force determined the adsorption between two hydrophobic particles.

Keywords: ilmenite; flotation; carrier; fine particles; hydrophobized glass bubbles; extended
DLVO theory

1. Introduction

As a strategic metal, titanium has wide applications in the fields of medicine and
aerospace. Titanium ores, which are the crucial footstone of the titanium industry, include
ilmenite (FeTiO3) and rutile (TiO2), and it is reported that ilmenite in vanadium–titanium
magnetite account for about 90% of China’s titanium resources [1,2]. Before the titanium
metal extraction, the processing of titanium-bearing ores mainly through grinding, accom-
panied by beneficiation methods, such as flotation, heavy media separation, and magnetic
separation to obtain concentrates. Historically, flotation is the most efficient method to
separate ilmenite from other silicon-containing minerals [3]. However, restricted by ben-
eficiation methods, the recycling utilization rate of Panzhihua ilmenite is low, especially
the fine-grained ilmenite (<20 µm), and, due to the small mass and large specific surface
area, its recovery is recognized as a problem of mineral processing and also the most
outstanding and urgent problem in comprehensive utilization of titanium resources in this
region. Therefore, the recovery of fine ilmenite remains a highly challenging problem and
attracts researchers’ attention.
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The range of mineral particle size for flotation is strictly limited (about 20–80 µm) to
achieve a better recovery rate due to the extremely high surface energy of fine-grained
ilmenite that disturbs the selectivity of flotation [4]. Figure 1 presents the effect of particle
size on ilmenite recovery. The results show that the flotability of ilmenite increases remark-
ably with an increase in particle size from 10 µm to 60 µm. Therefore, floatability greatly
improves as particle size reaches the intermediate zone (37–74 µm in general). However,
because fine particles (<20 µm) have a high surface area energy, a large specific surface area,
and a small mass, they are deflected by hydraulic drag forces [5]. Therefore, under me-
chanical stirring, fine particles move along the fluid streamline around bubbles instead of
colliding with them [6–8]. Fine particle flotation results in an extremely inefficient process
performance, marked by reduced flotation recovery and affecting the concentrate grade [9].
Ores become more complicated, disseminated, and consequently more difficult to process
because mineral resources have been exploited over time. The problem of fine particle
flotation has become increasingly prominent and important. Several alternatives have
been proposed to improve bubble–particle collision efficiency and address this problem by
reducing the bubble size or increasing the apparent particle size [10–13]. Furthermore, the
technique of magnifying the apparent particle size is achieved by increasing the specific sur-
face area and mass of fine mineral particles to reduce surface area energy. These techniques
induce fine particles to form flocs or aggregates [14–16]. Several alternatives including
selective flocculation, shear flocculation, carrier flotation, and particle agglomeration have
been proposed [17–19].
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Figure 1. Effect of particle size on flotation recovery of ilmentie treated with sodium oleate (pH 6.0,
2.0 × 10−4 mol·L−1 sodium oleate).

Since American scholars applied carrier flotation to remove titanium-containing impu-
rities in kaolin in 1961, carrier flotation has attracted worldwide attention, and a systematic
study was conducted on the application and mechanism of auto-carrier flotation [20–22].
Carrier flotation can be regarded as coarse-grained minerals with good floatability as a car-
rier, carrying fine-grained minerals, and then recovering “carrier–fine mineral” aggregates
by conventional flotation [23]. The carrier for flotation can be divided into two sections:
(a) Minerals, which have been studied by the extended DLVO theory, effects of above
parameters on carrier flotation by contact angle, zeta potential, and other measurements of
particle surface, and (b) Nonmineral materials, which have not been studied widely [24–26].
However, mineral material carrier flotation, which was researched sufficient in previous
study, was developed stagnate due to poor hydrophobicity and high density. In the authors’
view, nonmineral material carriers accomplish the following properties to improve the
recovery of fine particles in flotation:
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Density lower than water density. Carrier material with a density lower than water
density would assist optimum levels of recovery.

High hydrophobicity level to selectively recover target mineral particles.
Particle size 5–10 times larger than mineral particles. Therefore, in order to collect min-

eral particles of 10 µm (on average), a carrier size of 50–150 µm is deliberated as acceptable.
Considering these characteristics, glass bubbles have been identified as potential

carrier materials. In 2020, S. Arriagada et al. applied a kind of nonmineral material—
hydrophobized glass bubble (HGB)—as a carrier into the flotation of fine bornite [27]. So
far, there have been relatively few studies on fine particles with poor floatability. Therefore,
based on this conclusion and experimental results, HGB was introduced as a carrier
material to augment the apparent particle size in this study. Moreover, the adhesion
mechanism of ilmenite onto the HGB surface was thoroughly investigated in a sodium
oleate (NaOL) system by using micro-flotation, Fourier transform infrared (FTIR), extended
DLVO (XDLVO) theory, and optical microscope observation.

2. Experimental
2.1. Materials and Reagents

The silica glass bubbles used were purchased from the 3M Company. K20 glass bubbles
were used in this work (d90 = 110 µm, d50 = 65 µm, d10 = 30 µm, and density = 0.20 g/cm3).
The ilmenite and titanaugite samples used in the experiments were obtained from the
tailing of magnetic separation of vanadium–titanium magnetite in Panzhihua, Sichuan
Province, China. The mineral samples were crushed and dry-ground in a porcelain ball
mill and then purified through magnetic and gravity separation. Figure 2 and the X-ray
fluorescence results listed in Table 1 indicate that the TiO2 content is 48.51%, but the purities
of ilmenite and titanaugite are above 90%, as verified by the X-ray diffraction (XRD) results
and chemical composition. Each fine-grained mineral was ground to a diameter smaller
than 0.019 mm and used for subsequent experiments. Analytical-grade NaOL and sodium
silicate purchased from the Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China) were
used as collector and depressant, respectively. Acetone was used as mixing cosolvent
for the esterified particles, and high-purity 1-butanol (>99% w/w) from the Macklin Bio-
chemical Technology Co., Ltd. (Shanghai, China) was used as hydrophobization chemical
reagent. Potassium chloride (KCl) was used as background electrolyte for zeta potential
measurements. Sodium hydroxide (NaOH) and sulfuric acid (H2SO4) stock solutions
were used to adjust the pH, and deionized (DI) water (resistivity = 18.3 M·cm) was used
throughout the experiments.
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Figure 2. X-ray diffraction spectra of (a) ilmenite and (b) titanaugite.



Minerals 2021, 11, 231 4 of 14

Table 1. Chemical compositions of purified ilmenite and titanaugite samples (mass fraction, %).

Sample TiO2 Fe2O3 SiO2 CaO MgO Al2O3 Others

Ilmenite 48.51 35.39 4.67 1.35 4.84 1.61 3.63
Titanaugite 3.50 14.38 15.60 40.34 10.56 6.72 8.90

2.2. Materials Characterization

The chemical composition of the samples was detected using an X-ray diffractometer.
The phase composition was analyzed with the aid of Jade6.5 software.

The zeta potential of HGB and ilmenite was measured by a Delsa-440sx zeta meter
(Brea, CA, USA). First, 20 mg of the samples was added to 40 mL of electrolyte solution
(10−3·mol·L−1·KCl) for the measurements. The required pH was adjusted by H2SO4 and
NaOH solutions for 3 min, followed by another 3 min for adding the desired concentration
of NaOL collector. The suspension was stirred with a magnetic stirrer for 14 min, then
settled for 10 min. The supernatant was used for measurement. The average of three
individual measurements was used for analysis.

The contact angles of ilmenite and HGB treated with or without NaOL were mea-
sured by a contact angle goniometer (Dropmaster 300, Kyowa Interface Science Co., Ltd.,
Tokyo, Japan).

The laser-based particle size was measured with Master-size 2000 (Malvern, UK) to
obtain the size distribution of fine-grained mineral particles.

2.3. Optical Microscope Observation

An optical microscope (OLYMPUS CX31, Tokyo, Japan) was used to observe the state
of ilmenite particles (size distributions of −19 µm) before and after the collector and HGB
addition in an aqueous suspension. The prepared condition was the same as that in the
micro-flotation experiment (pH: 6.0, NaOL concentration: 4.0 × 10−4·mol·L−1). A small
amount of suspension was dropped on the microslide and then moved to the microscope
for observation after natural drying.

2.4. FTIR Measurements

FTIR measurements were recorded using a Nicolet 380 FTIR spectrometer (Thermo
Fisher Scientific, Waltham, MA, USA) and the KBr reflection method. First, the mineral
sample was finely ground to smaller than 5 µm before contacting with the collector. Then,
1 g of the mineral sample was added to 40 mL of aqueous solution with or without NaOL
(4.0 × 10−4 mol·L−1) at pH 6.0. The suspension was filtered after 20 min of mechanical
stirring. The precipitation was washed five times with DI water and vacuum-dried at 60 ◦C.
The 2.0% powder was mixed with dry KBr pressing disc pellets for measurements.

2.5. Glass Bubbles Hydrophobization

HGB is obtained by hydrophobizing the silica surface of “glass bubbles”. “Glass
bubbles” must be esterified with straight chain alcohols to produce chemically bonded
alkane coatings, obtain HGB, and make the original glass bubbles (OGB) surface hydropho-
bic [27]. Reactions need to be carried out in excess reagents without relying on precise
reagent concentrations to prevent secondary or polymerization reactions [28]. The general
esterification reaction scheme is given in Equation (1) [29], where the reaction occurs in
surface silanol groups:

≡Si-OH + HO-RxHy ↔ Si-O-RxHy + H2O (1)

First, 50 g of silica particles was reacted with 130 g 1-butanol and boiled in a 500 mL
insulated round-bottom flask under reflux for 7 h. A magnetic stirrer was used to stir
continuously and prevent the mixture from coagulating. A condenser with a CaCl2 drying
tube on top was used to prevent the entry of moisture from the surrounding environment.
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Once the boiling period was finished, the coated particles were centrifuged and washed
twice in acetone and once in ethanol to ensure the complete removal of excess reagent.

2.6. Micro-Flotation Experiment

Micro-flotation experiments were conducted in an XFGII flotation machine with a
stirring rate of 1700 rpm. The 2 g purified mineral sample and 40 mL of deionized water
were mixed in each test. The suspension pH was adjusted by H2SO4 or NaOH solution
by stirring for 3 min. After this period, the depressant was added to the suspension and
conditioned for 3 min, followed by the addition of the desired concentration of the collector
and conditioning for another 3 min. Then, HGB carrier or OGB was added and stirred for
6 min. Flotation time was limited to 3 min, and froth was scraped out every 10 s. Figure 3
illustrates the flowsheet involved in the micro-flotation test. The concentrates and tailing
were filtered, dried, and weighed to calculate the mineral recovery.
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3. Results and Discussion
3.1. Micro-Flotation

Figure 4 illustrates the flotation behaviors of ilmenite and titanaugite (38–74 µm)
using 2.0 × 10−4 mol·L−1 of NaOL collector as a function of pH. The results show that the
flotability behaviors of ilmenite and titanaugite first increase remarkably and then stabilize
above 80% when pH increases from 2.0 to 12.0, and floatability of titanaugite trends are
remarkably similar to ilmenite. The optimal pulp pHs for ilmenite and titanaugite are
around 6.0 and 7.0, respectively, and the maximum recovery difference between ilmenite
and titanaugite is 47.42% at pH 6.0.
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Figure 5 shows the effect of HGB dosage on floatability of fine ilmenite and fine
titanaugite at a pH of 6.0. It further showed that the flotation recoveries of ilmenite and
titanaugite increased with the HGB dosage. When the HGB dosage was more than 0.02 g,
the flotation recoveries of both minerals occurred at high platforms.
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Figure 6 shows the relationship between fine-grained minerals and flotation recovery
by NaOL of 4.0 × 10−4 mol·L−1 as a function of pH. In the presence of collector NaOL,
the recovery of ilmenite and titanaugite (0–19 µm) has a poor floatability. The flotation
recovery of ilmenite in acidic aqueous solutions first increases sharply with the increase
of pH, stabilizes above 50% when pH is over 5.0, and continues to increase in a weakly
alkaline environment. Floatability of fine titanaugite trends is remarkably similar to fine
ilmenite. The effect of OGB addition on the flotation behavior was investigated, and the
results are shown in Figure 6. The flotation recoveries of two minerals are nearly unchanged
with an increase of pH from 2.0 to 12.0 in the presence of mixed OGB, indicating that OGB
cannot promote flotation performance. However, HGB leads to an effective increase for
both minerals. The results denote that when NaOL is used as the collector at pH 5.0–8.0,
the recovery of ilmenite mixed with HGB reaches a maximum at and above pH 6.0, the
recovery of ilmenite is only approximately 40%, but the recovery of ilmenite mixed with
HGB is close to 85%. However, the maximum recovery difference between two minerals
is only 32.87%. Therefore, the recovery difference between two minerals is no more than
33%, and the flotation separation of the two minerals is difficult to achieve [30]. Otherwise,
when pH increases from 10 to 12, the same as normal size minerals, the floatability of both
minerals is excellent, which differs from the results of previous studies [31]. This finding
may be related to the decrease in the surface tension of NaOL and the sharp increase in
foamability as pH increases, resulting in a further decrease in the selectivity of NaOL [32].
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In the usual pH range (5.0–8.0), ilmenite and titanaugite mixed with HGB have an
excellent floatability, and accomplishing the flotation separation of the two minerals is
difficult using a single collector. Therefore, sodium silicate (10 mg·L−1) was used in the
carrier flotation of ilmenite to hinder the adsorption of NaOL collector on the titanaugite
surface, flocculate fine titanaugite particles, and prevent titanaugite from floating together
with ilmenite. Figure 7 shows that after adding 10 mg·L−1 sodium silicate, the floatability
of ilmenite is nearly unaffected, while titanaugite recovery declines remarkably [33]. In
conclusion, HGB can improve the flotation recovery of ilmenite across a wide range of
pulp pH values. The flotation separation of the two minerals can be achieved at pH 6.0
and recovery difference between ilmenite and titanaugite increased from approximately
32.87% to 52.11%.
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3.2. FTIR Analysis

Figure 8 shows the infrared spectra of NaOL, ilmenite, HGB, and both materials
treated with NaOL (4.0 × 10−4 mol·L−1) at a pH of 6.0. On the IR spectrum of NaOL, the
bands at 2922.80 and 2851.68 cm−1 are previously attributed to the C-H stretching vibra-
tions of methyl and methylene –CH, respectively. The bands at 1561.00 and 1449.36 cm−1

belong to the –COO– vibration, the band at 1561.00 cm−1 corresponds to the asymmet-
ric stretching vibration of –COOC–, and the band at 1449.36 cm−1 corresponds to the
symmetric stretching vibration of –COOC– [34].

Figure 8b shows that the peaks at about 545 and 458 cm−1 are characteristic bands
for ilmenite. The peaks at approximately 1632 and 3443 cm−1 could be attributed to
the bending mode of adsorbed water, in which the peak at approximately 3443 cm−1

corresponds to the stretching vibration of –OH [35]. Compared with the IR spectrum
of purified ilmenite, new peaks shift to 2919, 2850, 1544, and 1463 cm−1, bonds at 2919
and 2850 cm−1 can correspond to the stretching vibration of –CH2– and –CH3– in NaOL,
and these shifts indicate the adsorption of oleate species on the ilmenite surface through
chemisorption [36].

The FTIR spectra of HGB and HGB treated with NaOL at a pH of 6.0 are shown
in Figure 8c. On the spectrum of untreated HGB, the bands at approximately 2923 and
2856 cm−1 are attributed to the C-H stretching vibration of the –CH2– and –CH3– groups,
respectively. The small peaks indicate that the reaction in Equation (1) is successful.
Figure 8c shows that the stronger peaks at approximately 2922 and 2852 cm−1 and the
new bond at approximately 1560 cm−1 result from the –COOC– asymmetric stretching
vibration. The characteristic peaks of oleate species shift weakly due to physisorption of
the oleate species on the surface of HGB.
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3.3. Estimation of Interaction Energies by Extended DLVO Theory

The classic DLVO theory was proposed by Deryagin and Landau, and Verwey and
Overbeek [37]. It explains the stability of colloids, including electrical double-layer interac-
tion forces and London–van der Waals interaction forces. The classic DLVO theory cannot
fully explain the flotation behavior of mineral particles due to the existence of various
flotation agents in slurry. Van Oss et al. formulated the XDLVO theory. They added an
acid-based interaction component built on the electron-donating and electron-accepting
interactions between polar moieties in an aqueous solution. In general, small particle
interaction energies can be explained by surface thermodynamics and the XDLVO theory,
in which the interaction energy between ilmenite and HGB is calculated as a function of
separation distance [38].

According to the XDLVO theory, the total energy of interaction VT is determined
as follows:

VT = VE + VH + VW (2)

where VE is the electrostatic interaction energy, VW is the London–van der Waals dispersion
energy, and VH is the acid–base interaction energy.

The electrostatic force VE between HGB and ilmenite can be expressed by the following
equation for the sphere–sphere system:

VE =
πεa1a2

(
ϕ2

1 + ϕ2
2
)

a1 + a2
×
[

2ϕ1 ϕ2

ϕ2
1 + ϕ2

2
ln

1 + exp(−κH)

1− exp(−κH)
+ ln{1− exp(−2κH)}

]
(3)

where ε = ε0εr, ε0 is absolute dielectric constant (8.854 × 10−12 C−2·J−1·m−1), εr is the
dielectric constant of the medium, and 78.5 C−2J−1m−1 is the aqueous medium’s dielectric
constant, such that ε = 6.95 × 10−10 C−2J−1m−1 [39]; ϕ1 and ϕ2 are the Stern potentials
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of the HGB and mineral, respectively, which are often replaced with ζ-potential; a1 and
a2 are the radius of the HGB and mineral particle, respectively, which are measured
with Master-size 2000; H is the minimum separation distance between the HGB and
mineral particle; and the reciprocal of the Debye length, κ−1, is 9.61 nm calculated via
κ−1 = 0.304/

√
[10−3MKCL] nm. In the NaOL solution (4.0 × 10−4 mol·L−1) of pH 6.0,

the ζ-potentials of HGB and ilmenite measured by a Delsa-440sx zeta-meter are −60.8 and
−91.6 mV, respectively.

For the HGB–NaOL–ilmenite system, the London–van der Waals energy dispersion
VW can be obtained from the following Equation:

VW = − a1a2

6(a1 + a2)

[
A1

H
+

A2

H + δ1
+

A3

H + δ2
+

A4

H + δ1 + δ2

]
(4)

where a1 and a2 represent the radius of the HGB and mineral particle, respectively; A1, A2,
A3, and A4 are the Hamaker constants for the mineral particle P interacting with HGB B in
a medium (water) W with collector (NaOL) C over the minimum separation distance H; δ1
and δ2 are the thickness of the adsorbent layer on the surface of mineral particle and HGB,
respectively. A1, A2, A3, and A4 could be calculated as follows:

A1 =
(√

AC −
√

AW
)(√

AP −
√

AW
)

A2 =
(√

AP −
√

AC
)(√

AC −
√

AW
)

A3 =
(√

AC −
√

AW
)(√

AB −
√

AC
)

A4 =
(√

AP −
√

AC
)(√

AB −
√

AC
) (5)

where AP, AB, AW, and AC refer to the Hamaker constant for the mineral particle, HGB,
medium (water), and collector (NaOL), respectively. The Hamaker constants of ilmenite,
HGB, water, and NaOL are 19.7 × 10−20 J, 15 × 10−20 J, 3.7 × 10−20J, and 4.7 × 10−20J,
respectively [40].

Hydrophobic interaction energy VH can be determined by the following relationship
(sphere–sphere system) [41]:

VH =
2πa1a2

(a1 + a2)
h0

(
V0

H

)
exp
(

H0 − H
h0

)
(6)

where a is the radius of the particle; h0 is the correlation length of the molecules in the liquid;
H0 is the minimum separation distance between HGB and ilmenite surfaces; a1 and a2 are
the radii of the HGB and mineral particle, respectively; and H is the separation distance.

V0
H could be calculated as follows:

V0
H = 2

(√
γ+

b −
√

γ+
p

)(√
γ−b −

√
γ−p
)
− 2
(√

γ+
b −

√
γ+

l

)(√
γ−b −

√
γ−l

)
−2
(√

γ+
p −

√
γ+

l

)(√
γ−p −

√
γ−l

) (7)

where b, p, and w represent HGB, ilmenite, and liquid, respectively, and γ+ and γ−
represent the electron acceptor and electron donor parameters, respectively.

The contact angles of liquids on the solid phase were measured by a contact angle
goniometer to calculate the surface tension parameters (γd

s , γ+, and γ−) for the HGB
or minerals, and contact angle results show in Figure 9, the parameters were obtained
as follows:

1
2
(1 + cos θ)γl =

√
γd

s γd
l +

√
γ+

s γ−l +
√

γ−s γ+
l (8)

A = 24πH0
2γd

s (9)

where s and l represent solid (HGB or mineral) and liquids, respectively, and γ and γd
s

represent the surface tension and a polar component of the surface tension, respectively.
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The value of oxidized minerals γ+
s is equal to 0 [42]. Equations (7) and (8) could be

simplified as follows:

V0
H = 2

√
γ+

l

(√
γ−b − 2

√
γ−l +

√
γ−p

)
(10)

1
2
(1 + cos θ)γl =

√
γd

s γd
l +

√
γ−s γ+

l (11)
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In this study, 10 µm, 65 µm, 1.3 nm, 1.3 nm, 10 nm, 0. 2 nm, 72.8 mJ·m−2, 21.8 mJ·m−2,
25.5 mJ·m−2, and 25.5 mJ·m−2 are the specific values of a1, a2, δ1, δ2, h0, H0, γw, γd

w, γ+
w , and

γ−w , respectively [18]. The calculation results are shown in Figure 10.
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Figure 10 shows that the electrostatic interaction (VE) calculated by Equation (3) is
closely related to the zeta potential of ilmenite and HGB. The value of VE is positive, and
VE is an order of magnitude larger than VW from Equations (4) and (5) because ilmenite
and HGB are highly negatively charged in the NaOL solution. The total interaction
energy (without VH) exhibits a relatively high energy barrier in close contact (<20 nm),
thus making ilmenite particle fail to attach on the HGB surface. However, the optical
microscope observation reveals that ilmenite particles and HGB have a good attachment in
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NaOL solution. The results show that the total interaction energy also depends on acid–
base interaction energy (VH). The hydrophobic interaction energy calculated by Equations
(6), (10) and (11) illustrates that the value of hydrophobic interaction energy is positive, and
VH is an order of magnitude larger than VE, which shows that hydrophobic interaction
energy determines the attachment between ilmenite particle and HGB. Total interaction
energy increases as the interaction distance between particles decreases. The theoretical
calculation value is consistent with the experimental data.

3.4. Optical Microscope Observation of Ilmenite

Figure 11 illustrates attachment images of the fine ilmenite mixed HGB treated with
or without NaOL at a concentration 4.0 × 10−4 mol·L−1. Figure 11 shows that the carrier
phenomenon occurs between fine ilmenite particles and carrier HGB under the addition of
a collector reagent. Figure 11a shows ilmenite particle has a good dispersion ability in an
aqueous solution. Figure 11b shows fine ilmenite treated with NaOL, few mineral particles
form aggregates, and most of them are still in a dispersed state. Figure 11c,d shows that
the mineral particles are surrounded and attached on the surface of the HGB carrier, which
indicates that carrier HGB could attach ilmenite treated with the collector, with the addition
of a collector reagent and the HGB particle input. In addition, the larger the particle size of
the HGB carrier is, the more ilmenite particles can be attached. To sum up, the potential
mechanism for the carrier flotation of ilmenite and HGB (Figure 12) could be presumed
as follows. First, ilmenite is placed in the flotation cell to be treated with NaOL, such that
NaOL is chemisorbed on the ilmenite surface to make ilmenite hydrophobic. Then, hollow
glass bubbles after hydrophobization by 1-butanol are added to the flotation cell. The
NaOL-treated ilmenite particles collide with HGB particles in the flotation machine. The
hydrophobic forces could then form between the alkyl chains of the oleate species and
HGB surfaces, causing the aggregation of HGB and ilmenite particles. The glass bubble is
hollow and has strong natural floatability. The surface of the aggregate formed by the glass
bubble and mineral is also covered with hydrophobic groups. The joint action of the two
improves the floatability of ilmenite in the solution and forms a new method of flotation of
fine ilmenite using the hydrophobic glass bubble as the carrier.
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pressant to separate ilmenite from titanaugite and achieve the best separation effect at pH 
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proximately 32.87% to 52.11%. The results of FTIR analysis revealed that NaOL chemi-
sorbed onto the surface of the mineral particles and physisorbed on the HGB surfaces. 
Optical microscope observation results indicated that ilmenite particles treated with 
NaOL solution can be attached on the surface of the HGB, and larger HGB particles can 
attach more ilmenite particles. According to the XDLVO theory, the total energy of inter-
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London–van der Waals interactions, but also on acid–base interactions. The surface free 
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4. Conclusions

HGB was studied as the carrier to promote fine-grained ilmenite recovery. The micro-
flotation results showed that the floatability of fine ilmenite and titanaugite remarkably
decreased compared with that of coarse ilmenite and titanaugite. HGB could improve
the flotation of ilmenite and titanaugite using NaOL as collector and sodium silicate as
depressant to separate ilmenite from titanaugite and achieve the best separation effect
at pH 6.0. The flotation recovery difference between ilmenite and titanaugite increased
from approximately 32.87% to 52.11%. The results of FTIR analysis revealed that NaOL
chemisorbed onto the surface of the mineral particles and physisorbed on the HGB surfaces.
Optical microscope observation results indicated that ilmenite particles treated with NaOL
solution can be attached on the surface of the HGB, and larger HGB particles can attach
more ilmenite particles. According to the XDLVO theory, the total energy of interaction
calculation results showed that total energy depended not only on electrostatic and London–
van der Waals interactions, but also on acid–base interactions. The surface free energy
and zeta potential of mineral and carrier were the main factors affecting the acid–base
interaction force. The acid–base interactions force determined whether two hydrophobic
particles can stick together. Most importantly, adhesion behaviors between mineral and
HGB, which was lacking in previous studies, was comprehensively explained here.
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38. Adamczyk, Z.; Weroński, P. Application of the DLVO theory for particle deposition problems. Adv. Colloid Interface Sci. 1999, 83,

137–226. [CrossRef]
39. Piñeres, J.; Barraza, J. Energy barrier of aggregates coal particle–bubble through the extended DLVO theory. Int. J. Miner. Process.

2011, 100, 14–20. [CrossRef]
40. Mei, W.; Li, X.; Cao, Y. Chemical Formulas Manual; Transl. Scienmce Press: Beijing, China, 1987.
41. Oss, C.J.V.; Giese, R.F.; Costanzo, P.M. DLVO and non-DLVO interactions in hectorite. Clays Clay Miner. 1990, 38, 151–159.
42. Farahat, M.; Hirajima, T.; Sasaki, K.; Doi, K. Adhesion of Escherichia coli onto quartz, hematite and corundum: Extended DLVO

theory and flotation behavior. Colloids Surf. B Biointerfaces 2009, 74, 140–149. [CrossRef] [PubMed]

http://doi.org/10.1016/j.colsurfa.2008.10.039
http://doi.org/10.1016/0021-9797(75)90262-3
http://doi.org/10.1016/j.molliq.2019.111311
http://doi.org/10.1016/j.mineng.2020.106366
http://doi.org/10.1016/j.apsusc.2018.01.234
http://doi.org/10.1016/S1003-6326(19)65101-0
http://doi.org/10.1016/j.colsurfa.2020.125964
http://doi.org/10.1016/j.mineng.2017.06.009
http://doi.org/10.1016/j.apt.2020.07.011
http://doi.org/10.1016/S0001-8686(99)00009-3
http://doi.org/10.1016/j.minpro.2011.04.007
http://doi.org/10.1016/j.colsurfb.2009.07.009
http://www.ncbi.nlm.nih.gov/pubmed/19665879

	Introduction 
	Experimental 
	Materials and Reagents 
	Materials Characterization 
	Optical Microscope Observation 
	FTIR Measurements 
	Glass Bubbles Hydrophobization 
	Micro-Flotation Experiment 

	Results and Discussion 
	Micro-Flotation 
	FTIR Analysis 
	Estimation of Interaction Energies by Extended DLVO Theory 
	Optical Microscope Observation of Ilmenite 

	Conclusions 
	References

