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Abstract: Bacteria–mineral contact and noncontact leaching models coexist in the bioleaching process.
In the present paper, dialysis bags were used to study the bioleaching process by separating the
bacteria from the mineral, and the reasons for chalcopyrite surface passivation were discussed. The
results show that the copper leaching efficiency of the bacteria–mineral contact model was higher
than that of the bacteria–mineral noncontact model. Scanning electron microscopy (SEM), X-ray
diffraction (XRD), and Fourier-transform infrared (FTIR) were used to discover that the leaching
process led to the formation of a sulfur film to inhibit the diffusion of reactive ions. In addition,
the deposited jarosite on chalcopyrite surface was crystallized by the hydrolysis of the excess Fe3+

ions. The depositions passivated the chalcopyrite leaching process. The crystallized jarosite in the
bacteria EPS layer belonged to bacteria–mineral contact leaching system, while that in the sulfur
films belonged to the bacteria–mineral noncontact system.

Keywords: chalcopyrite; bacteria leaching; passivation; jarosite

1. Introduction

Chalcopyrite (CuFeS2) is one of the most widespread and refractory copper-containing
minerals [1]. The main technologies to extract copper are pyrometallurgical processes;
however, the byproduct, i.e., sulfur dioxide, leads to serious environmental pollution.
Currently, researchers are focusing on developing new environmentally friendly metallurgy
technologies and, since bio-metallurgy is renowned for low cost and pollution [2,3], it has
already become a research hotspot. There are two widely received bioleaching mechanisms,
i.e., direct action and indirect action, providing theoretical support for research on sulfuric
mineral bio-metallurgy [4]. On the other hand, further research has shown that these
mechanisms cannot explain several complex chemical, electrochemical, and biochemical
phenomena. Tributsch found that an extracellular polymeric substance (EPS) is produced
as the bacteria are adsorbed onto the ore surface [5]. Fe(III) and H+ are accumulated on the
contact surface of the ore/solution by EPS to hasten ore decomposition. This conclusion was
rather different from the previously characterized “direct action”. Crundwell [6] developed
Tributsch’s theory and summarized other research results, eventually establishing the
indirect leaching mechanism, indirect contact leaching mechanism, and direct contact
leaching mechanism. This mechanism has been already authorized in the bio-metallurgy
academic community. In recent years, bio-metallurgy technology developed rapidly and
was applied in the smelting process of arsenic-bearing refractory gold ore and secondary
copper sulfide [7]. For chalcopyrite bioleaching technology, the development is slow
due to the following reasons: the high lattice energy of chalcopyrite [8], its difficulty
to be oxidized in the bioleaching process, and the passivation layer produced by the
insoluble substance that inhibits the further diffusion of bacteria and reactant [9–15].
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Parker reported that jarosite deposition has an important role in the decrease in copper
leaching efficiency [16]. Dutrizac promoted that a dense sulfur layer covered the surface of
chalcopyrite which would inhibit leaching [17]. Ghahremaninez promoted that leaching of
Cu1−xFe1−yS2 (x < y) was the main reason for the observation of electrochemistry [18,19].
Altogether, the widely accepted view is that jarosite deposition leads to chalcopyrite
passivation [20,21].

Fe3+ ion concentration, pH, and monovalent cation concentration have an effect on
the generation of the jarosite deposition. Rapid crystallization of jarosite is produced by
bacteria, hastening the Fe3+ ion supply [22–27]. However, the location of crystallization
and mechanism of generation remain unclear. It is very important to study the passiva-
tion mechanism of chalcopyrite, especially to ascertain whether jarosite crystallizes on
the ore surface or in the EPS layer of bacteria absorbed onto ore surface. In this paper,
the chalcopyrite bioleaching processes are divided into two parts by bag filters so as to
separate bacteria from ore. The aim was to study the leaching mechanism under different
conditions including the bacterium–mineral contact and noncontact leaching models. The
leaching residue was analyzed by several experimental methods, such as scanning electron
microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) in order
to discuss the reason for chalcopyrite surface passivation.

2. Materials and Methods
2.1. Leaching Bacteria

The bioleaching bacterial strains were composed of Acidithiobacillus ferrooxidans, Acidi-
thiobacillus thiooxidans, and Leptospirillum ferriphilum. They were provided by the Northeast-
ern University bio-metallurgical laboratory. The strains have good antitoxic characteristic
and oxidative ability of sulfur and ferrous ions, and they grow in a pH range of 1.0–2.5 and
a temperature range of 25–44 ◦C [28,29].

2.2. Microorganism Culture

The culture medium used for this experiment was 9 K [28,29]. The composition of
the medium is as follows: 3.0 g/L (NH4)2SO4; 0.1 g/L KCl; 0.5 g/L K2HPO4; 0.5 g/L
MgSO4·7H2O; 0.01 g/L Ca(NO3)2; 44.3 g/L FeSO4·7H2O. All chemical reagents used were
of analytical grade.

2.3. Mineral Sample

The mineral sample was obtained from a certain copper mine in Hubei province
of China. The elementary composition of the sample is listed in Table 1. It can be seen
that the mineral sample contained Cu 13.82%, Fe 37.50%, and S 39.76%. The particle
size distribution is listed in Table 2. It can be seen that the proportions of particles with
size >75 µm, 75–45 µm, 45–37 µm, and <37 µm were 1.12%, 9.53%, 20.16%, and 69.19%,
respectively. The X-ray diffraction pattern is shown in Figure 1. The main metallic minerals
in the mineral sample were chalcopyrite and pyrite.

Table 1. The main element contents of mineral samples.

Element Cu Fe S SiO2 CaO Al2O3 MgO

Content, % 13.82 37.50 39.76 2.72 0.79 0.40 0.15

Table 2. Particle size distribution of mineral samples.

Particle Size >75 µm 75–45 µm 45–37 µm <37 µm

Content, % 1.12 9.53 20.16 69.19
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Figure 1. X-ray diffraction (XRD) pattern of the mineral samples. 
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group test could simulate the leaching behavior of the contact bacteria–mineral model. 
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The initial pH was adjusted to 1.4 with H2SO4. The flasks were put into a constant-tem-
perature shaker incubator and shaken at 170 rpm at 44 °C. The experiment was supple-
mented with distilled water instead of volatilized water. 

2.5. Measurement 
A PHS-25 acidometer made by Shanghai digital electronics holding (group) co., LTD 

was used to measure the solution pH. A platinum plate as a working electrode and a sat-
urated calomel electrode as reference were used to measure redox potential. A Leica 
DM2500 biological microscope and XB-K-25 hemacytometer were used to count the num-
ber of free bacteria in pulp. The total count on the ore surface was measured by ninhydrin 
colorimetry [30]. The copper concentration was measured using a TAS-990 atomic absorp-
tion spectrophotometer, manufactured by PERSEE Company in Beijing. The atomic ab-
sorption method is based on the characteristic spectral line of the element to be measured 
emitted by the hollow cathode lamp. The sample vapor is absorbed by the ground-state 
atom of the element to be measured in the vapor, and the content of the element to be 
measured in the sample is determined by the weakening degree of the characteristic spec-
tral line. The leaching residue was observed using an SSX-550 SEM/energy-dispersive 
spectrometer (EDS) made by the Japanese Shimadzu Company. The phase of leaching 
residue was analyzed using a Netherlandish D/MAX-RB X-ray diffractometer under the 
condition of CuKα and 2°/min scanning speed. IR analysis of leaching residue was per-
formed in a 400–4000 cm−1 scanning range by a Vertex70 Fourier-transform infrared spec-
trometer of the Germany BRUKER Company. Leaching residue was bonded to the metal 
platform with a conductive adhesive. 
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Figure 1. X-ray diffraction (XRD) pattern of the mineral samples.

2.4. Experimental Procedure

The chalcopyrite samples were divided into two groups for bioleaching. Each group
consisted of five parallel samples, as the leaching process needed to be observed and
studied under different periods. In the first group, each sample had 10 g of chalcopyrite
wrapped with a dialysis bag, which was added to a 500 mL shaking flask containing 180 mL
of 9 K culture medium. The dialysis bag was made up of polyvinylidene fluoride with a
cutoff relative molecular mass of 8000, preventing bacteria from contacting the mineral but
allowing ions to dialyze and diffuse freely. Therefore, the first group test could simulate
the leaching behavior of the noncontact bacteria–mineral model, while the second group
test could simulate the leaching behavior of the contact bacteria–mineral model. Each
sample in the second group had 10 g of chalcopyrite directly added to a 500 mL shaking
flask also containing 180 mL of 9 K culture medium. Then, 20 mL of bacterial solution with
3.2 × 108 cells/mL was injected into each of the 10 flasks mentioned above. The initial pH
was adjusted to 1.4 with H2SO4. The flasks were put into a constant-temperature shaker
incubator and shaken at 170 rpm at 44 ◦C. The experiment was supplemented with distilled
water instead of volatilized water.

2.5. Measurement

A PHS-25 acidometer made by Shanghai digital electronics holding (group) co., LTD
was used to measure the solution pH. A platinum plate as a working electrode and a
saturated calomel electrode as reference were used to measure redox potential. A Leica
DM2500 biological microscope and XB-K-25 hemacytometer were used to count the number
of free bacteria in pulp. The total count on the ore surface was measured by ninhydrin col-
orimetry [30]. The copper concentration was measured using a TAS-990 atomic absorption
spectrophotometer, manufactured by PERSEE Company in Beijing. The atomic absorption
method is based on the characteristic spectral line of the element to be measured emitted
by the hollow cathode lamp. The sample vapor is absorbed by the ground-state atom of
the element to be measured in the vapor, and the content of the element to be measured
in the sample is determined by the weakening degree of the characteristic spectral line.
The leaching residue was observed using an SSX-550 SEM/energy-dispersive spectrometer
(EDS) made by the Japanese Shimadzu Company. The phase of leaching residue was
analyzed using a Netherlandish D/MAX-RB X-ray diffractometer under the condition of
CuKα and 2◦/min scanning speed. IR analysis of leaching residue was performed in a
400–4000 cm−1 scanning range by a Vertex70 Fourier-transform infrared spectrometer of
the Germany BRUKER Company. Leaching residue was bonded to the metal platform with
a conductive adhesive.
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3. Results and Discussion
3.1. pH and Potential Change

Figures 2 and 3 show the variations of pH and potential in the process of bioleaching.
During the bioleaching process of sulfide minerals, these changes are caused by the transfer
of hydrogen ions and electrons. It can be seen from Figure 2 that pH increased at the be-
ginning of the reaction, and then subsequently decreased. Furthermore, the pH remained
relatively constant in a range of 1.2–1.75, which is suitable for bacterial survival. Equa-
tions (1) and (2) represent the oxidation reaction of sulfide minerals in the bacteria–mineral
contact leaching model. Fe3+ as an oxidant comes from two aspects; one is dissociative
Fe3+ in the solution, whereas the other occurs in EPS layer of bacteria. The solution pH
increases when Fe2+ is oxidized to Fe3+ by the bacteria, according to the reaction shown
in Equation (3). However, the pH decreases slowly due to sulfur being oxidized by the
bacteria, as shown in Equation (4), and Fe3+ being hydrolyzed, as shown in Equation (5).
In the bacteria–mineral noncontact leaching model, the bacteria were isolated from the
ore using a dialysis bag, preventing them from being adsorbed onto the ore surface. The
chalcopyrite was oxidized only by dissociative Fe3+ in the solution. The standard electrode
potential of Fe3+/Fe2+ was 0.771 V vs. SHE which is less than the 0.808 V vs. SHE necessary
for the production of S6+ [31,32]. Therefore, S2− in the chalcopyrite was oxidized only to
S0, as detected on the ore surface. Fe2+ oxidized to Fe3+ after passing through the dialysis
bag and reacting with bacteria, leading to a pH increase. Moreover, S0 on the ore surface
could not be oxidized by Fe3+. Thus, the bacteria–mineral noncontact leaching model
appeared to have a higher increase in pH than the corresponding contact leaching model.
On day 9 of the bioleaching process, the pH reached 1.74, before subsequently decreasing
due to Fe3+ hydrolysis, as can be seen in Equation (5). Pulp potential increased rapidly,
and then remained relatively constant. Moreover, the potential of the bacteria–mineral
noncontact leaching system rose higher than that of the bacteria–mineral contact leaching
system. This was due to the sulfur film formed in the bacteria–mineral noncontact leaching
system after the ores were oxidized by Fe3+, which in turn obstructed the leaching of ores.
Furthermore, the bacteria outside the dialysis bag could oxide Fe2+ into Fe3+, which led to
the increase in [Fe3+]/[Fe2+] in the solution, and oxidation reduction potential rose quickly.
In the bacteria–mineral contact leaching system, the sulfur film, however, obstructed the
leaching of ore to lesser extent due to the existence of Acidithiobacillus thiooxidans. Thus, the
sulfide ores could be oxidized continuously [33].

CuFeS2 + 4Fe3+ chemical→ Cu2+ + 5Fe2+ + 2S0. (1)

FeS2 + 2Fe3+ chemical→ 3Fe2+ + 2S0. (2)

4Fe2+ + 4H+ + O2
biological→ 4Fe3+ + 2H2O. (3)

2S0 + 3O2 + 2H2O
biological→ 2H2SO4. (4)

3Fe3+ + 2SO4
2− + 6H2O + M+ → MFe3(SO4)2(OH)6 + 6H+.

(M = K+, NH4
+, H3O+

) (5)
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3.2. Bacterial Concentration Change

The change in bacterial concentration during the process of bioleaching is shown in
Figure 4. In the bacteria–mineral contact leaching system, the bacterial concentration is the
sum of the adsorbed count and free count. According to Figure 4, leaching from 3 days to
15 days followed the bacterial growth logarithmic phase. Bacterial concentration reached
6 × 108 cells/mL on the 15th day, before approaching the stationary phase. During the
whole bioleaching process, the bacterial concentration remained relatively stable. There
was no obvious decline phase, indicating that the bacteria adapted very well to the leaching
system, and the energy provided by the oxidation of sulfide ore could support the bacteria.
In the bacteria–mineral noncontact leaching system, the bacterial concentration increased
slowly and reached 2.1 × 108 cells/mL on the 15th day, which was one-third that of the
bacteria–mineral contact leaching system. After 15 days, bacterial growth started to decline.
The bacterial concentration decreased rapidly and reached 8.2 × 107 cells/mL at the end
of the bioleaching process, which shows that Fe3+ had no obvious effect on the oxidation
of chalcopyrite in the bacteria–mineral noncontact leaching system. It was so hard for
chalcopyrite to decompose persistently that some bacteria struggled to survive. This led to
the occurrence of a decline phase and the decrease in bacterial concentration.
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3.3. Copper Leaching Efficiency

The copper leaching efficiency during the bioleaching process is shown in Figure 5. As
seen from Figure 5, the percentage of leached copper reached 61.67% on the 30th day during
the bacteria–mineral contact leaching system, while that of the bacteria–mineral noncontact
leaching system reached only 21.86%. In the bacteria–mineral noncontact-leaching system,
both the copper leaching rate and the efficiency were very low as a function of the oxidation
of dissociative Fe3+. In the bacteria–mineral contact leaching system, the bacteria–EPS–ore
system was formed when bacteria were adsorbed on the chalcopyrite surface. Fe3+ was
accumulated in the EPS layer, subsequently oxidizing the ore. The efficiency was higher
than that of the bacteria–mineral noncontact leaching system. This shows that bacterial
adsorption has an important influence on chalcopyrite bioleaching.
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3.4. Discussion
3.4.1. XRD Analysis of Leaching Residue

Figure 6 presents the XRD spectrum of several bioleaching residues after chalcopyrite
was bioleached for 30 days under two different leaching conditions. As shown in Figure 6,
the residue composition of the bacteria–mineral contact leaching system was essentially the
same as that of the bacteria–mineral noncontact leaching system, including chalcopyrite,
pyrite, elementary sulfur, and jarosite. There were two kinds of leaching mode in the
bacteria–mineral contact leaching system. According to the first mode, an EPS layer was
formed on chalcopyrite surface by bacteria, and ore was oxidized by Fe3+ enriched in EPS.
In the second mode, bacteria, such as Thiobacillus ferrooxidans, were adsorbed onto the
ore surface and supported by HS−, S0, and S2O3

2− released by ore decomposition [5,34].
In the earlier stage of chalcopyrite bioleaching, the oxidation rate of ore was faster than
that of sulfur by Thiobacillus thiooxidans. Therefore, elementary sulfur accumulated on the
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chalcopyrite surface. In the bacteria–mineral noncontact leaching system, chalcopyrite
was oxidized only by dissociative Fe3+ in the leaching solution, as shown in Equations (1)
and (2), such that the sulfur formed could not be oxidized and accumulate on the ore
surface. As bioleaching proceeded in the bacteria–mineral contact leaching system, the
further oxidation of ore by Acidithiobacillus ferrooxidans was inhibited by sulfur accumulated
on the chalcopyrite surface, resulting in a rise in pH in the EPS layer and the hydrolysis
of redundant Fe3+. In addition, the jarosite crystal was separated out from the active
matter in the EPS layer as a nucleation center. In the bacteria–mineral noncontact leaching
system, the chalcopyrite surface was passivated due to the formation of elementary sulfur;
thus, chalcopyrite could not effectively be further oxidized by Fe3+. As redundant Fe3+

content increased, Fe3+ was hydrolyzed, and the jarosite crystal was separated out on the
chalcopyrite surface. Thus, there was no further increase in the leaching efficiency. Figure 3
shows the XRD spectra of bioleaching residue after bioleaching.
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3.4.2. SEM Analysis of Leaching Residue

SEM micrographs of leaching residue at different leaching times are shown in
Figures 7 and 8. As shown in Figure 7a, most of the elliptic eroded pits and cracks can be
found on the surface of several residues after leaching for 10 days due to bacterial adsorp-
tion in the bacteria–mineral contact leaching system. Passivation did not occur due to a
slippery ore surface, but fine jarosite crystals existed in the pits. After leaching for 20 days,
the pits increased, and the cracks started to broaden and deepen, which clearly indicates
that the ores were severely corroded. The ore surface remained sleek, and no jarosite crystal
was found on the outer surface of the ore. The jarosite was produced only in the pits. The
jarosite appeared only in the eroded area of the ore surface, as shown in Figure 7b. At
20 days through 30 days, since bacteria constantly produced Fe3+, jarosite crystal in the
corrosion pits grew, eventually covering the whole chalcopyrite surface, especially where
there was no reaction. This led to the thorough passivation of the chalcopyrite surface, as
seen in Figure 7a. Figure 8 shows that bacteria were not adsorbed onto the chalcopyrite
surface because of the isolation of the bag filter. Chalcopyrite was oxidized by dissociative
Fe3+. Elementary sulfur occurred on the chalcopyrite surface after leaching for 10 days. The
energy spectrum shows that the crystal floc around sulfur is jarosite, as seen in Figure 8a.
Along with the steady oxidation by bacteria, both the Fe3+ concentration and its redox
potential increased, resulting in the chemical deposition of jarosite and severe passivation
on the chalcopyrite surface. Finally, the copper bioleaching process stopped, as shown
in Figure 8b,c.
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3.4.3. FTIR Analysis of Leaching Residue

Figure 9 shows the FTIR spectra of both kinds of leaching residue after leaching for
30 days. The adsorption peaks at 515 and 474 cm−1 were attributed to the stretching
vibration of the FeO6 octahedron [35], that at 630 cm−1 was attributed to the υ4 stretching
vibration of SO4

2−, that at 1020 cm−1 was attributed to the γ1 bending vibration of SO4
2−,

those at 1090 and 1193 cm−1 were attributed to the γ3 bending vibration of SO4
2− [36],

that at 1663 cm−1 was attributed to the δ deformation vibration of HOH in jarosite, that
at 3394 cm−1 was attributed to the υ stretching vibration of OH [27], those at 2958 cm−1

and 2924 cm−1 were attributed to the asymmetric stretching vibration of CH2, and that at
2853 cm−1 was attributed to the symmetrical stretching vibration of CH2 [23,37]. The figure
shows that the bacteria–mineral contact leaching system possessed the same structure of
jarosite as the bacteria–mineral noncontact leaching system. Organic matter absorbed in the
bacteria–mineral contact leaching system was derived from the deposition of biomass on the
chalcopyrite surface. The biomass deposition hastened the nucleation and crystallization
of jarosite.
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3.4.4. Model of Bioleaching Process

Although bacteria–mineral contact and noncontact leaching coexist in chalcopyrite
bioleaching, bacteria–mineral contact leaching represents the main mode. In Figure 10,
a mechanism model is presented for the chalcopyrite bioleaching process and jarosite
production. In the initial phase, bacteria are adsorbed onto the mineral surface owing to
its chemotaxis, as shown in Figure 10a. A substantial amount of Fe3+ exists in the EPS
layer, which is reduced to Fe2+ due to the oxidation of ore. Then, Fe2+ is oxidized to Fe3+,
which is accompanied extensive H+ consumption, as seen in Figure 10b,c. Chalcopyrite
is oxidized, and Fe and Cu are liberated. The sulfur in the reduced state is oxidized to S0,
and a sulfur film is formed on the chalcopyrite surface, thereby inhibiting the leaching of
chalcopyrite. The copper leaching rate decreases and pH increases in the EPS layer. The
remaining Fe3+ hydrolyzes and forms jarosite, as shown in Figure 10d. In the EPS layer,
active matter is used as the nucleation center of jarosite. Fe2+ is oxidized by free bacteria,
thereby increasing the Fe3+ concentration and redox potential. During the anaphase, the
jarosite sediment is increased, thereby inhibiting the copper leaching process with the rise
in Fe3+ concentration. Thus, passivation of the bacteria–mineral contact and noncontact
leaching systems depends on the accumulation of sulfur on the chalcopyrite surface. In
the passivation process, the formation of a sulfur film has a inhibitory effect on the rapid
diffusion of reaction ions, thus decreasing the leaching rate of chalcopyrite. However,
jarosite is the main reason for chalcopyrite passivation.
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Figure 10. Schematic diagram of chalcopyrite bioleaching and jarosite formation. (a) Adsorption
bacteria on chalcopyrite surface, (b) Microenvironment between bacteria, EPS and minerals, (c) Fe2+

was oxidized to Fe3+ on the cell wall of bacteria, and consuming H+, (d) Jarosite crystal precipitation.

4. Conclusions

(1) The bacteria–mineral contact and noncontact leaching systems coexisted in the
chalcopyrite bioleaching process. In the bacteria–mineral contact leaching system, the
bacteria oxidized elemental sulfur on the surface of chalcopyrite and enriched Fe3+ in the
EPS layer, which hastened copper leaching. In the bacteria–mineral noncontact leaching
system, dissociative Fe3+ oxidized chalcopyrite, and it was regenerated by the bacteria.

(2) In the chalcopyrite bioleaching process, the formation of sulfur was found in both
the bacteria–mineral contact and the bacteria–mineral noncontact leaching systems. In the
bacteria–mineral contact leaching system, the oxidation rate of ore was faster than that of
sulfur by Thiobacillus thiooxidans. Sulfur was deposited on the chalcopyrite surface. In the
bacteria–mineral noncontact leaching system, the oxidation of S2−and S1− to S0 induced
by Fe3+ could not generate S4+ and S6+ with a higher valence state, consequently inhibiting
further copper leaching.

(3) A layer of sulfur was produced and consequently inhibited the rapid diffusion of
reaction ions. The redundant Fe3+ was hydrolyzed and formed jarosite. In the bacteria–
mineral contact leaching system, jarosite was separated out from the active matter in the
EPS layer as a nucleation center. In the bacteria–mineral noncontact leaching system, the
jarosite crystallized on the sulfur layer of the chalcopyrite surface.
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