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Abstract: In this study an integrated process is presented as a suitable method to transform Fe3+

oxides present in bauxite residue into magnetic oxides and metallic iron through a microwave
roasting reduction, avoiding the formation of hercynite (FeAl2O4). In the first step, all the alumina
phases were transformed into sodium aluminates by adding sodium carbonate as a flux to BR and
then leached out through alkali-leaching to recover alumina. Subsequently, the leaching residue was
mixed with carbon and roasted by using a microwave furnace at the optimum conditions. The iron
oxide present in the sinter was converted into metallic iron (98%). In addition, hercynite was not
detected. The produced cinder was subjected to a wet high intensity magnetic separation process to
separate iron from the other elements.

Keywords: bauxite residue; microwave roasting process; iron recovery; alumina recovery; soda
sintering

1. Introduction

Microwave roasting process has been examined as an emerging technology of mineral
processing. Compared to conventional heat treatment methods, this treatment has different
advantages such as significantly faster reaction times and potentially lower energy [1].
These depend on the interaction between material and electromagnetic field generated
during the process. The materials can be classified into three different categories based
on their dielectric properties. Absorbers are materials that couple microwave energy and
easily heat insulators which are transparent to microwave energy and conductors which
reflect energy [2–4]. Therefore, microwave energy instantaneously generates heat inside
the absorber material, rather than heating the outside surface and slowly conducting it in-
side [5]. Moreover, microwave heating is a cleaner [6] and more manageable method (quick
start-up and stopping) [7] and it offers promising opportunities in terms of energy reducing
consumption for intensive firing processes [8]. In the last decades several microwave-based
processes have been developed in mineral processing and extractive metallurgy, due to
these advantages [1,4,9–11]. In particular, microwave treatment has been employed as an
alternative method to recover iron from the bauxite residue (BR) [12–16] which is the solid
waste generated during the production of alumina from bauxite ores [6]. Because iron is
the major component in BR (14–45 wt.%), several studies were focused on the recovery of
iron based on pyrometallurgical processes [17,18]. These works can be classified into two
groups: The solid-state reductive roasting followed by magnetic separation [19–23] and the
reductive smelting process by using different furnaces (blast furnace, electric arc furnace
(EAF), and other types) [24–30]. However, the drawbacks related to these approaches have
driven the research to find an innovative method to recover iron from BR. Nowadays,
a microwave process is an innovative technology utilized in mineral processing.
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In a previous study [31] a microwave reductive roasting process was optimized to
transform hematite (Fe2O3) and goethite (Fe2O3·H2O) present in the bauxite residue BR,
into magnetite (Fe3O4), wüstite (FeO), and metallic iron (Fe0). During the microwave
roasting process, the formation of hercynite (FeAl2O4) in the sinter was observed. As
Lu et al. [32] explained in their work, hercynite is an unavoidable product. During the
roasting process, a carbon source was utilized to reduce hematite can to magnetite [19,20,31],
but the presence of alumina in the sample favored the formation of hercynite. Due to its
paramagnetic properties [33], iron aluminum oxide can be considered a drawback for
the magnetic separation process, since its presence in the magnetic fraction could reduce
its purity.

Soda sintering process is covered extensively in many previous studies by Kaußen
et al. [34,35], Zheng et al. [36], Alp et al. [37], Meher et al. [38,39] many more which
is covered in Tam et al. [40] literature review section as there is potential in removing
aluminum and sodium by transformation into sodium aluminate phase, removing two
major components and impurities that affect other element recoveries downstream. In
literatures that were focused on the carbothermic pig iron recovery from redmud, it was
noted that high alkali content, despite reducing melting point, contributes further to
furnace lining destruction due to higher reactivity described by researchers such as Valeev
et al. [26], Grafe et al. [41], Kaußen et al. [42,43], Borra et al. [28], Anisonyan et al. [44], and
Ning et al. [45].

Therefore, the step of removing of aluminum and sodium have been proposed and
completed in the previous studies by Tam et al. [40,46,47] using the soda sintering process of
bauxite residue with sodium carbonate, which is then leached in mild alkaline solution due
to the formation of leachable aluminum and sodium phases in the sinters. This produces
leaching residue void of aluminum and sodium which have been optimized for the use of
this study.

The aim of this paper is to propose an integrated process composed of three main
stages. Firstly, the soda roasting process of BR is taking place to transform all the alumina
phases into soluble sodium aluminates which are leached out in alkaline solutions to
recover alumina [22,47–53]. In the second stage, the leaching residue is mixed with a
metallurgical coke and treated in a microwave furnace at optimum conditions [31]. After
this treatment, Fe3+ oxides are transformed into magnetic iron oxides and Fe0. In the final
stage, the produced sinter is subjected to magnetic separation process by using a wet high
intensity magnetic separator to recover iron leaving behind the other elements.

2. Materials and Methods
2.1. Bauxite Residue

Bauxite residue used as the main raw material, was provided by Mytilineos, Metal-
lurgy Business Unit (formerly known as AoG). The sample was firstly homogenized by
using laboratory sampling procedures (riffling method) and then a representative sample
was dried in a static furnace at 105 ◦C for 24 h. Subsequently, the material was milled using
a vibratory disc mill and the sample was fully characterized.

Chemical analyses of major and minor elements were executed via XRF glass disk
fusion method with lithium tetraborate in AoG. 1 g of BR sample is fused as melt in
platinum crucible with 1 g LiNO3 oxidizer, and mixture of flux [40].

Mineralogical phases were detected by X-ray diffraction analysis (XRD) using a Bruker
D8 Focus powder diffractometer with nickel filtered CuKα radiation (λ = 1.5405 Å) coupled
with XDB Powder Diffraction Phase Analytical System version 3.107 which evaluated the
quantification of mineral phases via profile fitting specifically for bauxite ore and bauxite
residue [40,54].

The microstructure of the samples as well as their elemental analysis and distribution,
were examined through a scanning electron microscope JEOL 6380LV (SEM) (JEOL, Tokyo,
Japan) combined with an Oxford INCA energy dispersive spectrometer (EDS). The particle
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size analysis was investigated by using a Malvern Mastersizer TM Laser particle size
analyzer (Malvern Instruments, Malvern, UK).

2.2. Soda Sintering/Leaching Process

Dried homogenized bauxite residue was sintered in muffle furnace with 50% excess
of sodium carbonate (Na2CO3, Sigma Aldrich, > 99.5% Purity) from stoichiometric amount
required for sodium aluminate conversion, which amounted to 25 g Na2CO3 for 100 g of
bauxite residue. Sintering was performed in alumina crucibles at 900 ◦C for 2 h duration
and left to cool overnight [40]. The sinter leaching experiments were conducted in a 1 L
borosilicate glass reactor (Schott AG, Mainz, Germany), equipped with heater (Fibroman-
C, 410 W, Saveen & Werner, Limhamn, Sweden), and temperature controller (Glas-Col,
thermocouple type-K) as it shown in Figure 1. The sinter was stirred in 0.1 M NaOH
solution at 80 ◦C for 4 h with 1.5% w/v pulp density at 240 rpm stirring rate. Aluminum
and sodium were recovered into leachates from the leaching step, leaving solid residue
that was further dried in a static oven (105 ◦C), which produced the modified BR (MBR)
used in the next processing steps.
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Figure 1. A schematic diagram of leaching reactor.

2.3. Microwave Reductive Roasting Process

Figure 2 shown schematically the 2-kW microwave furnace (Fricke und Mallah Mi-
crowave Technology GmbH, Peine, Germany) used for the roasting process experiments.
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A 2.45 GHz air-cooled magnetron converts electrical energy into high frequency
microwaves and the power capacity can be set, from 0 kW (0%) to 2 kW (100%). The
microwave energy propagated through the rectangular waveguide to the single mode
cavity, where the sample is located on the top of a tower (7 cm height and 3 cm length) and
placed at the center of the cylindrical cavity.

The 3-stubs tuner present in the waveguide allowed to modify microwave energy
to permit the highest coupling between sample and microwave energy for the entire
experimental period.

Due to the characteristics of the sample produced, MBR was mixed with a carbon
source (metallurgical coke), transforming the powder in tablets (2 cm × 2 cm × 3 mm
dimensions and 10 g approximate weights) by using a manual hydraulic press.

To record the temperature during the whole reaction period an optical pyrometer,
IMPAC Pyrometer IGA 6/23 Advanced with a RS 485 converter LumaSense Technology
(Frankfurt, Germany), was located on the top of the chamber. Moreover, nitrogen flow of
1 L/min was maintained throughout the experiments to ensure inert atmosphere during
the reduction of Fe3+ oxide into Fe2+ oxide and metallic iron.

Zhiyong Xu method was employed to characterize the content of metallic iron (with a
tolerable error ranged below 1 wt.%) while AAS and XRF were utilized for the chemical
analysis [54].

For the magnetic separation experimental tests, a Carpco Model MWL-3465 laboratory,
high-intensity, wet magnetic separator (WHIMS) manufactured by CarpcoTM Research and
Engineering, Inc. of Jacksonville, FL was utilized (Figure 3) [15].
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An intensive magnetic field was generated through two magnet poles by applying
a controlled electric field. Due to the high magnetic properties of the cinder, two current
settings (0.005 A and 0.01 A) were set for the whole test’s duration.

A metal box was placed between the poles and filled with steel spheres during
separations. The spheres served as induced magnetic poles and created a point with an
intense magnetic field.

At the bottom of the metal box a stainless-steel slide was placed to carry the non-
magnetic flux in a beaker.

Magnetic separation experiments were carried out by dispersing the roasting cinder
in the water (50 g of cinder in 800 mL of distilled water). The pulp was constantly stirred
with an ES Overhead stirrer (VELP SCIENTIFICA, Monza, Italy) at 400 revolutions per
minute (rpm) and passed throughout the metal box by using a peristaltic pump with a flow
rate of 10 mL/min. The pulp was separated into the magnetic material, which was held to
the steel spheres, and the non-magnetic material that passed through the separation zone.

The main purpose of the magnetic separation was to remove the iron-based compo-
nents in the roasting cinder and concentrate them in the magnetic product. To achieve the
target, the feed was treated through the WHIMS two times.
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In the first step, a magnetic fraction (MAG I) was collected by employing a 0.005 A
current intensity, while a non-magnetic fraction was run again through WHIMS. In the
second pass the current intensity was increased to 0.01 A and a second magnetic fraction
was gathered (MAG II).

Magnetic I, Magnetic II, and Non-magnetic fractions (residue from second pass, NM)
were then dried in a static furnace at 105 ◦C for 24 h and characterized by using the
analytical techniques above mentioned.

3. Results
3.1. Characterization of Bauxite Residue and Metallurgical Coke

Table 1 presented the chemical analysis results of the BR. The main content is attributed
to iron oxide (Fe2O3) with 43.51 wt.% followed by aluminum oxide (19.25 wt.%), calcium
oxide (9.58 wt.%), silicon oxide (6.50 wt.%), titanium oxide (5.49 wt.%) and sodium oxide
(2.80 wt.%). the content of rare earths elements (REEs) content, as oxides, is attest to
0.19 wt.%, while the LOI value is 9.41 wt.% due to dehydration and decarbonation of
mineral phases existing in the residue.

Table 1. Chemical analysis of bauxite residue.

Sample Fe2O3 Al2O3 SiO2 TiO2 Na2O CaO REEs Others LOI

Bauxite residue
(wt.%) 43.51 19.25 6.50 5.49 2.80 9.58 0.19 3.27 9.41

The quantification analysis carried out with the XDB software confirmed that hematite
is the main mineral in BR with 30 wt.%. The other iron mineralogical phases were calcium
aluminum iron silicate hydroxide, goethite, and chamosite with 17 wt.%, 9 wt.%, and
4 wt.% respectively. The mineralogical phases of BR are presented in Table 2.

Table 2. Bauxite residue mineralogical phases.

Minerals Formula wt.%

Hematite α-Fe2O3 30
Goethite Fe2O3·H2O 9
Boehmite γ-AlOOH 3
Diaspore α-AlOOH 9
Gibbsite Al2O3·3H2O 2
Calcite CaCO3 4

Anatase TiO2 0.5
Rutile TiO2 0.5

Perovskite CaTiO3 4.5
Cancrinite Na6Ca2(AlSiO4)6(CO3)2 15

Calcium aluminum iron silicate hydroxide Ca3AlFe(SiO4)(OH)8 17
Chamosite (Fe2+,Mg)5Al(AlSi3O10)(OH)8 4

Sum 98.5

Laser particle size analyzer showed the particle size distribution of the dried sample
where the mean particle size (D50) of the ground material was 1.87 µm, while 90% of the
particles (D90) were below 42.87 µm [31].

The chemical analysis results of metallurgical coke presented in Table 3. The main
componet of the sample is carbon with 80.31 wt.% and for its high fixed carbon (Fixed C)
content, metallurgical coke was selected as the reductant in the microwave roasting process
experiments.
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Table 3. Metallurgical coke chemical analysis.

Sample Fe2O3 SiO2 CaO MgO Al2O3 TiO2 Na2O Fixed
C S P H2O

Moist LOI Others

Metallurgical
coke (wt.%) 0.83 3.42 1.26 0.14 1.91 0.10 0.16 80.31 0.77 0.03 3.31 7.38 0.39

3.2. Soda Sintering Process and Alkaline Leaching

Figure 4 shows the mineralogical alteration of the bauxite residue after soda sintering
process and mild alkaline leaching process. During the sintering step, aluminum bearing
species such as boehmite, diaspore, gibbsite, and complex phases such as cancrinite are
transformed into sodium aluminate (NaAlO2) [39]. This phase is leached out after the mild
alkaline leaching step, and about 70% of all Al is extracted from bauxite residue. Na is
also co-extracted at about 85.5%, leaving the leaching residue enriched with Fe as well
as Ti for downstream processing [39]. Titanium is concentrated in the form of perovskite.
Hematite is found in the leached residue, while new mineralogical phases are detected in
the modified BR: Sodium aluminum silicate (NaAlSiO4), sodium ferrotitanate (NaFeTiO4)
and harmunite (CaFe2O4). Table 4 shows the compositions in element wt.% basis of original
bauxite residue (BR), Na2CO3 sintered BR and leaching residue (modified BR).
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Table 4. Chemical analysis of bauxite residue, sinter and leaching residue (MBR).

Sample Fe Al Si Ti Na Ca LOI

Bauxite residue (wt.%) 30.43 10.19 3.04 3.29 2.08 6.85 9.40
Sinter (wt.%) 27.72 9.35 2.83 2.82 14.16 6.32 2.73

Leaching residue (modified BR) (wt.%) 37.47 3.83 3.25 3.64 2.86 8.53 9.66
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3.3. Microwave Roasting Process of Modified Bauxite Residue

The dried modified BR (MBR) was blended with metallurgical coke at a mass ratio
C/MBR 0.225 and it was transformed in tablets using a manual hydraulic press. The
sample was treated through microwave roasting process at optimum conditions (0.6 kW,
1 L/min N2 flow constant and 300 s) and then was characterized via ED-XRF, XRD, and
SEM analyses [31].

During the microwave heating of the sample, an immediate absorption was detected,
and the temperature almost instantaneously rose within some seconds to 1250 ◦C (Figure 5).
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The formation of melt phases was observed through the window of the pyrometer
and started from the center and propagated to the rim of the disk. In addition, at this
temperature it was possible to note the reduction of iron oxide into metallic iron. In Figure 6
the cinder after the microwave roasting reduction is presented, and the presence of metallic
iron nuggets is evident.
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SEM analysis of the cinder confirmed the presence of the spherical metallic particles
which are entrapped in the matrix of the solid samples (Figure 7a). The nuggets are covered
by a layer of powder (Figure 7b), which has the same composition of the matrix (Ca, Al, Si,
Na, Ti and Fe) as it is shown in Figure 7c.
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To release the metallic iron spheres, the sample was milled using a planetary ball mill
(Planetary Ball Mill PM 100–RESTCH, Haan, Germany) with a grinding time of 5 min
and a speed a 400 rpm (revolutions per minute). The sample was treated four times with
the planetary ball mill to transform the cinder into fine powder. The metallic iron was
then separated from the matrix by employing a manual sieve. The sample was, therefore,
physically separated into two fractions: The first one with a particle size higher than 0.2 mm
mostly composed by Fe nuggets (around 7 wt.% of the total solid sample) and the other
one with a particle size lower than 0.2 mm (around 93 wt.% of the total solid sample).

Samples were analyzed via fusion method; chemical composition of the fraction with
the particle size higher than 0.2 mm and the other fraction is shown in Table 5.

Table 5. Chemical analysis of the metallic iron spheres fraction with a particle size >0.2 mm and 1st
cinder fraction with a particle size lower than 0.2 mm.

Sample Fe Al Si Ti Na Ca C

>0.2 mm wt.% 95.84 0.01 0.54 0.45 0.01 1.38
1st cinder fraction (<0.2 mm) wt.% 35.26 4.33 3.63 4.08 3.23 9.54 8.35

Chemical analysis confirmed that the main component of the fraction with particle
size higher than 0.2 mm is metallic iron, being more than 95 wt.% of the total weight of
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this fraction. In addition, the other fraction (<0.2 mm) still contains a considerable amount
of iron.

Analyzing the Fe mass balance, from 35.53 g of Fe present in MBR, 29.59 g of Fe are
present in the 1st MW cinder while 5.94 g in the > 0.2 mm fraction.

Comparing the XRD profiles of BR, modified BR and the 1st cinder fraction with
a particle size lower than 0.2 mm (Appendix A, Figure A1), the results obtained with
chemical and SEM analyses were confirmed. In fact, magnetite (Fe3O4) and metallic iron
(Fe0) are the main iron mineralogical phases after the microwave roasting reduction at the
optimum conditions (C/MBR 0.225, 0.6 kW, 1 L/min N2 flow constant and 300 s). Hercynite
(FeAl2O4) is a mineralogical phase that is not formed during microwave reductive roasting
of aluminum depleted MBR materials (Appendix A, Figure A1).

Decreasing the concentration of aluminum in the MBR sample, hematite and other iron-
bearing phases are directly reduced into magnetite and then due to the high temperature
into metallic iron. At the same time, under these conditions, small part of sodium aluminum
silicate (NaAlSiO4) existing initially in MBR is transformed to anorthite (CaAl2SiO3) as
well as gehlenite (Ca2Al(AlSiO7)) but the major amount of aluminum in cinder remains in
the form of sodium aluminum silicate (NaAlSiO4) (Appendix A, Figure A1). In the 2-theta
range of 22 to 28◦, the mineralogical characterization revealed the formation of a glassy
region indicated by the hump and consisting of calcium silicate (CaSiO3) and anorthite.
Titanium phases are converted into perovskite already from the soda roasting process and
remain unchanged during the MW reductive roasting process having been beneficiated in
the resulted cinder.

Since the cinder fraction with a particle size lower than 0.2 mm contained good mi-
crowave receptors (mineralogical phases such as (Fe3O4 and C), the sample was subjected
for a second time to a microwave roasting process at the same optimum condition (0.6 kW,
1 L/min N2 flow constant and 300 s), following the already described procedure.

During irradiation with microwaves, an immediate absorption from the sample was
detected and the temperature rose within some seconds to 1230 ◦C (Figure 8).
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Figure 8. Heating rates of 2nd MW roasting process at 0.6 kW, 1 L/min N2 flow constant and 300 s.

At this temperature it was possible to note the reduction of iron oxide into metallic
iron and the formation of metal phase. Macroscopically, the 2nd cinder appeared similar to
the one from the first microwave treatment, but the iron nuggets were smaller in size.

In Figure 9a back-electron scattering (BEC) picture of the 2nd cinder is shown together
with EDS chemical analysis on specific components. The light gray spherical particles are
metallic iron particles which are entrapped in the matrix that is mainly composed from
all the other elements (Ca, Al, Si, Na, Ti, and Fe) (Figure 9b). On the top of the metallic
spheres are present also some dark gray particles with the same composition of the matrix
(Figure 9c).
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Figure 9. Back electron scattering mode SEM-EDS analysis of the 2nd cinder after the second microwave roasting reduction:
(a) metallic spheres (b) matrix (c) dark gray particle on the metallic spheres surface.

The 2nd cinder was ground to release the metallic iron spheres. In this case, for the
physical separation, a sieve with openings size of 0.1 mm was used. The chemical analysis
of the two fractions formed are presented in Table 6.

Table 6. Chemical analysis of the metallic iron spheres fraction with a particle size > 0.1 mm and of
the fraction with a particle size < 0.1 mm.

Sample Fe Al Si Ti Na Ca C

>0.1 mm wt.% 93.30 0.01 0.42 0.51 0.08 1.70
2nd cinder fraction (<0.1 mm) wt.% 37.91 4.77 4.00 4.49 3.56 10.49 1.00

Table 6 shows that the main component of the fraction with particle size ≥ 0.1 mm,
which is 1 wt.% of the total cinder weight, is metallic iron.

The other fraction, which is the 99 wt.% of the total cinder weight, still contains a
considerable amount of iron. Analyzing the Fe mass balance, from 29.59 g of Fe present
in the 1st MW cinder, 28.87 g of Fe are present in the 2nd MW cinder while 0.71 g in the
>0.1 mm fraction.

The XRD analysis (Appendix A, Figure A2) revealed a mineralogical conformation
similar to the one presented in Figure 9, where magnetite (Fe3O4) and metallic iron (Fe0)
were the main iron mineralogical phases after the second microwave roasting reduction.
The other elements are present in form of anorthite (CaAl2SiO3) gehlenite (Ca2Al(AlSiO7))
sodium aluminum silicate (NaAlSiO4), calcium silicate (CaSiO3) and perovskite CaTiO3 as
it is shown in Appendix A, Figure A2.

The experimental results from MW reductive roasting showed that although 5 min
are enough for the full transformation of hematite to a mixture of magnetite and metallic
iron the full transformation to metallic iron necessitates more time.
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The 2nd cinder was again treated at optimum condition (0.6 kW and 1 L/min N2 flow
constant) in the microwave furnace due to the high absorption properties of Fe3O4 to allow
the complete formation of metallic iron in the system.

The sample was transformed into tablets and placed inside the microwave furnace. As
the previous microwave roasting process, an immediate absorption was detected causing
an instantaneous incrementation of the temperature (reaching about 1250 ◦C). Furthermore,
through the window of the pyrometer, light arcing phenomena that took place in some
areas of the sample were observed. Due to these phenomena the recorded temperature
locally reached around 1400 ◦C (Figure 10). The presence of these hot spots in the tablet
depends on the interaction of metal iron, already present in the sample, with the microwave
which creates a micro-arcing process [5,9,10,55,56].
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After 180 s, a drastically reduction of T was detected from the pyrometer (Figure 10) [2,10]
and the experiments were stopped as the tablet reflected the microwave energy due to the
increased concentration of conductive material (such as metallic iron).

From the comparison of the XRD profile of the cinder after the 1st microwave roasting
reduction (1st MW), the cinder after the 2nd microwave roasting reduction (2nd MW) and
the cinder after the 3rd microwave roasting reduction (3rd MW), it is possible to observe
that metallic iron (Fe0) is the main iron mineralogical phases in the last MW stage. In
the 2-theta range of 22 to 28◦, the mineralogical characterization revealed that the hump
related to the formation of a glassy region consisting of calcium silicate (CaSiO3) and
anorthite (CaAl2SiO3), is more evident, due to the high temperature reached during the
3rd MW roasting reduction. The other elements are present in the mixed forms of gehlenite
(Ca2Al(AlSiO7)), sodium aluminum silicate (NaAlSiO4), and perovskite CaTiO3 as it is
shown in Figure 11 [57].

To confirm the incrementation of the metallic iron content in each sample of the
whole microwave roasting reduction (1st, 2nd and 3rd MW process), the above mentioned
Zhiyong Xu method was used [54].

As it can be seen from the results shown in Table 7, after each microwave roasting
reduction the percentage of the metallic iron present in the sample increased, comparing
with the total amount of Fe.

The 3rd MW cinder was collected due to its strong magnetic properties and was
treated through a CarpcoTM wet high intensity magnetic separator (WHIMS).
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Table 7. Percentage of metallic iron/total iron content of modified BR and the three microwave
cinders determined with Zhiyong Xu method.

Sample % Fe0/Fetot

MBR 0.2
1st MW cinder 69
2nd MW cinder 85
3rd MW cinder 98

3.4. Magnetic Separation Process

The purposes of the magnetic separation are to liberate from the cinder the iron based
components from the matrix and to concentrate them in the magnetic product.

To achieve these aims, the cinder was dispersed in water and was treated through the
WHIMS two times following the procedure described in paragraph Material and Method.

Three different products (MAG I, MAG II, and NM) were collected, and representative
samples were analyzed. MAG I represented the 62 wt.% of the 3rd MW cinder whereas
MAG II was the 17 wt.% and NM the 21 wt.%

The three fractions were treated with Zhiyong Xu method to investigate the percentage
of metallic iron in the sample comparing with the total amount of Fe. The results showed
that in all the magnetic fractions, the iron analyzed was almost completely in form of
metallic iron (about 98%).

As it can be seen from chemical analysis shown in Table 8, the MAG I is mainly con-
centrated in iron, while calcium, silicon, titanium are present in minor amount. Aluminum
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is around 2 wt.% and Na content is negligible. On the other hand, in the NM fraction
metallic iron is still present (4 wt.%), whereas the concentration of the other elements that
composed the matrix is substantially higher.

Table 8. Chemical analysis of the cinder (3rd MW) and the three fractions (MAG I, MAG II, and NM)
after the magnetic separation.

Sample Fe Al Si Ti Na Ca

3rd MW cinder 37.90 4.76 4.00 4.49 3.55 10.49
MAG I wt.% 55.29 1.51 1.59 2.40 0.49 6.67
MAG II wt.% 18.42 6.90 6.13 7.21 7.66 16.02

NM wt.% 2.94 12.47 9.29 8.38 9.19 17.22

The XRD comparison of 3rd MW cinder, MAG I, MAG II, and NM is presented in
Figure 12. In MAG I the main peak is related to metallic iron, while the other mineralogical
phases (gehlenite, calcium titanate, and anorthite) are detected with low intensity. More-
over, between 22 to 28◦ the characteristic hump associated to calcium silicate and anorthite
is not visible and the peaks attributed to sodium aluminum silicate disappear.
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Figure 12. Comparison of the XRD profile of cinder after 3rd MW roasting process, magnetic fraction (MAG I), weak
magnetic fraction (MAG II) and non-magnetic fraction (NM).

XRD analysis of NM fraction showed a different profile comparing with the one of
MAG I. As it can be seen, the peak related to metallic iron (about 45◦) is drastically reduced
in intensity, while the hump associated to calcium silicate and anorthite is noticeable.
Gehlenite and sodium aluminum silicate are detected with high intensity peaks.
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Regarding MAG II, it is possible to notice that its mineralogical characterization is
comparable to the initial cinder (LR 3rd MW).

SEM-EDS analysis of the three fractions confirmed the results of chemical and XRD
analyses.

The back electron scattering macrograph of MAG I fraction (Figure 13) showed that
the sample is composed by a melted metallic iron (Figure 13a) which has entrapped due
to imperfect separation a solid matrix containing all the cinder constituents (Figure 13c).
In addition, small particles with calcium titanate were detected also entrapped inside the
metallic iron phase (Figure 13b).
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Figure 13. Back electron scattering mode SEM-EDS analysis of MAG I fraction: (a) melted metallic iron (b) calcium
aluminium silicon oxide particles (c) particles composed of Si, Ca and Ti oxide mixture.

To understand the stratification of the different constituents of the sample, the area of
sample shown in Figure 13 was studied through second electron imaging (SEI) mode. As it
is observed in Figure 14, the particles containing the elements of the matrix are embedded
on the melted metallic iron (dark substrate, Figure 14a) forming aggregates. Some particles
were identified as calcium aluminum silicon oxide (Figure 14b), while some others were
composed of Si, Ca, and Ti oxide mixture (Figure 14c).

The presence of Fe in the spectrum 1 (Figure 14c), is attributed to interferences from
the metallic substrate, due the high magnification.

In Figure 15 the SEM analysis of the NM fraction with back electron scattering mode
is shown. The image shows the presence of small metallic iron (Figure 15a) particles
surrounded by light gray particles (calcium aluminum silicon oxide) (Figure 15b) and
entrapped into dark gray area which was mainly composed by all the cinder constituents
(Na, Al, Ca, Si, Ti, and Fe) (Figure 15c). Also, in this case, the presence of Fe in the spectra
3 and 4 (Figure 15b,c) is due to the interference from the metallic particles close to the
detected area.

Furthermore, the NM fraction was analyzed by employing a secondary electron
imaging mode to comprehend the existing different mineralogical phases (Figure 16).
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Big particles composed with sodium aluminum silicate were identified (Figure 16d),
in this grain also a calcium titanium phase (Figure 16c) and iron (Figure 16b) were detected.
The presence of the other elements in the EDS-spectra depends on the proximity interfer-
ence of the other mineralogical phases. Calcium aluminum silicate were found in a specific
area of the sample (Figure 16a).

In conclusion, in terms of Fe partition within the different phases formed during the
complex treatment of BR (Figure 17), after the 1st and 2nd microwave roasting reduction,
nuggets were produced with high purity in Fe, overall extracting about 16% in the metallic
iron spheres fraction with a particle size >0.2 mm and 2% in the spheres with a particle
size >0.1 mm of the total Fe content of BR. Moreover, Fe was recovered through a magnetic
separation process. Three fractions (MAG I, MAG II, and NM) were produced and analyzed.
The Fe recovery within the MAG I was 69%, while it was 6% in MAG II and 1% in NM.
The losses between bauxite residue and the sinter, and between the sinter and the modified
bauxite residue are attributed to within experimental error margin of 5–10%.
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Figure 14. Secondary electron imaging mode SEM-EDS analysis of MAG I fraction: (a) melted metallic iron (b) calcium
aluminium silicon oxide particles (c) particles composed of Si, Ca and Ti oxide mixture.
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Figure 15. Back electron scattering mode SEM-EDS analysis of NM fraction: (a) small metallic iron particles (b) light gray
particles (calcium aluminium silicon oxide) (c) particles composed by all the cinder constituents (Na, Al, Ca, Si, Ti and Fe).
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Figure 16. Secondary electron imaging mode SEM-EDS analysis of NM fraction: (a) calcium aluminium silicate particles
(b) grains composed by iron (c) grains composed mainly by calcium titanium phase (d) sodium aluminium silicate.
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4. Conclusions

In this study, a combined soda sintering, and microwave reductive roasting process
was presented to transform Fe3+ oxides contained in bauxite residue (hematite and goethite)
into Fe2+ oxides (magnetite and wüstite) and metallic iron it was presented, avoiding the
formation of hercynite. Figure 18 indicates the flowsheet of the combinations of aluminum
and sodium recovery and carbothermic microwave roasting processes.

In the first step, all the alumina of BR were transformed into soluble sodium alumi-
nates by adding 50% excess of sodium carbonate as flux followed by alkaline leaching to
recover alumina.

Subsequently, the leached residue was mixed with carbon and treated in the mi-
crowave furnace at optimum conditions (0.6 kW and 0.225 C/MBR with 1 L/min N2 flow
constant for 300 s) for three times.

During the 1st and 2nd MW reductive roasting process the cinders resulted to be
rich of spherical metallic Fe particles entrapped in the matrix which were separated by
employing a manual sieve.

As a result of presence of the 3rd MW roasting reduction was the production of a
cinder with magnetic properties. The cinder was subjected to a wet high intensity magnetic
process and three different products (MAG I, MAG II, and NM) were collected.

As a result of magnetic separation, higher concentration of metallic iron was detected
in MAG I (56 wt.%), even though calcium, silicon and titanium were still present in minor
amount. SEM and XRD analysis of the non-magnetic fraction (NM) revealed the existence
of metallic iron particles (about 4 wt.%) embedded on the ceramic matrix.

It can be concluded that the combined process presented is a favorable approach to
recover iron comparing with a previous works [19,20,31]. In addition, an added value of
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this process is also the recovery of aluminum (70% of aluminum recovered) after the alkali
leaching in the first step.
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In terms of Fe recovery, after the 1st and 2nd MW roasting reduction, nuggets were
produced with high purity in Fe, overall extracting about 16% in the fraction with a particle
size > 0.2 mm and 2% in the fraction with particle size > 0.1 mm of the total Fe content
of BR. Moreover, an advantage of this procedure is that Fe nuggets are easily recoverable
through physical separation. Thereafter the 3rd MW roasting reduction, Fe was recovered
through the magnetic separation process and attested to 69% in MAG I, while it was 6% in
MAG II and 1% in NM.

MAG I contains almost 55% metallic iron and have as impurities calcium aluminosili-
cates as well as perovskite. It is an upgraded material in comparison with BR and can be
added in the electric arc furnaces of secondary steel production as a raw material together
with scrap. The impurities can play the role of fluxes for formation of the CaO-SiO2-Al2O3
type slag. In addition to MAG I, the Fe nuggets separated from the first two MW treatments
can be also added in EAF for iron recovery. The nuggets have a purity in metallic iron
higher than 93% and the impurities are also aluminosilicates. Therefore, with the combined
soda roasting and MW carbothermic roasting process almost 87% of iron contained in
BR is recovered as impure metallic iron and 70% of contained aluminum is recovered in
the form of a sodium aluminate solution which can be recycled in the Bayer process for
alumina production.

As a final conclusion the combined soda roasting and MW carbothermic roasting
process could be potentially developed into a high throughput continuous process to
valorize BR and make it a secondary raw material resource.
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