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Abstract: No genetic link between the two main types of chromitite, stratiform and podiform
chromitites, has ever been discussed. These two types of chromitite have very different geological
contexts; the stratiform one is a member of layered intrusions, representing fossil magma chambers,
in the crust, and the podiform one forms pod-like bodies, representing fossil magma conduits, in the
upper mantle. Chromite grains contain peculiar polymineralic inclusions derived from Na-bearing
hydrous melts, whose features are so similar between the two types that they may form in a similar
fashion. The origin of the chromite-hosted inclusions in chromitites has been controversial but left
unclear. The chromite-hosted inclusions also characterize the products of the peridotite–melt reaction
or melt-assisted partial melting, such as dunites, troctolites and even mantle harzburgites. I propose
a common origin for the inclusion-bearing chromites, i.e., a reaction between the mantle peridotite
and magma. Some of the chromite grains in the stratiform chromitite originally formed in the mantle
through the peridotite–magma reaction, possibly as loose-packed young podiform chromitites, and
were subsequently disintegrated and transported to a crustal magma chamber as suspended grains.
It is noted, however, that the podiform chromitites left in the mantle beneath the layered intrusions
are different from most of the podiform chromitites now exposed in the ophiolites.

Keywords: chromite-hosted inclusions; peridotite–melt reaction; stratiform chromitite; podiform
chromitite; genetic link

1. Introduction

We have a consensus that chromitites (chromite-rich rocks) can be divided into two
main types, stratiform chromitites in the crust and podiform chromitites in the mantle [1].
The former chromitites occur as laterally continuous layers together with ultramafic or
mafic cumulative rocks within layered intrusions (=fossil magma chambers) in the crust [2].
In contrast, the latter form pod-like bodies closely associated with dunite within the
mantle peridotite (harzburgite) [3,4], as one of the mantle peridotite–magma reaction
products [5–7]. Those two types of chromitite are quite different in many aspects with each
other, and have been studied by different scientist communities. As far as I know, no paper
has aimed to discuss the genetic linkages between them. I attempt for the first time to
link together the generations of the crustal stratiform chromitite and the mantle podiform
chromitite in this article. Note that this work aims not to present detailed petrological and
chemical data for individual rocks or complexes, which are available from the literature
or will be published elsewhere, but to propose a model for the genetic linkage between
the two types of chromitites. This work will promote further discussion on the origin and
generation of chromitites.

2. Stratiform Chromitites vs. Podiform Chromitites: Their Differences
and Similarities

The stratiform chromitites are typically a member of the Archean to Proterozoic
layered intrusions [8,9] or sill-like ultramafic–mafic intrusions in Archean greenstone
belts [10]. They are associated with peridotites, pyroxenites, gabbros and anorthosites,
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and show various sediment-like structures, indicating their accumulation origin from
magmas that filled a crustal magma reservoir. Irvine [11] proposed that the chromite-
oversaturated magmas responsible for precipitation of the stratiform chromitites were
produced by mixing of a silica-rich magma with a main mafic magma. The silica-rich
magma is a partial melt of wall crustal rocks [12,13] or a differentiate of a primitive
magma in the reservoir [11]. Recently, Latypov et al. [14] argued for the importance of a
pressure reduction for production of the chromite-oversaturated magma that precipitate
the stratiform chromitite (see Schulte et al. [2] for more details about stratiform chromitite).

The podiform chromitites are typically a member of the ophiolites, especially of
their mantle section or Moho transition zone. They are enveloped by dunite [4] within
harzburgites [7,15]. Some chromitite pods are concordant, and others are discordant, to the
foliation of the surrounding harzburgite [4,16]. The chromitite pods possibly formed as
cumulates, filling magma conduits, in the upper mantle harzburgite [17]. The chromite-
oversaturated magma basically forms through mixing of a relatively silica-rich magma
with a primitive magma in the conduit [5,18]. The silica-rich magma is one of the products
of the reaction between the wall harzburgite and a primitive olivine-oversaturated magma
moving upward in the conduit. The dunite envelope is another product of the reaction
that is essentially the breakdown of orthopyroxene (=to olivine and a silica-oversaturated
melt) combined with olivine precipitation. Barren dunites are left as dike-like bodies if
the collection of Cr by melt only occurs in the mantle peridotite [18]. The dunites with or
without chromite concentrations thus represent trails of the magmas that were channeled
upward in the mantle, and ultimately supplied to the crust (see Arai and Miura [18] for
more details about podiform chromitite).

Chromite compositions are similar but slightly different between the podiform and
stratiform chromitites [19,20] (Figure 1). The Cr# (= Cr/(Cr + Al) atomic ratio) of chromite
is not so different; 0.4 to 0.9 for the podiform chromitite, and 0.5 to 0.8 for the stratiform one.
The Fe contents are different between the two types; the Mg# (= Mg/(Mg + Fe2+) atomic
ratio) is lower on average in the stratiform chromitites than in the podiform ones (Figure 1).
Chromites show a very low and limited range of the Fe3+ ratio (Fe3+/(Cr + Al + Fe3+)
atomic ratio; <0.1) for the podiform chromitites. The Fe3+ ratio (<0.3) of chromite is
negatively correlated with the Cr# in the stratiform chromitites (Figure 1). The podiform
and the stratiform chromitites are different in PGE (platinum-group elements) and PGM
(platinum-group minerals) content. Most of the podiform chromitites show enrichment in
IPGE (iridium-group PGE; Os, Ir and Ru) relative to PPGE (palladium-group PGE; Rh, Pt
and Pd), while the stratiform chromitites are enriched in PPGE relative to IPGE [21,22]. The
PPGE enrichment is prominent in chromitites from higher stratigraphic levels, especially
in the silicate-rich matrix [23,24]. However, their chromite grains show some similarities
to each other: chromite grains in podiform chromitites are characterized by inclusions of
IPGM (iridium-group PGM), especially laurite [25], and some of stratiform chromitites
contain laurite-bearing chromite [24,26].

The two types of chromitite that we can observe now are different in age [20,27]. The
podiform chromitites mostly show the Late Proterozoic to Phanerozoic ages, and are very
rarely of the Archean to Early Proterozoic [20,27–29]. In contrast, the stratiform chromitites,
especially large-scale ones, are of the Archean to Proterozoic ages [27]. Therefore, most of
the currently exposed podiform chromitites do not have direct genetic connections with
most of the stratiform chromitites.

Various kinds of magma are involved in formation of ophiolites [30], although the
subduction-related arc-type and/or MORB (mid-ocean ridge basalt)-like magmas are
mainly responsible for production of major ophiolites [30,31]. The most common podiform
chromitite that contains high-Cr# (0.7~0.9) chromites was in equilibrium with arc magmas,
especially the boninitic ones [32–34]. Others, which contain moderate-Cr# (~0.5) chromite,
were possibly formed in relation to the activity of MORB or MORB-like magmas [16,35–37].
The layered intrusions are characterized by their large sizes, sometimes forming the main
part of LIPs (large igneous provinces) [38]. Stratiform chromitite is also characterized by



Minerals 2021, 11, 209 3 of 10

its large volume as compared with the podiform one [2,27]. The chemistry of the magma
involved in formation of the layered intrusions (i.e., the stratiform chromitite) varies from
picritic to boninitic [39].
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magmas in the crustal magma chamber in the model discussed below. See the text for more 
details. 
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Figure 1. Chemical characteristics of chromites in stratiform and podiform chromitites. (a) The triva-
lent cation (Cr-Al-Fe3+) ratios in an atom. (b) Relations between Mg/(Mg + Fe2+) and Cr/(Cr + Al)
in an atom. Data compilation by Arai and Miura [18] and Arai and Ahmed [20]. Arrows indicate
possible modification of the chromite compositions during solidification of magmas in the crustal
magma chamber in the model discussed below. See the text for more details.

3. Chromite-Hosted Polymineralic Inclusions: A Remarkable Similarity between the
Two Types of Chromitite

Among various solid inclusions in chromite from chromitites [40–42], the polymin-
eralic inclusions characterized by hydrous, Na-rich minerals are noteworthy. They occur
in various types of chromitites and are similar in mineral assemblage and chemistry
(Figure 2) [43]. The inclusions are globular in shape and typically 100 microns across or
less, and show even or concentric distributions in individual chromite grains (Figure 2).
The chromite-hosted inclusions of this type are very common in podiform chromitites
from ophiolites [16,44–48]. The chromitite pod found from the Pacific Ocean also contains
chromite with abundant solid inclusions of this type [35,49]. They also have been reported
from layered intrusions [12,43], including the two famous large chromitite-producing lay-
ered intrusions, the Bushveld and Stillwater complexes [13,50–52]. The mineral assemblage
of this type of inclusions is varied but the main minerals are pyroxenes (enstatite and
diopside), micas (aspidolite and phlogopite) and amphiboles (mainly pargasite), some of
which are Na-rich and hydrous (Figure 2). The aspidolite (=Na analogue of phlogopite)
especially characterizes the chromite-hosted inclusions [18]; it is very common as an inclu-
sion mineral in chromite but has not been found both in the silicate matrix of chromitites
and in surrounding peridotites [53].

The polymineralic inclusions are probably of primary origin because of their concentric
or even distribution within the host chromite grains (Figure 2). They have been interpreted
as the melts trapped by chromite when crystallizing from magmas based on their globular
shapes [12,13,47,52,54].

The chromite-hosted polymineralic inclusions are variable in bulk chemistry; the
Na2O and SiO2 contents vary from 1 to 6 wt% and 41 to 55 wt%, respectively, even from
the same locality [13,47,52,55] (Figure 3). The origin of the trapped melt has not been well
interpreted and we have not reached a consensus on its origin.
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Figure 2. Polymineralic silicate inclusions in a discordant podiform chromitite chromite in wadi Hilti, the northern Oman
ophiolite. See Miura et al. [16] for detailed petrological descriptions of this chromitite pod. Chr, chromite; Asp, aspidolite;
Prg, pargasite; Di, diopsidic clinopyroxene. (a) Photomicrograph of the Hilti chromitite by reflected light. Note the central
chromite grain, where inclusions are distributed evenly or concentrically. (b) Back-scattered electron image of an inclusion.
Note their hydrous and Na-rich character.
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Figure 3. Na2O–SiO2 relations of the bulk compositions of the chromite-hosted inclusions and some representative magmas.
The bulk compositions of the chromite-hosted inclusions in the chromitites were determined by homogenization experiments
for the Stillwater layered intrusion [13] and for the Oman ophiolite [47,55]. An averaged composition of inclusions was
calculated for the Bushveld layered intrusion [52]. The compositions of a nephelinite [56], an averaged mid-ocean ridge
basalt (MORB) [57], an averaged Hawaiian tholeiite (TH) [58], boninites [59] and granites–syenites [60] are shown for
comparison. The range for possible parental magmas to the Stillwater complex [61] is also shown.

We note that the similar chromite-hosted hydrous silicate inclusions have been also
found in dunites, troctolites and some harzburgites drilled from the East Pacific Rise and the
Mid-Atlantic Ridge [62–64]. Those rocks were produced through reaction between mantle
harzburgite and MORB magma [62–64]. The abyssal podiform chromitite has been inter-
preted as one of the products of the same kind of MORB–harzburgite reaction [35,62,65]. In
addition, the chromite-hosted inclusions of the same type were found in mantle harzbur-
gites from the Circum-Izu Massif Serpentinite Belt (CIMB), central Japan (Figure 4) [66].
The inclusions are composed of pargasite, phlogopite, aspidolite and pyroxenes. The
CIMB harzburgites have frequently suffered from plagioclase impregnation and hydration
(formation of amphiboles and phlogopite) [66]. Ishimaru and Arai [67] reported silicic
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hydrous melt (glass) inclusions in chromites from metasomatized harzburgite xenoliths
from Avacha volcano, Kamchatka. The chromite-hosted melt inclusions from Avacha
xenoliths (Figure 2 of [67]) are rich in Na2O (mostly > 3 wt%) and show some resemblance
in chemistry to the other poly-phase silicate inclusions in chromite.
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4. Discussion: A Possible Link between the Stratiform and Podiform Chromitites

The chromite grains that are produced by the peridotite–melt reaction (olivine precipi-
tation associated with orthopyroxene breakdown) trap chemically heterogeneous melts, of
which chemical variations are due to various melt/rock ratios during the reaction [63,64].
The strong chemical gradient observed in the melt produced by the orthopyroxene–melt
reaction [68] may also contribute to the drop-to-drop chemical heterogeneity of the in-
cluded melt (Figure 3). The enrichment of H2O and other incompatible components in the
inclusions is due to the effect of zone refining during the reaction process [69]. A reaction
with hydrated peridotites also possibly contributes to the gain of H2O and incompatible
components for the reacted magma [47].

The CIMSB (Circum-Izu Massif Serpentine Belt) harzburgite, which contains spinel-
hosted inclusions (Figure 4), is possibly a restite produced by melt-assisted partial melting
or the peridotite–melt interaction in the uppermost mantle. The close association of
plagioclase-bearing harzburgite indicates the derivation of the CIMSB peridotites from the
low-pressure (<1 GPa) mantle [66]. The shallowest oceanic mantle just beneath Moho is
composed of residual harzburgites after the melt-assisted partial melting or peridotite–melt
interaction [70,71]. Dissolution of orthopyroxene is one of the essential processes in such
a partial melting or peridotite–melt interaction at low pressures [62,63,72]. The chromian
spinel, which includes polymineralic globules (Figure 4), is one of the residual phases after
such melting or melt–peridotite interaction processes.

The chromite-hosted melt inclusions from podiform chromitites are most probably
produced at the stage of the peridotite–melt reaction, although the exact mechanism
for entrapment of the melt by chromite has been left unknown [7]. I propose that the
chromite-hosted melt inclusions from stratiform chromitites originally formed in the mantle
through the peridotite–melt reaction [35,62–64]. The chromite grains that contain the melt
inclusions possibly formed young podiform chromitites along the mantle conduit, and were
disintegrated and transported as suspended grains by the subsequently supplied magma
up to a lower crustal magma chamber (Figure 5). The chromite-hosted melt inclusions
from the Stillwater complex [13] can be hardly explained by mixing of a possible parental
magma [61] and granitic melts (Figure 3).
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Figure 5. Cartoon to indicate a possible linkage of the crustal stratiform chromitite to the mantle podiform chromitite.
Young chromitites generated along a magma conduit (=the podiform chromitite) in the mantle were disintegrated by the
subsequently supplied magma and transported as suspended chromite grains up to a crustal magma chamber. They were
ultimately re-precipitated and contributed to form part of the stratiform chromitite.

The chromite grains of mantle origin contain iridium-group PGM (platinum-group
minerals), especially laurite [24,25]. They were precipitated as part of a stratiform chromitite
with slight chemical modification (mainly Fe enrichment) during subsequent magmatic
differentiation within the magma chamber (Figure 5). The enrichment in palladium-group
PGE (platinum-group elements) and palladium-group PGM in the stratiform chromitites is
due to fractionation or assimilation during or after emplacement of the involved magma in
the crust [23,24]. The peculiar chemistry of the trapped melts was maintained despite the
change in chromite chemistry (cf. [73,74]).

This idea is consistent with the conclusions of Eales [75] and Mondal and Mathez [9],
in that the magmas supplied to the crustal magma chamber (=the Bushveld complex) were
charged with excess chromite grains. This chromite-laden magma was the mixture of
primitive magma and chromites disintegrated from the mantle podiform chromitite in
this model.

Magmas moving upward in the mantle may react with the surrounding peridotites,
irrespective of chemistry and tectonic setting [62,76,77]. Note that the podiform chromitites
that are consanguineous with the layered intrusions have not been exposed, and the
podiform chromitites now exposed are genetically related to the upsection of small-scale
stratiform chromitites (cf. [20,78]). Any magma can form podiform chromitites in the
mantle because the peridotite–melt reaction and magma mixing may commonly occur in
the mantle [18]. There is possibly high-Cr# podiform chromitite in the mantle through
which magmas were supplied to form the layered intrusions [18].

5. Conclusions and Implications

The chromite grains that contain polymineralic inclusions (=trapped melt) are common
to the podiform and stratiform chromitites and were formed in the mantle through the
peridotite–melt reaction. I propose that the chromite grains in the stratiform chromitite, in
part, had once experienced a precursor stage as podiform chromitite in the upper mantle.
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What I would like to argue for here is some genetic link between the podiform chromi-
tite produced in the mantle and the stratiform one in the crust; some of the chromite grains
in the latter are possibly precipitated in the mantle prior to the entrainment by magma
to the crust. Many factors for the formation of chromite-oversaturated magmas in the
crust have been proposed, such as compression of magmas due to vesiculation [79], an
increase in oxygen fugacity [8,80], assimilation of Fe-oxide-rich rocks [81,82] and decom-
pression of magmas [14], reflecting the various geologic and petrologic contexts of the
host’s layered intrusions.
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