
minerals

Communication

A Model Structure for Size-by-Liberation Recoveries
in Flotation

Paulina Vallejos 1,2 , Juan Yianatos 1,2 and Luis Vinnett 1,2,*

����������
�������

Citation: Vallejos, P.; Yianatos,

J.; Vinnett, L. A Model Structure

for Size-by-Liberation Recoveries

in Flotation. Minerals 2021, 11,

194. https://doi.org/10.3390/

min11020194

Academic Editors: William Skinner

and Lev Filippov

Received: 24 December 2020

Accepted: 2 February 2021

Published: 12 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Chemical and Environmental Engineering, Federico Santa Maria Technical University,
Valparaíso 2390123, Chile; paulina.vallejos@usm.cl (P.V.); juan.yianatos@usm.cl (J.Y.)

2 Automation and Supervision Centre for Mining Industry, CASIM, Federico Santa Maria Technical University,
Valparaíso 2390123, Chile

* Correspondence: luis.vinnett@usm.cl

Abstract: This communication presents a model structure for the flotation recovery of middling
particles (10–90% liberation). Fourteen datasets from the literature were studied (galena flotation),
which involved different flotation systems and operating conditions. The flotation responses allowed
the model flexibility to be evaluated under a range of recovery profiles. The modelling results showed
that galena recovery can be characterized by the interaction between a linear function and a concave
function (e.g., Gamma model), to account for the liberation and particle size effects, respectively.
Liberation also impacts the location and dispersion of the recovery dependence on particle size.
The proposed model structure showed there was adequate flexibility with five parameters, leading to
adjusted coefficients of determination ranging from 0.863 to 0.998 for the studied datasets. Thus, an al-
ternative approach for modelling the recovery of middling particles is proposed, which represents
the liberation and particle size dependence with a few parameters.
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1. Introduction

Flotation performance has proved to be strongly dependent on particle size and libera-
tion. To obtain targeted metallurgical results, mineral particles cannot be excessively fine or
coarse due to the typically low flotation rates caused by hydrodynamic cell conditions [1–4].
Mineral liberation also influences the flotation recovery through its relationship with the
collection probability and mineral transport in flotation operations. Some attempts have
been made to characterize the flotation performance as a function of particle size and
liberation. These evaluations have been more common since the introduction of automated
mineralogy, with QEMSCAN (Quantitative Evaluation of Minerals by Scanning Electron
Microscopy) and MLA (Mineral Liberation Analyzer) being the most utilized systems for
the analysis of polished sections.

Modelling of flotation processes has not been straightforward because of random
particle features such as size, shape, association, texture, among others. Kinetic models
have been used to describe flotation systems, with the flotation rate being a function of
particle size, mineralogical properties and operating conditions. Steiner [5] modelled the
flotation rate as a function of particle size and degree of locking for the Pb–Zn separation.
The associated particles (screened) were analysed by microscopic examination of polished
sections. The floatability of particles typically presented the concave trend as a function
of particle size reported in the literature, with a shift to the right at higher liberation.
Bartlett and Mular [6] studied the flotation of hematite from quartz at −48 + 65 µm,
−65 + 100 µm,−100 + 150 µm,−150 + 200 µm and−200 + 270 µm and hematite contents of
0–17%, 17–39%, 39–56%, 56–70% and 84–100%. The latter was obtained by dense medium
separation (DMS). The results indicated that the rate constant decreased with particle
size and increased with hematite content. The rate constant dependence on the particle
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composition presented an S-shaped trend. Hill, et al. [7] analysed size-by-composition
sphalerite flotation in a pilot-scale column (cleaner stage). Three size classes were studied:
−13 + 9 µm, −37 + 13 µm and +37 µm. The particle compositions were obtained by a
scanning electron microscope in backscattered electron imaging mode. The estimated rate
constants presented an approximately linear increasing trend with particle composition.
Vianna [8] studied the size-by-liberation galena flotation in a laboratory-scale continuous
flotation cell. Five size classes were analysed: −150 + 106 µm, −106 + 75 µm, −75 + 38 µm,
−38 + 20 µm and −20 + 10 µm. MLA was used to characterize galena liberation. At fixed
particle sizes and collector concentrations, the floatability of galena increased (non-linearly)
with liberation. The non-linearity was mainly caused by the flotation responses of the high
and low-liberated particles. The rate constants in the studied liberation classes presented
the typical concave pattern as a function of the particle size, with higher amplitudes at
higher liberation. Similar size-by-liberation results were obtained by Welsby [9] and Welsby,
et al. [10] for the flotation of galena. The rate constant decreased in the finer (−19 µm)
and coarser (+75 µm) size classes and for low-liberated particles. Jameson [4] analysed
Welsby’s data to evaluate the effect of particle size and liberation on the rate constant.
The results showed that the ratio between the rate constant (of unliberated particles)
and the maximum rate constant (for fully liberated particles) was independent of particle
size. The poor recovery of coarse particles was not entirely justified by poor liberation,
being mainly attributable to hydrodynamic conditions in the flotation cell. More recently,
Alves dos Santos [11] modelled chalcopyrite recovery in terms of surface liberation and
particle size. The surface liberation was estimated from the chalcopyrite content, assuming
sphere-equivalent particles and surface liberation being proportional to the mineral grade.
The results showed that the ratio between the recovery and the chalcopyrite surface area in
the feed was linearly related to particle size for particles with more than 15% of chalcopyrite.

This communication presents a model structure for the size-by-liberation flotation
recovery of middling particles in the ranges of 10–90% liberation and 0–150 µm. Middling
particles are commonly studied because most of the difficulties in flotation are related to
the treatment of these particles [12], as liberated particles are easily recovered and locked
particles typically have less chance of recovery in the flotation process. Although some
ores may present more erratic responses at higher liberation (e.g., 20% instead of 10%)
and significantly faster responses from lower upper bounds (e.g., 80% instead of 90%),
the proposed model structure allowed galena recovery to be described for a liberation
range of between 10% to 90%. This range can be changed depending upon the flotation
response, given the ore/mineral characteristics and operating conditions. It should be
noted that the content of middling particles has increased in industrial operations due to
the increase in feed tonnage to compensate for lower feed grades, which consequently
decreases the mineral liberation. The size-by-liberation recoveries reported by Vianna [8],
Savassi [13] and Welsby [9] were studied, in which the cross-sectional galena compositions
were obtained by QEM*SEM (Quantitative Evaluation of Minerals by Scanning Electron
Microscopy) or MLA as estimates for liberation from polished sections. Savassi [13] stated
that areal grades are measured from these sections, which justifies stereological corrections
for transformation to volumetric bases. Ueda, et al. [14] performed simulations using
discrete elements methods to study the effect of the number of analysed particles on the
dispersion and reliability of the liberation estimates. The results showed that processing a
larger number of particles reduces the dispersion in the 2D liberation (areal grade); however,
stereological biases are always present when 3D liberation (volumetric grade) is estimated
from 2D measurements. Surface exposure of valuable minerals as well as other 3D particle
characteristics can be also analysed using X-ray microCT (XMT) as described by Lin and
Miller [15], Miller, et al. [16], and Reyes, et al. [17]. No stereological corrections were
conducted in this communication, which implies that the modelling results are applicable
to liberation measurements based on 2D data.
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2. Experimental Data and Methodology

Size-by-liberation data reported by Vianna [8], Savassi [13] and Welsby [9] were anal-
ysed. The former and the latter were obtained in single continuous laboratory cells using
MLA, whereas Savassi’s data were obtained in a continuous industrial operation using
QEM*SEM. The results reported by Savassi [13] allowed not only the characterization
of single flotation cells, but also of an industrial flotation bank (rougher). These studies
focused on investigating the effect of particle size and liberation (cross-section composition)
on galena floatability. Between 2000 and 7000 particles per sample were analysed by MLA
or QEM*SEM [8,9,13]. Thus, the size-by-liberation recoveries were obtained. Vianna [8]
and Welsby [9] also studied the effect of collector dosages on the flotation response. Table 1
shows the flotation systems, minerals involved, collector types and concentrations, and the
liberation analyses performed on the flotation products. The experimental conditions
considered particle sizes of −150 µm and collector dosages from 5 to 40 ppm. For further
details on the experimental procedures, please refer to [8–10,13,18].

Table 1. Summary of experimental conditions, flotation feed and liberation analyses.

Flotation System Minerals Liberation Analyses Collector Type and
Concentration g/ton Size Classes, µm

Vianna
[8,18]

One 3-L cell,
continuous operation Galena, sphalerite and NSG * MLA Aerophine 3418A, 5, 7.5, 10, 15,

30 g/ton
−150 + 106, −106 + 75,

−75 + 38, −38 + 20, −20 + 10

Savassi
[13]

12 cells,
industrial circuit

Galena, sphalerite, pyrite
and NSG * QEM*SEM Ethyl Xanthate, non-specified

concentration
−75 + 53, −28 + 20,
−20 + 14, −10 + 14

Welsby
[9,10]

One 40-L cell,
continuous operation Galena, sphalerite and NSG * MLA Sodium Ethyl Xanthate, 5, 15,

40 g/ton

+106, −106 + 75, −75 + 38,
−38 + 28, −28 + 19,
−19 + 10, −10

(*) NSG: Non-Sulphide Gangue; CS: Cyclosizer.

A model structure for the size-by-liberation recoveries of galena was defined and
evaluated. The 10–90% liberation classes were studied due to their increasing presence
in industrial applications. These particles typically present slower flotation responses
than fully liberated particles and significantly higher recoveries than locked particles.
The recovery dependences on liberation and particle size were first studied, which allowed
a general model structure to be determined and assessed. In all cases, the model parameters
were obtained by least-squares estimation.

3. Recovery Dependence on Liberation and Particle Size
3.1. Effect of Liberation on Galena Recovery

Recovery (R) of middling particles has shown to be well-described by increasing trends
as a function of liberation (L) at constant particle sizes (dP) and experimental conditions [4,7].
These increasing trends were consistently observed in the evaluated flotation systems for
different collector dosages, particle sizes, residence times and cell numbers (in the industrial
flotation bank). Figure 1 illustrates the typical relationship observed for the liberation–
recovery at constant experimental conditions. Figure 1a shows Vianna’s results at a collector
dosage of 15 g/ton, Figure 1b the rougher recoveries reported by Savassi [13] (10 cells in
series) and Figure 1c Welsby’s results at a collector dosage of 15 g/ton. The cumulative
recoveries were analysed for the rougher flotation circuit [Figure 1b]. The experimental data
are presented as dispersion datapoints. All reported size classes are presented. The 10–90%
liberation classes approached a linear trend, as detailed in Figure 1, with a minimum R2

adj
of 0.80. Thus, Equation (1) was proposed to describe the recovery dependence as a function
of liberation at a constant particle size and collector concentration:

R(L) = α · L + β (1)

where α and β are fitting parameters. The α value estimates the recovery increase per
liberation unit at a constant particle size, whereas parameter β defines the recovery offset
caused by the particle size dependence. It should be mentioned that L was estimated from
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the cross-sectional composition of the polished samples. The linear fitting is presented
in Figure 1 as continuous lines. Potential and exponential growth was also evaluated;
however, these trends did not show consistent improvements with respect to Equation (1).

Figure 1. Galena recoveries versus liberation: (a) Vianna [8] 15 g/ton of Aerophine 3418A,
(b) Savassi [13] 10 cells in series, and (c) Welsby [9] 15 g/ton of Sodium Ethyl Xanthate Experi-
mental data are presented as datapoints and model fitting as the trend line. The vertical lines define
the validity range for the linear trends.

The size-by-liberation recoveries reported by Vianna typically presented flatter profiles
across the studied liberation and size classes. The ore characteristics, flotation machine
and operating conditions may have rendered the flotation responses less sensitive to the
particle features, leading to comparable recoveries (by liberation) in the −10 + 20 µm and
−150 + 106 µm size classes.

Results of Figure 1 indicate that the mineral recovery, which is related to the particle-
bubble aggregate formation, has an approximately linear dependency on liberation. Mineral
liberation, measured from the cross-sectional composition, was assumed to be proportional
to surface exposure, which directly impacts the mineral recovery. It should be noted that the
slopes and intercepts in Figure 1 depended upon the particle size, collector concentration
and flotation system.

3.2. Effect of Particle Size on Galena Recovery

Mineral recovery strongly depends on particle size, with fine and coarse particles hav-
ing lower recoveries due to hydrodynamic constraints. The concave relationship between
recovery and particle size has been widely documented by several authors [1,3,8,9]. Differ-
ent model structures for the recovery as a function of particle size (at constant liberation
and collector concentrations) were studied. The datasets detailed in Table 1 were again
analysed. The concavities of some probability density functions (PDF) were considered to
define the model structure for the recovery as a function of particle size. Thus, the Log-
normal, Weibull and Gamma PDFs were compared. These curves were denormalized



Minerals 2021, 11, 194 5 of 11

to describe the entire range of recoveries. The best performance was obtained with the
Gamma model of Equation (2):

R(dP) = c · 1
Γ(aG) · daG

G
· daG−1

P · exp
(
− dP

dG

)
= C · daG−1

P · exp
(
− dP

dG

)
(2)

where aG and dG correspond to the shape and scale parameters, Γ(aG) is the Gamma
function and c allows the denormalization. Within Equation (2), the constant terms were
replaced by parameter C. The Gamma model has then three parameters, with adequate
flexibility to represent a wide range of shapes.

Figure 2 illustrates the recovery as a function of particle size at constant collector
dosages and liberation. The x-axes are presented in logarithmic scale. All liberation classes
in the range 10–90% are presented. Figure 2a–c shows Vianna’s results at a collector dosage
of 15 g/ton, Savassi’s results for 10 cells in series and Welsby’s results at a collector dosage
of 15 g/ton, respectively. The experimental data are presented as dispersion datapoints
and the model fitting as continuous lines. The Gamma model allowed the different shapes
to be described using three parameters, with a minimum R2

adj of 0.52. Lower R2
adj values

were obtained with Vianna’s data due to the flatter recovery profiles and the low number
of degrees of freedom. Three aspects can be highlighted from Figure 2:

• Higher recoveries were consistently observed at higher liberation, which increased C
in Equation (2).

• The shapes of the particle size-recovery curves did not change significantly at different
liberations, which implied non-significant aG changes in Equation (2).

• The particle size–recovery curves shifted to the right and broadened at higher libera-
tion, which can be obtained by increasing the mean value and standard deviation of
the Gamma model.

Figure 2. Galena recoveries versus particle size: (a) Vianna [8] 15 g/ton of Aerophine 3418A,
(b) Savassi [13] 10 cells in series, and (c) Welsby [9] 15 g/ton of Sodium Ethyl Xanthate. Experimental
data are presented as datapoints and model fitting as trend line. X-axes in logscale.
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The shifts to the right along with the broader curves at higher liberation are consistent
with the size-by-composition flotation rates reported by Steiner [5]. It should be noted that
the data reported by Savassi [13] did not present the typical concave curves reported in
literature. This result considered CS4 as the finest size class (CS: Cyclosizer) and may have
been favoured by finer galena grains with respect to Vianna’s and Welsby’s ores, leading
to lower liberation towards the coarser classes. The Gamma model showed sufficient
flexibility to fit these recovery decays (Figure 2b).

3.3. General Model for the Size-by-Liberation Recovery of Galena

From the results of Figures 1 and 2, a general model structure was defined to describe
the size-by-liberation recoveries. The Gamma model showed adequate flexibility to repre-
sent the experimental data; however, the parameters proved to be dependent on liberation.
Results of Figure 2 indicated that the recovery as a function of particle size increased at
higher liberation, which was observed as higher C values in Equation (2). The increase in
the C value was consistent with the linear recovery dependence on liberation at constant
particle size [Equation (1)]. Higher liberation also shifted and widened the particle size–
recovery curves. For a Gamma model, the mean value dmean and standard deviation σd are
given by

dmean = aG · dG
σd =

√
aG · dG

(3)

As the shape of the concave curves of Figure 2 did not change significantly (i.e., aG ap-
proximately constant), a dG increase as a function of liberation [Equation (3)] shifts the
location of the concave curve to the right, also increasing the dispersion. Different dG depen-
dences on liberation were evaluated, with exponential growth being the model structure
that led to satisfactory results for the experimental data detailed in Table 1. Equation (4)
was then proposed to fit the size-by-liberation recoveries:

R(dP) = (α · L + β) · daG−1
P · exp

(
− dP

dG

)
dG = δ · exp(λ · L)

(4)

where δ and λ are additional fitting parameters. The model structure of Equation (4) was
again evaluated from Vianna’s, Savassi’s and Welsby’s datasets, which involved 40, 32 and
56 size-by-liberation recoveries per experimental condition, respectively. The five model
parameters (α, β, aG, δ, λ) were estimated by non-linear regression.

4. Modelling Results

The ability of Equation (4) to describe size-by-liberation recoveries was studied from
fourteen datasets reported by Vianna [8], Savassi [13], and Welsby [9]. Different systems,
feed properties and reagent schemes are considered in these datasets such as: laboratory
(3 L and 40 L) and plant scale flotation machines, different particle size distributions,
reagent types and dosages, size and liberation classes and others. Thus, the model flex-
ibility was evaluated under a wide range of experimental conditions. Figure 3 presents
the size-by-liberation recoveries and model fitting for Vianna’s [(a) and (b)], Savassi’s
[(c) and (d)] and Welsby’s [(e) and (f)] middling data. These experimental data are depicted
as datapoints, whereas the model fitting is presented as 3D surfaces. The particle size axes
are presented in logarithmic scale. The colormaps are referential, with blue and yellow rep-
resenting the minimum and maximum values respectively, in each experimental condition.
The best (left) and worst (right) model fitting per dataset are shown, based on the adjusted
coefficient of determination R2

adj. These extreme conditions coincided with the lowest and
highest recovery profiles per dataset. Conditions with lower recoveries typically presented
flatter size-by-liberation dependence, which favoured the model fitting. A good agreement
between the experimental and modelled recoveries was typically obtained, with R2

adj rang-
ing from 0.863 to 0.998. Thus, the proposed model structure showed adequate flexibility
to describe the recovery variability caused by differences in particle size and liberation
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(10–90%) at different collector concentrations and number of cells in series. It should be
noted that this flexibility was achieved with only five model parameters for experimental
conditions with 40, 32 and 56 size-by-liberation recoveries. Comparisons of Figure 3a,b,
and Figure 3e,f, show significant recovery increases in the more liberated categories and
intermediate particle sizes (20–60 µm) when increasing the collector dosage. Figure 3a,b
also show a significant improvement in the recovery of coarse and highly liberated particles
(100–150 µm) at higher collector concentrations, in agreement with the results reported by
Fosu, et al. [19].

Figure 3. Size-by-liberation galena recoveries and model fitting: Vianna [8] (a) 5 g/ton of Aerophine
3418A, (b) 30 g/ton of Aerophine 3418A; Savassi [13] (c) 2 cells in series, (d) 12 cells in series;
and Welsby [9] (e) 5 g/ton of Sodium Ethyl Xanthate, (f) 40 g/ton of Sodium Ethyl Xanthate.
Experimental data are presented as datapoints and model fitting as 3D surfaces. Middling particles
(10–90% liberation). Particle size axes are in logscale.

Figure 4 compares all the measured and model recoveries per dataset [(a) Vianna’s
data, (b) Savassi’s data and (c) Welsby data]. The proposed model structure allowed a wide
range of size-by-liberation recoveries to be represented. The model fitting presented higher
variability with Welsby’s [Figure 4c] data due to the higher number of datapoints. The de-
viations between the modelled and measured recoveries were typically more significant at
higher recoveries. These differences can be observed in Figures 2 and 3 in the vicinity of
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the maxima. Thus, a model structure with flatter size dependence close to the maximum
may potentially improve the model fitting. However, attention must be paid to over-fitting,
especially when the number of parameters approaches the number of datapoints. The 95%
prediction intervals for the results of Figure 3 are presented in Appendix A. These intervals
were not overlapped between the extreme recovery values, showing that the model can
represent adequately the recovery variability.

Figure 4. Comparison between measured and modelled size-by-liberation galena recoveries:
(a) Vianna [8], (b) Savassi [13], (c) Welsby [9]. Middling particles (10–90% liberation).

The proposed model structure for the size-by-liberation recovery of middling parti-
cles showed adequate performance to describe 14 datasets under different experimental
conditions. The results of Figure 3 indicate that the modelling procedure can be applied
to specific flotation systems, such as those detailed in Table 1. The model applicability
in flotation systems with narrower linear dependence as a function of liberation can be
bounded to narrower middling ranges. Alternative increasing trends can be also evalu-
ated (e.g., potential or exponential growth) for moderate recovery increases towards the
liberated classes. The Gamma term will be typically more robust due to its flexibility to
represent a wide range of mound-shaped patterns. Exceptions are concave trends with
negative skewness or with an approximately flat response around the maximum, for which
additional model parameters are required. The size-by-liberation recoveries analysed here
may have been subject to significant bias, especially in the −20 µm classes due to system
resolution, sample preparation and aggregation. The model performance under more
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accurate recovery estimates can be improved or worsened depending upon changes in the
liberation–recovery relationship and the concave trend with particle size. The increasing
liberation–recovery relationship can be bounded to shorter middling ranges or modified to
other growth curves. The concave relationship will be less sensitive to these corrections due
to its flexibility to represent monotonic and mounded functions. The middling recoveries
may also be used to describe kinetic responses and identify typical changes in the size-by-
liberation recoveries as a function of time. For example, the slow-floating particles may
present significantly different responses as time progresses, with some of them reaching a
plateau after some flotation intervals and some of them presenting sustained increasing
recoveries. Thus, the modelled recoveries will tend to increase and/or remain unchanged
over time in different size-by-liberation categories. This application is particularly useful
when simulating flotation processes with the aim of estimating losses at the end of the
process. Further developments must be made to include liberated and locked particles in
the modelling scheme. In addition, the parameter dependence on different experimental
conditions and feed properties will allow for the development of generalized models for
prediction purposes.

5. Conclusions

A simple model structure to describe the flotation recovery of middling particles was
presented. The model was evaluated from 14 size-by-liberation datasets reported in the
literature, which presented different flotation responses for galena separation. The main
results are summarized as follows:

- A linear trend showed adequate performance to describe the recovery increase with
liberation for middling particles (liberation classes between 10% and 90%), at constant
particle size.

- The concave recovery dependence on particle size at constant liberation was repre-
sented by a Gamma model. The location and dispersion of the concave trend was
a function of liberation, which was incorporated through the scale parameter of the
Gamma model.

- The proposed model structure considered the combined effect of liberation (linear) and
particle size (concave). The model showed suitable flexibility to fit the 14 evaluated
size-by-liberation datasets, using five parameters.

- Adequate model fitting was obtained with adjusted coefficient of determinations
ranging from 0.863 to 0.998 for all datasets.

Work is under development to model the recovery of liberated (>90%) and locked
particles (<10%) for the full range of particle sizes.
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Appendix A

Figure A1 shows the 95% prediction intervals for the size-by-liberation models de-
picted in Figure 3. The recovery variability as a function of particle size and liberation was
adequately described. Higher uncertainties were observed at higher mean squared errors
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(and lower R2
adj). However, these uncertainties did not overlap the prediction intervals of

the lowest and highest recoveries.

Figure A1. 95% prediction intervals for the size-by-liberation galena recoveries: Vianna [8] (a) 5 g/ton
of Aerophine 3418A, (b) 30 g/ton of Aerophine 3418A; Savassi [13] (c) 2 cells in series, (d) 12 cells in
series; and Welsby [9] (e) 5 g/ton of Sodium Ethyl Xanthate, (f) 40 g/ton of Sodium Ethyl Xanthate.
Experimental data are presented as datapoints and prediction intervals as 3D surfaces. Middling
particles (10–90% liberation). Particle size axes are in logscale.
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