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Abstract: Raman and photoluminescence (PL) mapping is a non-destructive method which allows
gemologists and scientists to evaluate the spatial distributions of defects within a gem; it can also
provide a method to quickly distinguish different species within a composite gem. This article
provides a summary of this relatively new technology and its instrumentation. Additionally, we
provide a compilation of new data for various applications on several gemstones. Spatial differences
within diamonds can be explored using PL mapping, such as radiation stains observed on the rough
surface of natural green diamonds. Raman mapping has proven useful in distinguishing between
omphacite and jadeite within a composite of these two minerals, identifying various tourmaline
species within a heterogeneous mixture, and determining the calcium carbonate polymorphs in
pearls. Additionally, it has potential to be useful for country-of-origin determination in blue sapphires
and micro-inclusion analysis. As new avenues of research are explored, more applications for gem
materials will inevitably be discovered.

Keywords: Raman mapping; photoluminescence mapping; spectroscopy; diamond; corundum;
tourmaline; jadeite; pearl; gemology

1. Introduction

Gemological laboratories rely on non-destructive analytical techniques that are gen-
erally based on optical methods such as absorption spectroscopy along with Raman and
photoluminescence (PL) spectroscopy. PL and Raman spectroscopy, as used for gemstones,
is a microscope-assisted analytical technique in which a material is illuminated with laser
light and the resulting emission is measured with a high-resolution spectrometer.

PL spectroscopy has become an indispensable tool used by major gemological labora-
tories to distinguish treated and lab-grown diamonds from their natural counterparts [1,2].
Within diamond, the presence, and thus the detection, of various defects differs with its
growth history along with any subsequent treatment. PL spectroscopy can detect these
features even at concentrations lower than 10 ppb [3]. Raman spectroscopy has proven
vital for a host of other gemstones as well to aid in their identification [4–7].

Raman and PL mapping is a logical extension of these methods in which spectra
can be collected quickly and automatically across an area instead of a single point (or
the sample manually moved to collect multiple spectra across a sample). These mapping
techniques have become possible in the past few years as the technology for the necessary
instrumentation has improved. Therefore, Raman and PL mapping have become ideal
methods to analyze the spatial differences in these diamonds and similar diamonds that are
distinguished by distinct growth regions. This new instrumentation automatically collects
hundreds to thousands of spectra across a sample and has provided several new, exciting
research opportunities and identification avenues in recent years.

This article provides a brief account of investigations across a broad range of research
and identification interests for a wide array of different gemstones. It offers an indication
of the variety of research possibilities across the breadth of the gemological world.
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2. Materials and Methods

Generally, Raman/PL mapping is used to show the distribution of the peak intensity
associated with the concentration of an optical defect; however, other data such as peak
position or peak width can be plotted instead, depending on the application. A Raman/PL
mapping microscope can collect thousands of spectra in a raster pattern (Figure 1) and
record a spectrum at each point. The collection area on the gem’s surface for each individual
spectrum can be quite small (<1 µm2) or quite large (>1000 µm2) if needed to accommodate
time constraints or a very weak emission signal. The spectral data (typically a user-
specified peak selected from the spectrum) are then interpolated to produce a map of a
defect’s distribution. With standard data collection, a single location (represented by the
green circle) is chosen for data collection which generally serves as a proxy for an entire
sample (although a researcher can collect from multiple spots on a sample to gauge the
heterogeneity). With mapping spectroscopy, the data collection is automated such that data
from the entire surface may be collected and stitched together, yielding a much greater and
more complete image of the defects within the sample and generally offering thousands of
collected spectra instead of a single spectrum.
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Figure 1. Data collection across the table facet of a round diamond with standard spectroscopy (Left)
is compared against mapping spectroscopy in which spectra are collected across the entire surface
(Right) [8].

Some of the considerations that we encountered during the process of data collection
included balancing the collection time against data quality, mitigating the effects of internal
reflections, and ensuring that the plane of data collection is properly leveled.

Most gemstones cannot be cooled to liquid nitrogen temperatures to optimize the
results from PL spectroscopy. Diamonds are the exception as they have a low thermal
expansion coefficient and extremely high thermal conductivity, so they can be cooled to
low temperatures. Other gems, if cooled, have a much higher risk of fracture. For example,
the coefficient of thermal expansion of corundum is five times greater [9] and the thermal
conductivity is at least 65 times lower than diamond [10].

Therefore, since diamonds can be cooled, PL maps are typically conducted with the
stone immersed in liquid nitrogen (−196 ◦C), although using a cryostat is also a possibility.
PL peaks of various defects in diamond tend to be sharper, and thus appear more intense,
at liquid nitrogen temperatures [11,12]. With our current experimental setup, the possible
time window before nitrogen boil-off is limited to around 10 min, which is achieved by
choosing an exposure time, collection area, and pixel size such that the collection is within
that time frame. For Raman and PL spectroscopy conducted for other gemstones at room
temperature, there are generally not the same time constraints and, if feasible, maps can be
collected over many hours.

Additionally, better results are obtained for diamond samples if, prior to mapping, a
temporary coating of Pelco colloidal graphite is painted onto the bottom side of the sample.
This coating can reduce the amount of light reflecting off other facets and returning to
the table (Figure 2). This coating is easily removed after testing with ethanol. This step is
generally not used with other gemstones.
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Figure 2. These PL maps were collected on the table of a faceted diamond at liquid nitrogen temperature. The PL map on
the left was collected without any graphite coating on the pavilion faceted while the PL map at right had the coating to
reduce the pavilion reflections.

While some researchers prefer to collect PL/Raman mapping data from flat plate sam-
ples only, this article relates data for several gemological applications and research studies
that were obtained from faceted or rough samples. All the mapping studies discussed here
and used in prior studies at the Gemological Institute of America (GIA) (e.g., [8,13–15])
were performed using a Thermo Scientific DXRxi Raman imaging microscope (Madison,
WI, USA) with 455, 532, 633, and 780 nm laser excitation wavelengths. The DXRxi has an
Olympus optical microscope and an Andor Technology Newton 970 electron-multiplying
charge-coupled device (EMCCD). An Olympus (either 10×; NA = 0.25 or 20×; NA = 0.40)
objective lens was used. The DXRxi uses a continuously moving, variable speed sample
stage driven by linear magnetic motors.

The stage movement is synchronized with the EMCCD detector so that the repeata-
bility of spectra collection at the intended location positions is within 100 nm [8]. The
data were processed using Thermo Scientific’s OMNICxi analysis software package, and
baseline-corrected peak area profiles were used to produce the observed PL maps. The
spectral data can also be exported to external software. The user is able to define whether
the data are collected in confocal or standard mode, along with the pixel size (size along
one edge of the collection area square), number of scans, collection time per spectrum
(typically << 1 s), and the specific collection area (typically after a visual image of the
sample has been collected by the instrument).

The collection of thousands of spectra requires the researcher to be able to process
the data in a meaningful way for interpretation. The collected data are often visualized
using false color maps of specific peaks or spectral features. As means of illustration, a full
complement of data is shown for a diamond with pronounced brown graining (Figure 3A).
This diamond was immersed in liquid nitrogen and PL maps, each with thousands of
spectra (Figure 3B), were collected with all available lasers. False color maps could be
generated for each of the detected defects (e.g., Figure 3C). A few features detected within
the spectra are plotted here, such as normalized peak area intensity of the H4 defect [N4V2]0

at 495.9 and at 490.7 nm—an uncharacterized feature often seen in natural diamonds [16],
particularly in brown type Ia diamonds, where it often occurs in conjunction with H4 [17].
As standard practice with diamond samples, the calculated area of the peak area is ratioed
to the peak area of the diamond Raman peak, providing an internal normalization of the
peak areas. Therefore, care is taken to ensure that these peaks are unsaturated across the
collection area; see Figure 3B. Also seen is the full width at half-maximum—the peak width
of the H3 defect [NVN]0 at 503.2 nm illustrating that several types of spectral features can
be chronicled and evaluated. The data can also be exported to other software for additional
analysis of the possible interrelationships between defects (Figure 3E).
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Figure 3. (A) Here is an example of a type Ia natural diamond with pronounced brown graining.
(B) A few individual spectra along with some example calculations are shown as illustration of the
internal, baseline-corrected calculations occurring for the dozens of possible variables across the
thousands of collected spectra. (C) These false color PL maps were assembled from data collected
with 455 nm excitation with the diamond submerged in liquid nitrogen. The PL mapping data are
composed of ~26,000 individual spectra taken with a 10 µm pixel size in 4 1

2 min. They show the
normalized peak intensity for the H4 defect at 495.9 nm and the PL feature at 490.7 nm. (D) For the
PL map shown in Figure 3C, right, the color ranges are adjusted to opposite extremes to illustrate the
differences in data representation that can be seen from adjusting the color limits. (E) Additional
analysis of the spectral data is possible by exporting the calculated values into external programming,
such as plotting the intensities of various spectral features within a spreadsheet software in which
each datapoint originates from a different spectrum. The data shown here for H3 and the 490.7 nm
defect are for illustration only; no correlation can be concluded based on results from a single sample.
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Another important consideration is proper data presentation and taking care that the
false color maps accurately represent the data. Depending on the limits chosen, the range
of data can be perceived very differently by the reader (compare Figure 3C, right with
Figure 3D). Additionally, the rainbow color palette is commonly used in many software
programs (including the one accompanying the OMNICxi used in these studies), but it
can be problematic as the information can be perceived quite differently if reproduced
in gray-scale or observed by individuals with color vision deficiencies [18]. With that in
mind, we have modified the color palette used in these Raman/PL maps to account for
such issues facing false color maps.

With all the advances in instrumentation in recent years, Raman and PL maps can be
created in a few minutes and create the ability to evaluate the distribution of defects and
optical features in gemstones.

3. Distinction between Raman Shift and Photoluminescence

In this article, we will describe mapping of both Raman spectra and PL spectra so
we wanted to provide a brief distinction between these two measurements as they are
collected with this same instrumentation. PL and Raman peaks are detected with the same
instrumentation, and both types of peaks appear in the same spectra [12]. Luminescence
peaks are emitted at a consistent energy (or wavelength) from a material. For example, the
chromium-related fluorescence peaks in ruby occur at 693 and 694 nm; the luminescence
will not shift to a different wavelength if a different light source is used [11].

In contrast, Raman peaks have a constant energy difference from their excitation
source. The source laser interacts with the molecular vibrations within the gem, which
produces a change when the light is re-emitted by the gem [19]. Raman spectroscopy
measures the energy shift caused by these molecular interactions, which occurs in only one
in 100 million photons.

While PL peaks have fixed energies and wavelengths (typically given in nanome-
ters in the gemological literature), Raman shift values are usually reported in units of
wavenumbers, cm–1, and the wavelength of the laser set as the “zero” wavenumber po-
sition. In Raman spectra, the reported values are relative to the excitation source and are
generally labeled as Raman shift values. When Raman peaks are shown in a PL spectrum,
the wavelength position is dependent on the excitation frequency while the PL peaks are
independent (Figure 4).
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Figure 4. PL spectra were collected on the same diamond using two different lasers (488 and 514 nm)
at liquid nitrogen temperature. The resulting spectra are plotted against the wavelength. Each
laser shows a different location for the diamond Raman line based on the excitation wavelength.
For both lasers, the energy difference between the excitation wavelength and the Raman line is
constant—1332 cm−1. Each spectrum shows the luminescence feature NV0 and the activation for its
zero-phonon line (ZPL) is fixed at 575 nm regardless of the excitation source.
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4. PL and Raman Mapping of Natural Diamonds with Color Zoning
4.1. Natural Pink Diamond

PL mapping has shown research potential regarding natural diamonds, particularly
in those that show spatial differences in their color. One such example is type Ia pink
diamond [20], in which the color is concentrated into thin lamellae (Figure 5A). These
pink lamellae can be seen within a microscope and explored in more depth with mapping
spectroscopy [13]. These colored lamellae are caused by natural plastic deformation,
oriented along the (111) crystallographic planes, and create a broad absorption band
centered at ~550 nm. There is also a corresponding emission band at 600–750 nm [13]. Since
much about the 550 nm absorption band in natural pink diamonds is unknown, studying
the 600–750 nm emission band provides opportunities to learn more about pink diamonds.

In pink diamonds that are type IaA>B, the pink color is typically only seen within the
lamellae, which are very straight and parallel [20,21]. Similarly, the normalized integrated
intensity of the ~600–750 nm emission band (area underneath the emission band normalized
using the diamond Raman peak) qualitatively corresponds with the saturation of pink
color (Figure 5B,C). With PL mapping of these diamonds, the ~600–750 nm emission band
is not detected outside of the lamella and has calculated areas of near zero. In contrast,
within the lamellae, the emission band is comparatively quite large.
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Figure 5. (A) This thin plate (4 × 4 × 1.6 mm) fashioned from a natural diamond sourced from
Siberia showed pink-to-purple coloration concentrated along thin parallel lamellae [22]. (B) The PL
map of a broad emission band (~600–750 nm) using 532 nm excitation. (C) A line scan of a portion of
the map. The data were collected in confocal mode with a 3 µm pixel size.
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4.2. Natural Diamonds from Marange with Hydrogen Clouds

Another example of mapping on color-zoned natural diamonds is those from the
Marange alluvial deposit in Zimbabwe. This is a consistent source of mixed-habit type
IaAB diamonds that contain cuboid (grayish) and octahedral (colorless) sectors [23,24].
In these diamonds, Raman mapping can be used to establish that the gray color is due
to graphite micro-inclusions (Figure 6; [24–26]) along with the presence of CH4 [24]. In
addition to Raman mapping, PL mapping of these regions also confirmed the incorporation
of other defects including a variety of nickel-related centers, such as the S3 defect and PL
peaks at 694 and 700 nm [23].
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Figure 6. Raman mapping of a cubo-octahedral diamond plate from the Marange deposit in Zimbabwe, which often
shows regions of grayish clouds. The image and Raman map are looking at the boundary between colorless and included
regions, studying the graphite-related Raman feature at a Raman shift of 1600 cm−1. This room-temperature Raman map is
composed of 2968 individual spectra with 5 µm pixel size and took 4.5 h to complete using 532 nm excitation.

5. Naturally Irradiated Diamond

Diamond is among the most valued and desired of gemstones and when they occur
with vibrant colors such as red, blue, or green, their value skyrockets due to the geological
rarity of the unique conditions required to produce the atomic structural defects responsible
for those colors. Unlike most colored diamonds, many green diamonds obtain their color
in a secondary fashion as they are exposed to direct contact with radioactive minerals
and fluids in the shallow parts of the Earth’s crust after they have been transported up
from the mantle where they crystallized. Very commonly with natural radiation exposure
comes the presence of small areas of intense alpha particle radiation damage on the
surface of diamonds. These green- or brown-colored patches, termed “radiation stains” by
gemologists, usually penetrate only a few tens of microns into the diamond surface (i.e.,
the stopping distance of alpha particles in diamond). While many natural diamond crystals
show a few of these radiation stains, only a rare few are exposed to enough radiation
damage to produce internal color zoning (beta or gamma radiation-related) in addition to
the surficial stains [27]. These rare stones produce some of the world’s most famous and
valuable green diamonds, including the 40.70 carat Dresden Green [28,29].

PL analysis of diamond is an important tool in identifying many types of defects
and treatments in gem diamonds. In addition to the naturally irradiated diamonds de-
scribed here, PL mapping can also be helpful for analyzing the spatial effects of laboratory
irradiation, such as depth penetration of the irradiation and its effect on PL-active de-
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fects [14,30]. The surficial contact with radioactive fluids or mineral grains often creates
distinct spatial differences in PL defects related to natural irradiation. These green radiation
stains have also been shown to turn to brown when heated to moderate temperatures
(~500 ◦C [31,32]) and, occasionally, green and brown radiation stains are seen on the same
diamond. PL mapping has helped elucidate the differences between adjacent green and
brown radiation stains [33]. Several useful examples of PL on naturally irradiated diamond
are recounted here.

5.1. PL Mapping to Determine Penetration Depth of Radiation

One such method to monitor the spatial variations is by monitoring vacancy defects
introduced by natural radiation. PL mapping of natural diamonds with radiation stains
allows us to see the distribution of vacancy defects (GR1; [V0], ZPL = 741 nm) relative to
the stains to better understand the impact of natural geological processes. Interestingly, PL
mapping shows that heavily irradiated areas that have dark green radiation stains on a
diamond surface, themselves, have little to no GR1 emission (Figure 7). This is likely due
to the severe damaging of the diamond atomic lattice at the spot of most intense radiation
dose, rather than an absence of vacancies. Adjacent to the radiation stains, mapping shows
narrow regions showing elevated concentrations of GR1 defects. These regions range in
width from 18.5 to 22 µm that coincide with a lighter green in color; this observation is
consistent with the penetration depth for alpha irradiation [31,32].
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surface of a natural diamond. 

Figure 7. (Left) PL mapping of GR1 (vacancy) defects on the surface of a natural rough diamond on heavily irradiated
areas that show dark green stains and ~20 µm narrow adjacent zones of GR1. (Right) A higher magnification version of the
left image shows an overlay of the regions with high GR1 (box with red outlines) along with the corresponding PL map,
which is displaced in order to show the radiation features underneath. The arrows are indicating a few examples of the
narrow regions with elevated GR1 concentration and have a width of 18.5–22 µm, consistent with the penetration depth for
alpha irradiation.

In addition to a narrow vacancy distribution lateral to radiation stains, the depth
penetration within a diamond is similar. From a cleaved diamond sample with radiation
damage and green stains at the surface, the depth penetration of both the stains and
resulting color zonation can clearly be seen (Figure 8). It is difficult to obtain a cross-section
of a diamond sample like this without laser cutting and polishing. Radiation-related defects
in diamond are very sensitive to temperature and the inadvertent heating associated with
cutting processes can often modify the defects. Using a cleaved sample ensured that the
defects remained intact. Raman mapping of GR1 along the edge of the cleaved sample
showed two distinct zones; the one closest to the stain measured 17.6 µm and a narrower
transitional zone was 3.9 µm. Together, the two zones totaled 21.5 µm, which is consistent
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with the penetration of alpha damage in diamond that was also seen in Figure 7 for the
surface of a natural diamond.
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vacancy distribution at depth in the diamond is similar to that observed adjacent to surface stains.

Through PL mapping, the lateral and depth distributions of vacancy defects in natu-
rally irradiated diamonds with green radiation stains are both shown to comprise ~20 µm
narrow regions adjacent to the stains, supporting the idea that the stains are a product of
alpha irradiation. This type of analysis helps us to better understand that diamond defects
are often not uniformly distributed and can be directly attributed to visible natural features.

Another example of PL mapping aiding in the analysis of natural-irradiation related
features was a faceted diamond that showed green fluorescence around the rim of some
cavities present in the diamond [34]. Figure 9 shows that, while in the Earth’s crust, the
diamond was exposed to radioactive fluids, particularly in etch channels now in the form of
cavities on the table and crown facets. These were first noticed from fluorescence imaging
that revealed green halos around these cavities. Although these isolated areas of fluores-
cence around the cavities indicated that they had likely been filled with a radioactive fluid,
there was none of the greenish color or radiation staining that would likely accompany
higher radiation doses.

PL mapping of one of the cavities showed much higher intensities of the nitrogen-
vacancy centers and the GR1. The extent of the fluorescence halos and the elevated GR1
is approximately 30 µm; again, this is consistent with the penetration depth of alpha
radiation.

5.2. PL Mapping Provides Clues to Unusual Origin Story

The “Matryoshka” diamond is a 0.62 ct greenish rough diamond with a freely moving
diamond trapped inside [35]. The exterior and interior diamonds both showed visual
evidence of radiation stains and these observations were confirmed by PL mapping using
633 nm excitation and plotting the GR1 feature [V0] at 741.2 nm. Figure 10A shows a visual
camera mosaic generated by the mapping instrument, indicating the internal diamond
in focus and the external diamond out of focus. The PL maps were collected in confocal
mode to best distinguish the PL spectra from the inner and outer diamond. Figure 10B
shows the PL map of the GR1 defect. It shows generally a higher intensity of GR1 in
the outer diamond, yet shows some high GR1 emission detected in some portions of the
inner diamond (indicated by red arrow in Figure 10). This confirms that radioactive fluids
penetrated inside the cavity and came into physical contact with the internal diamond
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crystal. This type of analysis would have been far more difficult to achieve with standard
PL spectroscopy.
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Figure 10. The 0.62 ct greenish rough diamond was termed the “Matryoshka” diamond because of the free-moving internal
diamond. (A) Camera mosaic generated by the mapping instrument shows the internal diamond in focus and the external
diamond out of focus; the confocal PL mapping was collected at the corresponding focal plane. (B) The PL map of the
normalized GR1 defect intensity at 741.2 nm (normalized using the diamond Raman peak at 691 nm) was collected with
633 nm excitation at liquid nitrogen temperature. For this map, ~34,000 individual spectra were collected with a 25 µm
pixel size over a collection time of 7 1

2 min. The red arrow in both figures shows an area of high GR1 intensity on the surface
of the internal diamond. For this diamond, we did not use graphite paint (e.g., Figure 2) as we were concerned about the
paint potentially entering the internal cavity and instead fixed graphite tape to the bottom of the sample while imaging.

6. Inclusion Analysis within Natural Diamonds

Diamonds, and their associated inclusions, can provide fascinating new discoveries of
new minerals [36]. Diamond inclusions can provide windows into the Earth’s lithospheric
and sub-lithospheric mantle, providing us with insight into the processes and compositions
of what is below us. With the proper equipment and procedures, these diamond inclusions
can be analyzed and identified.



Minerals 2021, 11, 177 11 of 31

Raman spectroscopy is widely used in the identification of diamond inclusions; Raman
spectroscopy is generally the best method to identify non-surface-reaching inclusions and
has been used to discover a number of different inclusions, such as inclusions formed in
superdeep environments [37] or inclusions with different paragenetic origins [38].

Diamond inclusions can exhibit many different features that make them difficult to
identify. They can contain several different minerals, can come in various sizes (from a few
microns to about a millimeter), and they can contain coatings that make them practically
impossible to identify. The proper instrumentation and data collection method is especially
crucial for identifying diamond inclusions.

Raman mapping is an efficient method for identifying very small inclusions or inclu-
sions with multiple mineral assemblages. Figure 11 shows an inclusion in a type IIa pink
diamond with a graphitized rosette stress fracture around it, with the inclusions mainly
being a semi-transparent color. With Raman mapping, this inclusion was identified as
mineral breyite (CaSiO3) along with a pronounced graphitic halo. Since inclusions such as
breyite have yet to be found in known lithospheric diamonds, it has been inferred that these
diamonds likely have a sub-lithospheric origin at depths of around 360 to 750 km [13].
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Figure 11. Top left: Photomicrograph of the breyite inclusion located within a type IIa pink diamond; the red box shows the
area being mapped. Top center: False color map showing the spatial distribution of graphite around the breyite inclusion.
Top right: False color map showing the spatial distribution of the 640–680 cm−1 peak found in the breyite spectra. Bottom:
Raman spectrum showing the identification of the breyite inclusion within the image.

Photoluminescence mapping of another diamond showed chromium-related peaks
at 693 and 694 nm, which were present at distinct positions. The specific locations of
the chromium emission correlated to inclusions within the diamond (Figure 12). Raman
spectroscopy identified numerous corundum inclusions ranging from 0.18 (Figure 12) to
0.07 mm in size. By viewing the inclusions with a diffuser plate, a pale pink color was
observed through some of the inclusions. Compiling all this evidence, it was clear that the
inclusions were corundum, either ruby or pink sapphire, in this gem-quality diamond. To
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our knowledge, these inclusions are the second occurrence of chromium-rich corundum
(ruby or pink sapphire) found in a natural gem diamond [39].
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Figure 12. (A) A 0.13 ct diamond shown to have corundum inclusions. (B) Photomicrograph of the Table 693 nm chromium
peaks (532 nm excitation). (C) Photoluminescence spectrum showing the detection of chromium with 532 nm laser excitation.
(D) Raman spectra confirming the corundum identification. The blue trace shows the submitted diamond inclusion, while
the red trace is a known corundum reference. Spectra vertically offset for clarity [39].

Whether gemologists are searching for rare corundum inclusions in gem quality
diamonds or finding inclusions that originated from the sub-lithosphere, using a Raman
imaging microscope can be a great tool for diamond inclusion identification.
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7. PL Mapping of Laboratory-Grown Diamonds
7.1. HPHT-Grown Diamonds

In the 1990s, DeBeers developed the DiamondView fluorescence imaging microscope
(using ultra-shortwave excitation of ~225 nm) to distinguish HPHT-grown diamonds
from their natural counterparts [40]. The basis for the DiamondView was that the growth
morphology for HPHT synthetics is quite different from naturally grown diamonds. The
distinct growth structure is vividly recorded within the fluorescence as the different growth
sectors allowed for varying incorporation of the defects (Figure 13A). This difference in
impurity concentration also revealed the outlines of the growth sectors. This underlying
mechanism has also proven useful to study HPHT-grown diamonds by PL mapping
(Figure 13B,C), which allows quantitative comparison of the detected defects and the
ability to study the trends between them (Figure 13D). Thus, far more detailed analyses of
the interrelationships of various defects are now possible.
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Figure 13. (A) A 0.46 ct Fancy Vivid yellow HPHT-grown diamond is illuminated by the DiamondView microscope, showing
the various intensities and colors of fluorescence across the growth sectors. (B) The PL map for the neutral nitrogen-vacancy
(NV0) center—ZPL = 575 nm; (C) PL map for the negatively charged nitrogen-vacancy (NV−) center—ZPL = 637 nm;
(D) Plot of the values for NV0 vs. NV− across the region indicated by the black box in (B). It shows a consistent ratio
between these two centers across the growth sectors, thus providing more information than can be determined from a
DiamondView image alone.

7.2. CVD-Grown Diamonds

PL mapping has also proven useful for synthetic diamonds grown by the chemical
vapor deposition (CVD) method; it has been helpful not only for identifying CVD-grown
diamonds [41], but also to perform more fundamental research on the growth process. For
example, with a DiamondView microscope, we can often and easily see a growth interface
that indicates a stop/start growth event in CVD-grown diamonds. The fluorescence at
that growth interface is often distinct and different from the fluorescence seen within
the bulk of the CVD growth. PL mapping analyzed in greater detail the defects that are
detected within that interface and how those compare with the bulk of the CVD growth
layer (Figure 14). These maps show a number of differences between the layers and an
increased concentration of vacancy-related defects at the interfaces that decreases with
growth time within each layer.
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Figure 14. (Top) A thin laser-cut slice from a CVD-grown diamond composed of five different layers
from five consecutive growth runs using a natural diamond substrate. The sample is shown with
2 types of illumination: visible and DiamondView (fluorescence) illumination, showing the distinct
growth interfaces. (Bottom) Spectral data exported from the PL map (along the red line shown in top
image) show the change in vacancy-related defects (NV0 at 575 nm, NV− at 637 nm, and the negative
silicon-vacancy defect at 737 nm) due to the growth interruptions.

8. Blue Sapphire: Geographic Origin Determination

Over the last few decades, geographic origin determination has become a major
motivating force in gemological research. As the gem and jewelry industry has migrated
towards using a gem’s geographic origin as a factor in determining value, they have
relied on gemological laboratories to determine origin based on gemological, physical, and
chemical properties. However, as the number of economically important gem deposits has
increased in modern times, so has the overlap in properties of stones from geographically
distinct deposits.

The problem can be particularly acute in the case of metamorphic blue sapphires
such as those found in Sri Lanka, Myanmar, Indian Kashmir, and Madagascar [42]. There
exists significant overlap in the trace element profiles for sapphires from these deposits;
therefore, the gemologist must rely largely on microscopic observations in order to conclude
a stone’s geographic origin. The most common inclusions observed in the microscope are
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fine particles of rutile that are often crystallographically aligned with the corundum host
and called “silk” by the gemologist. Studying differences in the pattern of his “silk” and
comparing against references stones with known provenance can often help to determine a
stone’s geographic origin.

Another feature that can aid in this endeavor is the presence/absence of color zoning.
Sapphires from Madagascar or Sri Lanka may show dramatic color zoning with alternating
blue and colorless zones constrained to follow specific crystallographic planes and can
track the crystal growth history of the gems. The blue color is derived from absorption of
red light through an intervalence charge transfer between Fe2+ and Ti4+ sitting on adjacent
octahedral sites in the corundum structure [43]; therefore, the oscillatory zoning indicates
differences in the chemical environment during growth involving not only iron (Fe) and
titanium (Ti) but also potentially magnesium (Mg) and silicon (Si) [44]. In Madagascar and
Sri Lankan sapphires, the color zoning usually occurs with very sharp boundaries between
blue and colorless zones and generally follows a hexagonal pattern when looking down
the c-axis (Figure 15). On the other hand, Burmese sapphires often have very homogeneous
blue coloration, or at most, they may show color zoning with diffuse boundaries between
blue and colorless zones, where the blue gradually transitions into colorless (Figure 16). In
this case, the color zoning preserves information about the unique geological forces that
created these gems and can be used to help determine a stone’s geographic origin.
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Using color zoning to provide information on geographic origin is essentially using
information about the spatial distribution of trace elements, specifically Fe and Ti in the
case of sapphires. Hypothetically, having the ability to map out distributions of any trace
elements in corundum may also provide additional information that could provide a
unique fingerprint leading back to a stone’s geographic origin. Trace element mapping
with laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) has been
performed on gem corundum before (e.g., [45]), but the LA-ICP-MS mapping method is
time-intensive and destructive. Another option is to use PL mapping to look for variations
in the intensity of the Cr3+ luminescence peaks centered at 692.9 and 694.3 nm (see, for
example, Figure 12C) in order to map out variation in chromium (Cr) concentrations within
a single crystal. PL mapping has been used before to delineate the crystal growth history of
rubies and blue sapphires from Yogo Gulch, Montana [15,46]. Of particular note is that the
distribution of Cr in Yogo sapphires can reveal complicated growth patterns that would
not be visible in these sapphires that otherwise show homogeneous distribution of color
and other trace elements. For whatever reason, Cr often seems to become incorporated
very differently in corundum than the other trace elements (e.g., [47]). PL maps were
produced for the sharply blue-zoned Madagascar sapphire in Figure 15 and the diffuse-
zoned Burmese sapphire in Figure 16. In both cases, the Cr-distribution identified by
PL mapping correlates well with the observed color zoning. In some cases, however, PL
mapping can shed light on crystal growth patterns that do not show up through observation
of color zoning (Figure 17).
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Sapphires from Madagascar, Sri Lanka, and Burma were included in this preliminary
study to determine if PL mapping of Cr3+ luminescence can aid in geographic origin
determination of metamorphic blue sapphires. The sapphires studied here were all cut
as wafers with the corundum c-axis perpendicular to the polished faces in order to keep
the orientation consistent for this initial work. Several representative examples of Cr-
distribution maps for each locale are shown in Figures 18–20. In general, the Cr maps
seem to follow the same general trends seen with color zoning in these stones, with
sharp, dramatic Cr-zoning being common in Sri Lankan and Madagascar sapphires and
generally subtler Cr-zoning being more common in Burmese sapphires. Observation of
angular, hexagonal banding is more common in Madagascar and Sri Lankan sapphires.
Notably, the cores of several of these sapphires seem to show complex initial growth
patterns involving growth along more than one crystal form involving more than one set
of planes (Figures 18B,D and 19B). However, Burmese sapphires are more likely to have
homogeneous distributions of Cr (Figure 20A) or bands of Cr enrichment with diffuse
boundaries (Figure 20B,C). Less commonly, Burmese sapphires may show Cr-enriched
bands with sharper boundaries (Figure 20D).
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However, these generalizations do not cover the full range of possibilities for Cr maps
seen for these deposits. For instance, some Burmese sapphires will occasionally show
distinct angular banding in their Cr distribution maps. The Cr maps for the Burmese
sapphires in Figures 17 and 20D,F appear to be nearly indistinguishable from those shown
for Madagascar or Sri Lankan sapphires in Figures 18A,C and 19E. Additionally, some
Sri Lankan and Madagascar sapphires will show only diffuse zones of Cr enrichment,
as in Figures 18F and 19F, which may not be distinguishable from the typical patterns
seen for Burmese sapphires. However, the more complex growth patterns seen in some
Sri Lankan and Madagascar sapphires which deviate from the strict angular banding
with hexagonal geometry (Figures 18B,D,E and 19A–D) have never been seen in Burmese
sapphires. Observation of this type of growth through PL mapping could be useful to
exclude Burma as a possible origin for some challenging cases of origin determination.
Further work is needed to more clearly delineate how and when PL mapping can be
useful for geographic origin determination of metamorphic blue sapphires. Future research
should also focus on the potential use of PL mapping for geographic origin determination
of basalt-related blue sapphires as well as rubies.

9. Raman Mapping of Tourmaline for Species Classification

In gemology, LA-ICP-MS has been used to analyze both major and trace elements of
gem quality tourmaline for geographic origin determination [49,50] and species classifi-
cation [51]. The localized analytical technique produces a representative composition of
the gemstone, and thus, species identification, if the sample is chemically homogeneous.
However, many tourmaline gems are zoned and information may be missed if the tourma-
line is chemically heterogeneous. Raman mapping can be used as an alternative method to
chemically characterize the sample at a small scale and resolve this issue.

Tourmalines from Anjanabonoina, Madagascar are known for their complex color
zoning. Chemical analyses suggest that the zones are composed of elbaite and liddicoat-
ite [52], similar to the pear-shaped tourmaline sample shown in Figure 21. A traverse of
LA-ICP-MS analyses were performed across the length of the sample. Using these data,
the two laser ablation areas on the thickest black band of the sample in Figure 21 were clas-
sified as elbaite [51], the sodium-, lithium-, aluminum-rich tourmaline species (e.g., [53]).
The remaining areas were classified as liddicoatite, the calcium-, lithium-, aluminum-rich
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tourmaline species. Obviously, one will not always have the luxury to place several laser
ablation spots on the table of a fine gemstone. However, Raman mapping offers a new tool
to identify tourmaline species and to study the chemical zoning of a gem tourmaline in an
accurate, non-destructive, and acceptable way.
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ing sample classified as liddicoatite. Sample courtesy of Barbara L. Dutrow. 

By using a ratio of the integrated green area 1 to the red area 2 in Figure 22, a third 
parameter was developed and used for mapping. Elbaitic tourmaline has a much stronger 
band at around 840 cm−1, and a much larger ratio of the area 1 to 2 compared to liddicoatite 
[54]. The ratio of these two areas differentiates the two species clearly in the map; the areas 
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dicoatite is around 1.5. 

Figure 21. A pear-shaped step-cut gem quality tourmaline stone from Anjanabonoina, Madagascar.
An area was analyzed by the Raman mapping technique (blue rectangle; color scale shown in
Figure 23). Laser ablation (LA-ICP-MS) craters are visible as dots across the table of the sample.
Chemical data obtained by LA-ICP-MS classify the thickest black band as elbaite, with the remaining
sample classified as liddicoatite. Sample courtesy of Barbara L. Dutrow.

By using a ratio of the integrated green area 1 to the red area 2 in Figure 22, a
third parameter was developed and used for mapping. Elbaitic tourmaline has a much
stronger band at around 840 cm−1, and a much larger ratio of the area 1 to 2 compared to
liddicoatite [54]. The ratio of these two areas differentiates the two species clearly in the
map; the areas that are composed of mostly elbaite appear as red, while the areas that are
composed of mostly liddicoatite appear as blue. The estimated ratio that separates elbaite
and liddicoatite is around 1.5.
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Figure 22. Raman spectra of two pixels in the Raman map. The bottom trace represents a pixel (pixel 1 in Figure 23)
classified as elbaite while the top trace represents a pixel (pixel 2 in Figure 23) classified as liddicoatite. The ratio of the
integrated green area 1 to the red area 2 can be plotted as the third parameter in the map to differentiate these two species.
This allows higher resolution species identification.
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One portion of this sample had a high-resolution Raman map with a 455 nm polarized
laser at room temperature with 0.5 s exposure time, and 10 µm pixel size (Figures 21 and
23). The total time used to generate this map was 16 h and 24 min. A map with lower
resolution in Figure 24 was also generated to compare to Figure 23. The total time used to
generate this map is 48 min with a larger 50 µm pixel size. Therefore, it is feasible to map a
production stone at lower resolution and shorter time.

The ability to accurately measure the overall composition of chemically zoned tour-
maline gemstones using a non-destructive method could be a useful application in a
gemological laboratory.
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10. Raman Mapping for Separation of Jadeite and Omphacite
10.1. Chemical Distinction between Jadeite and Omphacite

Jadeite and omphacite are related members of the pyroxene mineral group with
monoclinic crystal symmetry. As a result, most gemological tests give similar results for
both minerals (e.g., refractive index (R.I.) = 1.65–1.69 for jadeite, 1.66–1.72 for omphacite;
specific gravity (S.G.) = 3.3 for jadeite, 3.34 for omphacite). The common thinking for
identification has long been that if a stone is a member of the jadeite group, then the color
can adequately serve as a separation tool. In the jewelry industry, very dark green to black
material, as well as bluish “Guatemalan jade,” have been considered omphacite, whereas
light to medium-colored violet, white, green, and mottled stones were identified as jadeite.
This color-based separation of jadeite pyroxenes seemed to work well until the recent
revelation that some gem-quality medium green stones that visually resembled traditional
jadeite jade were, in fact, composed completely of omphacite [55–57].

To mineralogists, the difference between jadeite and omphacite is caused by the
substitution of particular chemical elements in the atomic structure of the minerals. The
chemical formula for jadeite is Na(Al,Fe3+)Si2O6, and for omphacite, it is (Ca,Na)(Mg,
Al)Si2O6. In mineral formulas, the elements in parentheses can substitute for each other
because they can fit into the same lattice positions. From examining these formulas, the
only significant differences between these two related silicate minerals are the amount of
sodium (Na) and calcium (Ca) in the first formula position and the amounts of aluminum
(Al), magnesium (Mg), and ferric iron (Fe3+) in the second formula position. The formula
amounts of silicon (Si) and oxygen (O) are the same for most monoclinic pyroxenes. For
minerals such as jadeite and omphacite, where only a few elements substitute for each other,
a continuum in chemical composition often exists that ranges from an end member with
only one element in each formula position (e.g., jadeite, with only Na in the first position)
to another end member with only the other element in that formula position (e.g., the
pyroxene diopside has a formula of CaMgSi2O6, with only Ca in the first position). When
related minerals can occur with any ratio of the end member elements in the first formula
position (Na to Ca in this example), the chemical relationship between the minerals is
called a solid solution series. If just two elements are substituting, the relationship between
minerals can be defined as percentages along a mixing line. However, in the case of most
pyroxenes, more than two elements are in play, requiring the use of a triangular plot, called
a ternary diagram, to display multiple element substitutions simultaneously (Figure 25). In
this type of diagram, each corner represents 100% of that component.

Minerals 2021, 11, x FOR PEER REVIEW 24 of 34 
 

minerals is called a solid solution series. If just two elements are substituting, the relation-
ship between minerals can be defined as percentages along a mixing line. However, in the 
case of most pyroxenes, more than two elements are in play, requiring the use of a trian-
gular plot, called a ternary diagram, to display multiple element substitutions simultane-
ously (Figure 25). In this type of diagram, each corner represents 100% of that component. 

 
Figure 25. A ternary diagram for Na-bearing pyroxenes shows the relationships between jadeite, 
omphacite, and other related minerals. 

Chemically, omphacite is an intermediate composition in the solid solution series be-
tween the broad group of Ca,Mg,Fe-pyroxenes and end member jadeite (NaAlSi2O6). The 
omphacite compositional space, however, is very broad and the boundaries are not strictly 
defined. Most mineralogical references use 20% and 80% (Ca,Mg,Fe)Si2O6 component as 
the bounding horizontal lines for the omphacite region, as seen in Figure 25, but this leaves 
a very restricted space for jadeite that might not be representative of the material seen in 
the gem market. 

10.2. Identification Using Raman Analysis 
Raman spectroscopy has proven to be an invaluable technique for the identification 

of minerals. When excited by a laser, most minerals emit light that is shifted in frequency 
relative to the wavelength of the laser. This shift is characteristic of the structure and chem-
istry of the mineral and can be used as an identification tool when compared to a database 
of known mineral shifts. In most cases, care has to be taken with the orientation of the 
crystals during Raman analysis because the technique is extremely sensitive to crystallo-
graphic directions. Fortunately, in the case of polycrystalline materials such as the jadeite 
and omphacite used in the jewelry industry, the tiny crystals are randomly oriented and 
do not significantly affect the Raman data. Although not commonly used in gemology for 
the separation of different pyroxenes, Raman spectroscopy shows distinct differences be-
tween jadeite and omphacite due to the elemental substitutions and corresponding struc-
tural changes that are very useful for identification (Figure 26). 

Figure 25. A ternary diagram for Na-bearing pyroxenes shows the relationships between jadeite,
omphacite, and other related minerals.



Minerals 2021, 11, 177 22 of 31

Chemically, omphacite is an intermediate composition in the solid solution series
between the broad group of Ca,Mg,Fe-pyroxenes and end member jadeite (NaAlSi2O6). The
omphacite compositional space, however, is very broad and the boundaries are not strictly
defined. Most mineralogical references use 20% and 80% (Ca,Mg,Fe)Si2O6 component as
the bounding horizontal lines for the omphacite region, as seen in Figure 25, but this leaves
a very restricted space for jadeite that might not be representative of the material seen in
the gem market.

10.2. Identification Using Raman Analysis

Raman spectroscopy has proven to be an invaluable technique for the identification
of minerals. When excited by a laser, most minerals emit light that is shifted in frequency
relative to the wavelength of the laser. This shift is characteristic of the structure and
chemistry of the mineral and can be used as an identification tool when compared to a
database of known mineral shifts. In most cases, care has to be taken with the orientation
of the crystals during Raman analysis because the technique is extremely sensitive to
crystallographic directions. Fortunately, in the case of polycrystalline materials such as the
jadeite and omphacite used in the jewelry industry, the tiny crystals are randomly oriented
and do not significantly affect the Raman data. Although not commonly used in gemology
for the separation of different pyroxenes, Raman spectroscopy shows distinct differences
between jadeite and omphacite due to the elemental substitutions and corresponding
structural changes that are very useful for identification (Figure 26).
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Figure 26. Raman spectra collected with a 514 nm laser reveal important differences between jadeite
and omphacite. Data from RRUFF database [58].

Jadeite shows prominent Raman peaks at ~204, 255, 310, 328, 375, 433, 524, 575, 700,
779, 987, and 1039 cm−1, whereas omphacite has distinct features at 335, 374, 409, 554,
678, 905, and 1015 cm−1. While many Raman features are slightly different between the
minerals, the most prominent, and potentially useful (as shown in Figures 26–28), are the
peaks that occur at 678 (omphacite) and 700 (jadeite) cm−1.
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Figure 28. High-resolution Raman mapping of the Raman shift position (cm−1) within a small area of the ring from Figure 27
shows jadeite concentrated at grain edges and a matrix of omphacite in between grains. The false color map ranges in color
from jadeite (pink) to omphacite (blue) based on the position of the 678–700 cm−1 primary Raman peak.

As effective as Raman analysis is at separating jadeite and omphacite, it has tradition-
ally been used as a spot technique. High-pressure minerals such as jadeite and rocks that
contain these minerals tend to be somewhat heterogeneous due to the nature of their geo-
logic formation. As a result, a single Raman analysis in one spot of a gem may reveal a very
different composition than another location. Raman mapping helps us to better understand
the distribution of mineral phases, even those that are only subtly distinguishable by a
shifted Raman peak, and evaluate the composition of a larger, more representative portion
of a gem than a single spectrum might allow. For example, a Raman map of the peak
position of the ~678–700 cm−1 feature in jadeite/omphacite shows a very heterogeneous
growth pattern of interlocking grains of nearly pure jadeite and mixed jadeite/omphacite
(Figure 27).

Under higher magnification with the Raman mapping microscope, the different min-
eral grains in the same sample can be seen with reflected light. A high-resolution Raman
map of individual and adjacent grains shows that the nearly pure jadeite composition
is concentrated at the edges of the grains, with the matrix between grains being largely
composed of omphacite (Figure 28). This level of detail helps us to better understand the
complexity of the geological history for this apparently uniform green material.
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While many “jadeite” jewelry pieces in the trade consist of a mixed composition, some
have been found to be nearly completely composed of omphacite, as shown in Figure 29.
Traditional Raman spectroscopy can identify the differences between jadeite and related
pyroxenes such as omphacite; however, Raman mapping allows for a more thorough
understanding of the true composition of gems as a whole and thus provides a better
representation of what a consumer is purchasing.
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Figure 29. Raman mapping of jadeite/omphacite composition from one stone in the ring seen on the left shows a mostly
uniform composition of omphacite. This ring would most often be sold as jadeite in the trade due to a relatively poor
understanding of the compositional differences and the gemological difficulty in separating them. The false color map (right)
ranges in color from jadeite (pink) to omphacite (blue) based on the position of the 678–700 cm−1 primary Raman peak.

11. Raman Mapping of Pearls

Pearls are mainly composed of calcium carbonate (CaCO3) biominerals together with
organic matrix and water. In pearl analysis, Raman spectroscopy is a rapid, non-destructive
technique that mainly is used to identify different CaCO3 polymorphs, including aragonite,
calcite, and vaterite, and determine color origin of the pearl: whether it is caused by natural
pigments (in particular, polyenes and uroporphyrin) or has been modified by treatment
processes [5,59–61].

Aragonite is the most common CaCO3 polymorph found in nacreous pearls of both
saltwater (SW) and freshwater (FW) environments, as well as in various non-nacreous
pearls that exhibit surface flame structure and porcelain-like luster (known as porcelaneous
pearl), such as conch and melo pearls [62]. Calcite is known to be a main composition
of some non-nacreous pearls produced in some mollusk species of Pinnidae, Pectinidae,
and Ostreidae families [63–65]. Moreover, some marine nacreous pearls can develop in
the pearl sac that originated from young epithelium cells, which is composed of prismatic
layers of calcite in the center and layers of aragonite deposition at the outside [66]. Vaterite
is an unstable CaCO3 polymorph that usually is not found in the pearl, especially for
marine pearls. Nevertheless, the occurrence of vaterite has been reported on the surface
of freshwater cultured nacreous pearls in the white frosty region, which is lusterless and
influences the quality of pearls [67–70]. Vaterite has also been discovered in the center of
freshwater non-bead cultured pearls, which may relate to implanted tissues that were used
to culture the pearls [68,71]. Therefore, characterizing CaCO3 polymorphs is a valuable
technique which can help in determining the mollusk species, environment, and origin of
certain types of pearls in gemological laboratories.

Raman mapping is not routinely used for pearl testing, yet the technique is being
investigated for its ability to assist in verifying the environmental growth condition of
a questionable pearl that exhibits unusual chemical characteristics and internal growth
structures. This pearl has been reported previously, with its growth environment and
origin inconclusive (pearl A in [72]). Subsequently, to verify the pearl’s identity, it was
cut in half to analyze in more detail. A diamond-plated saw was used to cut the pearl
in a direction relatively parallel to the flat base, and the surfaces of both cross-sections
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were left unpolished for the study. The study presented here only focuses on the top
cross-section sample, which weighed 4.78 carats and measured 11.81 × 10.95 × 5.06 mm
(Figure 30). The sample’s chemical composition was examined using LA-ICP-MS analysis.
Two lines of 54 spots were analyzed across the surface at perpendicular directions to each
other. The trace element data revealed that some spots in the central area contained very
high magnesium (Mg) concentrations (761–3360 ppm) compared with regular SW (around
100–300 ppm) and FW (below 100 ppm) values, and their manganese (Mn), barium (Ba),
strontium (Sr), and sodium (Na) values did not correlate to either SW or FW characteristics.
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Figure 30. Unpolished surface of the top cross-section sample with two perpendicular lines of spot
analyzed by LA-ICP-MS analysis.

Raman spectroscopy analyses on the cross-section of this specimen were conducted us-
ing a Renishaw inVia Raman microscope with an 830 nm diode laser excitation wavelength
at room temperature. The 830 nm laser provided better peak resolution compare to the
514 nm laser that is normally used in pearl testing owing to higher background fluorescence
in this sample. The results indicated that the high Mg value spots are composed of vaterite,
which could be an indication of growth under FW environment. In addition, aragonite and
calcite spectra were also found in nearby areas together with vaterite. The three CaCO3
polymorphs can be distinguished by different band positions of carbonate ion (CO3

2−)
modes. Raman spectra of vaterite showed major bands at 1075, 1080, and 1091 cm−1 which
correspond to symmetric stretching (V1) mode of CO3

2−, and minor bands at 667, 685,
740, 743, and 751 cm−1 which correspond to in-plane bending (V4) modes of CO3

2−. The
results conformed with previous findings [68]. Raman bands of aragonite were observed
at 1085 cm−1 for the V1, and doublet bands at 701 and 705 cm−1 for the V4. The presence of
calcite was indicated by the bands at 1086 (V1), and 712 cm−1 (V4). Though some dominant
vaterite spectra contain a tiny band of aragonite at 702 cm−1, the vaterite bands at 685,
740, 743, 751, and 1075 cm−1 (shoulder) also are present in the dominant aragonite calcite
spectra (Figure 31).

Raman mapping was further used to determine the distribution of the different
polymorphs with 785 nm laser excitation wavelength at room temperature, 0.04 s exposure
time per pixel, 20 µm pixel size, and a total of 10 scans. The Raman map in Figure 32A
showed intensity variation at 1091 cm−1, the dominant peak for vaterite. Raman mapping
of the 1091 cm−1 peak indicated a vaterite zone in the center (yellow to red in the false
color map of Figure 32A) and the surrounding low intensities (dark blue) consisted of
aragonite. However, the region between aragonite and calcite in the central area close
to vaterite cannot be separated using this peak position. The Raman map of the calcite
band at 712 cm−1 in Figure 32B displayed the distribution areas of the CaCO3 polymorphs
better: calcite was only detected in an irregular, small area (green in false color map of
Figure 32B) associated with vaterite. The vaterite growth sector in the maps corresponded
to the pearl’s internal structure, obtained from X-ray computed microtomography analysis
(µ-CT) and observed with photomicrography in transmitted light (Figure 33). The vaterite
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showed lower radiodensity (i.e., more transparent) to X-rays than the aragonite area, and it
appeared as darker gray in the µ-CT image.

The mixture of aragonite–vaterite formation in the central area of freshwater pearls
was previously studied and reported [68,71,73]; however, the authors did not detect calcite
in their studies. Previous researchers reported large domains of calcite together with
aragonite in the central area of non-bead cultured freshwater pearls [74]. However, they
believed that the combination of aragonite, vaterite, and calcite formation in the same
freshwater pearl had never been reported in the literature to date. The detection of the
vaterite area in the center of the pearl by Raman mapping technique helped to verify that
the pearl was likely from freshwater environment since vaterite was not reported to present
in saltwater pearls [71,75,76]. In accordance with the previous studies, it is potentially
a non-bead cultured pearl. Nevertheless, a recent study reported a vaterite area on the
surface of a natural freshwater pearl [77]. Further study on the bottom cross-section sample
and another pearl that displayed similar unusual chemical characteristics (pearl B in [72])
has to be performed to ensure the identification results.
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Figure 31. (A) Raman spectra of vaterite (orange), dominant aragonite with minor vaterite bands (blue), dominant calcite
with minor vaterite bands (green). (B) The most intense bands correspond to V1 of vaterite showed at 1075, 1080, and
1091 cm−1 whereas in aragonite and calcite spectra displayed at 1085 cm−1 and 1086 cm−1, respectively. (C) The V4 of
vaterite showed as weak bands at 667, 685, 740, 743, and 751 cm−1. Doublet bands at 701 and 705 cm−1 belong to aragonite
and a single band at 712 cm−1 indicates calcite. The mixture of different polymorphs in the same spectra was presented.
The dominant vaterite spectrum contain a tiny band of aragonite at 702 cm−1, and the vaterite bands at 685, 740, 743, 751,
and 1075 cm−1 (shoulder) are presented in the dominant aragonite calcite spectra.
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Figure 33. The vaterite growth sector presented in the maps corresponds to the pearl’s internal structure, obtained from
X-ray computed microtomography analysis (µ-CT, left) and observed in photomicrograph with transmitted light (right).
The vaterite showed lower radiodensity (more transparent) to X-ray than the aragonite area, and it appeared as a darker
gray region in µ-CT image.

12. Future Possibilities and Conclusions

The advancements of various treatments and laboratory-growth methods have re-
quired the use of complex analytical identification instruments, such as mapping spectrom-
eters and automated gem testing. The ability to quickly and easily collect Raman and PL
data has allowed gemologists to perform fundamental research on spatial inhomogeneities
in ways that were not possible just a few short years ago. This has created numerous
avenues across a wide variety of gem materials to study growth mechanisms, a deeper
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exploration of various treatments, and look into wider applications such as geographic
origin determination.

In the future, we expect to see improvements in data resolution and sensitivity and
likely the integration of various mapping technologies. While this article has focused on
several gemological applications and scientific research using Raman and PL mapping,
other applications on gem materials not recounted here have also been studied [78–84].
Additionally, similar research aims have involved other mapping technologies such as IR
absorption mapping [85–89], cathodoluminescence mapping [90–95], chemical analysis
using LIBS [96] or X-ray fluorescence [97], electron paramagnetic resonance (EPR) imag-
ing [98], and fluorescence decay (luminescence lifetime) mapping [99,100]. In the future,
we expect that instrumentation will be able to integrate these various technologies together.

The Raman and PL mapping technique allows scientists and researchers to quickly
collect and analyze Raman and PL spectra so they can more easily identify the nature
of defects, species identification, or structure in diamonds, pearls, and other gemstones.
Additionally, it permits gemologists to evaluate new criteria for distinguishing treated and
lab-grown gemstones and, for some, to better discern the country of origin.
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