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Abstract: Inertia cone crushers are widely used in complex ore mineral processing. The two mass
variables (fixed cone mass and moving cone mass) affect the dynamic performance of the inertia
cone crusher. Particularly the operative crushing force of the moving cone and the amplitude of the
fixed cone are affected, and thus the energy consumption of the crusher. In this paper, the process of
crushing steel slag is taken as a specific research object, to analyze the influence of two mass variables
on the inertia cone crusher performance. A real-time dynamic model based on the multi-body
dynamic (MBD) and the discrete element method (DEM) is established. Furthermore, the influence of
the fixed cone mass and moving cone mass on the operative crushing force, amplitude and average
power draw are explored by the design of simulation experiments. The predictive regression models
of inertia cone crusher performance are obtained using response surface methodology (RSM). After
increasing the fixed cone mass, the optimized amplitude, average power and moving cone mass are
decreased by 37.1%, 33.1% and 10%, respectively, compared to without the adjustment. Finally, a
more effective dynamic balancing mechanism of inertia cone crusher is achieved, which can utilize
the kinetic energy of a balancer, and minimize the mass of the fixed and moving cone. The fixed cone
mass and moving cone mass of a balancing crusher are decreased by 78.9% and 22.8%, respectively,
compared to without the balancing mechanism.

Keywords: inertia cone crusher; multi-body dynamic; DEM; regression model; simulation experi-
ment; dynamic balancing

1. Introduction

Inertia cone crushers are widely used in the secondary and tertiary crushing stages of
complex ore processing, such as the comprehensive recovery of steel slag [1,2]. A mantle
rotates and swings in the crushing chamber, which is due to an eccentric vibrator transfer-
ring the rotational motion to the main shaft. As it flows downward between the mantle and
concave, the ore particle is crushed several times. The total crushing force for the inertia
cone crusher is provided by the eccentric vibrator and mantle. As the concave is located
above several rubber absorbers, the concave can move and roll in three-dimensional space.
Therefore, the operative crushing force is less than the theoretical force, and the energy
consumption increases [3]. The subgroup including the concave and subsidiary compo-
nents is defined as the fixed cone, and the subgroup including the mantle and eccentric
vibrator is defined as the moving cone. At the condition of keeping other parameters
invariable, the fixed cone mass and moving cone mass have a great impact on the operative
crushing force, amplitude of fixed cone and energy consumption, whereas the increase
in moving cone mass can increase the theoretical crushing force and amplitude directly.
The decrease of fixed cone mass can decrease the operating crushing force and increase
energy consumption indirectly. Here, from a manufacturer’s perspective, how to determine
the two mass parameters is a key problem. Furthermore, at the guarantee of reasonable
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crushing force achievement rate and energy consumption, minimizing the mass of the
fixed and moving cone is one of the main ways to reduce manufacturing cost.

Savov et al. [4] and Xia et al. [5] contributed to an initial mathematical modeling
of the crushing force achievement rate. However, the models do not have the ability
to take into account the effect of ore particles on the crusher. Additionally, no research
regarding the mass of inertia cone crusher optimization has yet been published to our
knowledge. Cleary et al. [6] and Andre et al. [7] studied the effect of feed properties
(material strength, particle friction) and machine controls (CSS, speed) on cone crusher
performances (particle distribution, throughput, power) based on the particle replacement
model (PRM) in the software EDEM. Chen et al. [8] took the throughput and crushing force
as the multi-objective optimization, and studied the effect of the parameters of the crushing
chamber and speed on gyratory crusher performances based on the bonded particle model
(BPM). These above studies can provide the main ways to optimize the variables (operation,
chamber shape and feed properties). However, these simulation methods do not have
the ability to take into account the effect of inertia parameters (fixed cone and moving
cone mass) on operation performance (crushing force, amplitude and average power)
for an inertia cone crusher. Cheng et al. [9] provided a powerful method whereby the
coupling multi-body dynamics (MBD) [10,11] and discrete element method (DEM) [12,13]
simulate the crushing behavior response for an inertia cone crusher. Currently no research
using coupled MBD–DEM dynamic models for an inertia cone crusher has been published,
except for our publication [9]. Barrios et al. [14] and Chung et al. [15], regarding coupled
MBD–DEM models, provided useful attempts for high-pressure grinding rolls (HPGR).
Furthermore, at the same industrial scale, the mass of the inertia cone crusher is much
heavier than other cone crushers, such as hydraulic crushers and spring crushers. The
reason is that the eccentric vibrator leads to the violent vibration of the crusher and the
increase of energy consumption. Znamenskll et al. [16], regarding the dynamic balance
of an inertia cone crusher, put forward a preliminary design. However, the dynamic
balance design neither completely counteracts the excitation force nor utilizes the kinetic
energy of the balancer. Ren et al. [17] utilized the kinetic energy of the balancer in the
design. Nevertheless, the dynamic balancing mechanism is unstable and cannot completely
counteract the excitation force, so it is difficult to widely use it in industry.

As such, this paper takes the process of crushing steel slag as the analysis object, and
the crushing force achievement rate, amplitude of the fixed cone and average power of the
drive shaft are explored by the MBD–DEM coupling method. Moreover, we propose an
approach in which the use of response surface methodology (RSM) and analysis of variance
(ANOVA) optimizes the fixed and moving cone mass to achieve the optimum operation
performance. The results show that the operation performance is greatly improved by
increasing the fixed cone mass, which increases the manufacturing cost. Finally, in order
to reduce the manufacturing cost for manufacturers and the running cost for users, a
more effective dynamic balancing mechanism of inertia cone crushers is achieved. Such
a mechanism not only utilizes the kinetic energy of the balancer, but also minimizes the
mass of the fixed cone and the moving cone.

2. The Coupled Model for Inertia Cone Crusher
2.1. Inertia Cone Crusher Theory

The inertia cone crusher consists of a main frame, a concave, a mantle, rubber ab-
sorbers, a main shaft and an eccentric vibrator. The ore particles fall from the feed chute to
the crushing chamber; then, they are squeezed by the mantle and other particles. Finally,
the particles are discharged from the discharge zone. Figure 1 shows a vertical cross-section
and a simplified MBD model for an inertia cone crusher, where α and θ are the mantle
angle and the nutation angle, respectively. l0, l1 and l2 are the axis of the crusher, concave
and mantle, respectively. B1 is the fixed cone, which is fixed to the main frame. B2 is the
moving cone, which is fixed to the main shaft. O1 is a spherical joint; O2 is a spherical
joint between B1 and the globe bearing (B4); O3 is a cylindrical joint between B2 and the
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eccentric vibrator (B3); O4 is a planar joint between B3 and B4; O5 is a ball-pin joint between
B3 and the connecting shaft (B5); O6 is a universal joint between B5 and the drive shaft (B6);
O7 is a revolute joint between B6 and the ground (B0).

Figure 1. Schematics of the inertia cone crusher: (a) vertical cross-section and (b) simplified multi-body dynamic (MBD)
with bonded particles.

2.2. Crusher Dynamic Model Using MBD

The generalized coordinate qi of the rigid body Bi is shown in Equation (1).

qi =
(

ri
T, Λi

T
)T

= (xi, yi, zi, ψi, θi, ϕi)
T, i = 1, . . . . . , 6 (1)

where ri is the matrix of independent position variables (xi, yi, zi), and Λi is the matrix
of independent angle variables (ψi, θi, ϕi). According to [18], the kinetic formula for Bi
without any joint equations is derived in Equation (2).

Mi
..
qi = Qi (2)

where
..
qi is the generalized acceleration of qi, and Mi and Qi can be expressed, respectively:

Mi =

[
miE3×3 03×3

03×3 J(i)i Di

]
, Qi =

[
Fia + Fi f + Fig + Fic + Fip

−
(

J(i)i

.
Di +

(
Di

.
Λ
)

J(i)i Di

) .
Λi + T(i)

ia + T(i)
i f + T(i)

ic + T(i)
ip

]
(3)

where mi and Ji are the mass and the inertia matrix for Bi, respectively. E and 0 denote the
identity and null matrix, respectively. Fia and Tia denote the equivalent absorber forces and
torques, Fif and Tif denote the joint friction forces and torques, Fig is the gravity of Bi, Fip
and Tip denote the equivalent particle forces and torques, and Di is the coordinate matrix.
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The formula of MBD for the inertia cone crusher without any joints can be shown as:
M

..
q = Q

M = diag(M1, M2, M3, M4, M5, M6)

Q =
(

QT
1 , QT

2 , QT
3 , QT

4 , QT
5 , QT

6 )
T

(4)

where
..
q is the generalized accelerations of the multi-body system. The joint Oj (j = 1,2,

. . . ,7) equations and driving motion constraints for inertia cone crusher are expressed as:

Φ(q, t) = 0, Φq =
∂Φ

∂q
=

[
∂Φi
∂qj

]
; i = 1, . . . . . , 26, j = 1, . . . . . , 7 (5)

According to Equation (5), the velocity and acceleration equation can be expressed as:{
Φq

.
q = −Φt

Φq
..
q = ζ

, ζ = −
[(

Φq
.
q
)

q
.
q + 2Φqt

.
q + Φtt

]
(6)

whereΦq and Φt is the Jacobian matrix for Φ(q,t). According to the Lagrange multiplier λi
(i = 1, 2, . . . , 26), the formula of MBD for inertia cone crusher is derived in terms of the
Lagrange multiplier matrix λ and generalized coordinate matrix q, and can be shown as:[

M ΦT
q

Φq 0

][ ..
q
λ

]
=

[
Q
ζ

]
, λ = (λ1, λ2, · · · , λ26)

T (7)

2.3. DEM Modeling of Slag Particles Using BPM
2.3.1. BPM Theory

The BPM consists of bonding a packed distribution of particles, forming a breakage
cluster [19]. As shown in Figure 2, a parallel bonding beam is created between each particle
in contact, so the forces (torques) on the bonding beam are calculated from Equation (8) and
Equation (9). BPM has been used in simulating the crushing behavior of particles [13,20,21].

δFbn = −kbn A∆Un, δFbt = −kbt A∆Ut, δTbn = −kbn J∆Θn, δTbt = −kbt
J
2

∆Θt (8)

where Fbn, Tbn, Fbt and Tbt denote the bond normal force, normal torque, bond tangential-
directed force and torque, respectively. kbn and kbt are the normal and tangential stiffness
per unit area. A and J are the area of the parallel bond cross-section and polar moment of
inertia, respectively.

∆Un = vnδt , ∆Ut = vtδt, A = πR2
b, ∆Θn = ωnδt, ∆Θt = ωtδt, J =

1
2
πR4

b (9)

where Rb, Vn, V t, ωn, ωt, and δt are parallel bond radius, normal velocity, tangential
velocity, normal angular velocity, tangential angular velocity and time step, respectively.

The maximum normal and tangential stress are calculated according to Equation (10).

σmax
b =

∣∣∣∣ |Fbn|
A

+
2|Tbt|

J
Rb

∣∣∣∣
max

< σbc, τmax
b =

∣∣∣∣ |Fbt|
A

+
|Tbn|

J
Rb

∣∣∣∣
max

< τbc (10)

where σbc and τbc are critical normal and critical shear strength, respectively. If the max-
imum stress exceeds the critical strength, the bond beam will disappear. The particle
interaction depends on the Hertz–Mindlin contact model [22].
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Figure 2. Schematic illustration of particle bond: (a) before a parallel bonding beam formation and
after breakage two particles interact according to the Hertz–Mindlin contact model, and (b) two
particles bonded together with a parallel beam according to the bonded particle model (BPM).

2.3.2. BPM Calibration

The feed material is a steel slag which has a complex shape and size distribution in
our industrial experiments of the inertia cone crusher. The feed particle size range is 50 mm
to 70 mm, and a 3D model of slag is shown in Figure 3. When using BPM for simulating the
crushing behavior of steel slag, the key is to make sure that the relevant DEM parameters
of the particle are calibrated. Therefore, the Hertz–Mindlin contact model parameters were
determined by the uniaxial compression deformation and repose angle test, as shown in
Figure 4. Table 1 shows the contact parameters.

Figure 3. The schematic illustration of the slag particle using DEM: (a) BPM of the slag particle is formed by the EDEM
software, and (b) a realistic slag shape is used creating the packing structure of a normal distribution.

Figure 4. The photo of a steel slag subjected to (a) the uniaxial deformation and (b) the repose angle test.
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Table 1. Simulation parameters for MBD–DEM.

Parameter Value Unit

DEM material properties
Rock Steel

Solid density 4700 7800 (kg/m3)
Shear stiffness 1.48·109 7.0·1010 (Pa)
Poisson’s ratio 0.38 0.3

Rock_Rock Rock_Steel
Coefficient of static friction 0.56 0.7

Coefficient of restitution 0.15 0.25
Coefficient of rolling

friction 0.01 0.01

BPM parameters
Normal stiffness 556 (GPa/m)
Shear stiffness 250 (GPa/m)

Normal critical stress 32 (MPa)
Shear critical stress 8.5 (MPa)
Bond disc radius 3.2 (mm)

Machine
Mantle cone angle 50 (deg)

Driving speed 550 (rpm)
Fixed cone mass 20,000 (kg)

Moving cone mass 5500 (kg)
Rubber absorber properties

Stiffness coefficient kx,ky,kz 350,350,970 (N/mm)
Damping coefficient

cx,cy,cz
20,20,40 (N·s/mm)

The BPM-relevant parameters were determined by the Brazilian test and simulation
experiment, as shown in Figure 5. The calibration method had been described in detail in
our publication [13]. By comparing the tensile strength simulation with the experiment
values (10.6 MPa), we directly provide the BPM parameters that are shown in Table 1.

Figure 5. The photo of a steel slag subjected to (a) Brazilian test and (b) BPM calibration simulation.

2.4. The Solution of the Coupled MBD-DEM Model in Software

Combining with Sections 2.1–2.3, Figure 6 shows the simulation flowchart of the
inertia cone crusher using the MBD–DEM coupling method. The MBD of the geometries
is calculated by RecurDyn software, and the DEM of the particles is calculated using
EDEM. As slag clusters flow downward between the mantle and the concave, the size
becomes successively smaller in the software EDEM, as shown in Figure 7. The operative
performances (the operative crushing force, amplitude and average power) for the inertia
cone crusher are obtained by the software RecurDyn.
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Figure 6. Flowchart of a coupled MBD–DEM model.

Figure 7. Series of images from MBD–DEM simulations showing the bond cluster representations.

3. Analysis of the Inertia Cone Crusher Performance
3.1. Influencing Factors and Performance Goals

Basing on Section 2 and the previous publications [3–5], the fixed cone mass (FM) m1
and the moving cone mass (MM) m2 are taken as the influencing factors. The operative
crushing force Fo is less than the theoretical crushing force Ft under normal operating
conditions. The theoretical crushing force of the inertia cone crusher is provided by the
moving cone when the fixed cone is not moving. As such, the crushing force achievement
rate ηf is taken as one of the performance goals, according to Equation (11).

ηf = 100%× Fo/Ft (11)
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when the inertia cone crusher works, the fixed cone will move horizontally and deflect
around a rotation point. As such, the amplitude of the rotation point displacement and the
deflection angle can give a good indication for the vibration characteristics of the crusher.
The theoretical and experimental results indicate that the amplitude As and deflection
angle γd have a significant positive correlation [22,23]. Ignoring the deflection angle γd,
the amplitude As is taken as a performance goal. Besides this, the two mass variables have
a great impact on the energy consumption of a crusher, and the average power draw of
drive shaft Pa is taken as a performance goal. Based on the response surface methodology
(RSM) [24], the influence of the two mass variables on the performance goals is modeled
with the SPSS software. The corresponding predictive regression models can be expressed
as Equation (12), and the simulated experiment scheme is listed in Appendix A, Table A1.

ηf = fη(m1, m2)
As = fA(m1, m2)
Pa = fP(m1, m2)

;
10 ≤ m1 ≤ 45
3 ≤ m2 ≤ 6.5

(12)

where f η , fA, and f P are the predictive models of crushing force achievement rate, ampli-
tude and average power, respectively. Because the driving speed is determined by the
productivity, the driving speed of the crusher (model: GYP1200) should not exceed 550
rpm. As such, the driving speed is set to 550 rpm in this paper.

3.2. Crushing Force Achievement Rate Analysis

The influence of FM and MM on the crushing force achievement rate, and the predic-
tion regression curves are shown in Figure 8. The theoretical force Ft is only determined
by MM, and Figure 8a shows the influence of MM on the theoretical force Ft. Figure 8b
shows the influence of FM on the crushing force achievement rate under three kinds of
MM (3.5 t, 4.5 t, and 5.9 t), which indicates that the crushing force achievement rate ηf
increases significantly with increasing FM. Figure 8c shows the influence of MM on ηf
under three kinds of FM (15 t, 25 t, and 39 t), which indicates that ηf gradually decreases
with increasing MM. At the 0.05 significance level, we can find that the influence of FM
and MM on ηf is significant using the quadratic regression function.

Figure 8. Regression curves of the GYP inertia cone crusher for (a) the relationship between the theoretical force and MM,
(b) the relationship between the force achievement rate and FM, (c) the relationship between the force achievement rate and
MM, and (d) the influence of the interaction between FM and MM on the force achievement rate using response surface
methodology (RSM).
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Figure 8d shows the influence of the interaction between FM and MM on ηf using
the response surface methodology (RSM), and the corresponding results of ANOVA for
predictive regression models are shown in Table 2. The prediction regression model of the
crushing force achievement rate is expressed as:

ηf = fη(m1, m2)= 82.196 + 0.628m1−0.011m2
1−0.557m2

2+0.083m1m2; 10 ≤ m1 ≤ 45, 3 ≤ m2 ≤ 6.5 (13)

Table 2. The results of ANOVA for predictive regression model.

Model Degree Freedom Mean Square F Value p Value Determination
Coefficient

fη
Regression 4 363.167 767.995 <0.01 0.993

Error 44 0.473
Total 48

fA
Regression 4 75.010 9625.911 <0.01 0.999

Error 44 0.008
Total 48

fP
Regression 4 27,049.462 954.059 <0.01 0.989

Error 44 28.352
Total 48

The corresponding ANOVA for predictive regression coefficients is shown in Table A2.
At the 0.05 significance level, we can find that the linear term of MM has the weakest impact
on ηf, and the p-value is more than 0.05. As such, the linear term of MM is ignored in the
prediction regression model of crushing force achievement rate. As FM increases or MM
decreases, ηf can increase. This is because the increase in FM or the decreases in MM will
decrease the amplitude of the fixed cone, and increase the eccentric distance of the moving
cone. However, when ηf is over 90%, the increase in ηf is very small with increasing FM,
and for the different moving cone mass, the fixed cone mass required to reach 90% (ηf) is
different.

3.3. Amplitude Analysis

The influence of FM and MM on the amplitude of the fixed cone, and the prediction
regression curves, are shown in Figure 9. Figure 9a shows the influence of FM on the
amplitude under three kinds of MM (3.5 t, 4.5 t, and 5.9 t), which indicates that the
amplitude As decreases with increasing FM. Figure 9b shows the influence of MM on the
amplitude under three kinds of FW (15 t, 25 t, and 39 t), which indicates that the amplitude
As increases with increasing MM. Figure 9c shows the influence of the interaction between
FM and MM on the crushing force achievement rate ηf using RSM, and Table 3 indicates
that the prediction model of As has a good fitness using the quadratic regression function
with the 0.01 significance level. The prediction regression model is shown in Equation (14).

As = fA(m1, m2)= 3.708 + 2.162m2−0.197m1+0.003m2
1−0.039m1m2; 10 ≤ m1 ≤ 45, 3 ≤ m2 ≤ 6.5 (14)

It can be found that the quadratic term of MM has the weakest impact on amplitude,
and the p-value is more than 0.01 from Table A2. So, the quadratic term of MM is ignored
in the predictive regression model of amplitude. As FM increases, the amplitude As can
decrease, and the fixed cone will be more difficult to move for a constant theoretical
crushing force. Comparing Figures 8d and 9c, it can be found that when the ηf is over
90%, the decrease in amplitude As is very small with the increasing FM. However, with the
change of MM, the amplitude As will change significantly for a constant FM.
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Figure 9. Amplitude regression curves of the GYP inertia cone crusher for (a) the relationship between amplitude and FM,
(b) the relationship between amplitude and MM, and (c) the influence of the interaction between FM and MM on amplitude
using RSM.

Table 3. The summary of experimental averaged results.

Experiment Case
Amplitude

of First Point
(mm)

Amplitude
of Second

Point (mm)

Amplitude
of Rotation
Point (mm)

Deflection
Angle (mm)

450 rpm Balance 0.18 0.55 0.04 0.18
Without 0.49 2.11 0.22 0.63

650 rpm Balance 0.21 0.66 0.05 0.24
Without 0.55 2.47 0.25 0.67

3.4. Average Power Analysis

The influence of FM and MM on the average power draw, and the prediction regression
curves, are shown in Figure 10. Figure 10a shows the influence of FM on the average
power under three kinds of MM (3.5 t, 4.5 t, and 5.9 t), which indicates that the average
power Pa decreases with increasing FM. Figure 10b shows the influence of MM on Pa
under three kinds of FM (15 t, 25 t, and 39 t), which indicates that the average power Pa
increases significantly with increasing MM. Figure 10c shows the influence of the interaction
between FM and MM on Pa using RSM, and Table 3 indicates that the prediction model of
average power Pa has a good fitness using the quadratic regression function with the 0.05
significance level. The prediction regression model is shown in Equation (15). Table A2
shows that the quadratic term of MM has the weakest impact on the average power Pa,
and the p-value is more than 0.05.

As = fA(m1, m2)= −56.084 + 64.107m2−1.679m1+0.068m2
1−0.979m1m2; 10 ≤ m1 ≤ 45, 3 ≤ m2 ≤ 6.5 (15)
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Figure 10. Average power regression curve of the GYP inertia cone crusher for (a) the relationship between the average
power and FM, (b) the relationship between the average power and MM, and (c) the influence of the interaction between
FM and MM on the average power using RSM.

Comparing Figures 9 and 10, we can see that as FM and MM increase, the variation in
average power Pa is similar to that of the amplitude As. The reason for this is that as As
increases, the energy consumption of the rubber absorbers can increase, and the kinetic
energy of the steel slag particles also increases, resulting in the increase in friction heat
energy.

3.5. Optimization Results

Combining with the above sections, it can be seen that when the crushing force
achievement rate ηf is over 90%, the decrease in amplitude As and average power Pa are
very small with increasing FM. Table 1 shows the FM is 20 t and the MM is 5.5 t for the
industrial inertia cone crusher (model: GYP1200), and the operative crushing force Fo is
697.92 kN from the simulated experiment (Table A1). If the prediction values of Fo and ηf
are 697.92 kN and 90%, the MM is set to 4.95 t (Figure 8a). According to Equation (13), the
optimized fixed cone mass is 30.54 t.

According to Equations (14) and (15), the optimized amplitude As and average power
Pa are 5.29 mm and 125.38 kW, respectively. Compared with the simulated experiment
(Table A1), it can be seen that the optimized amplitude, average power and MM are
decreased by 37.1%, 33.1% and 10.2%, respectively. Finally, we can see that the decrease
in amplitude can effectively decrease the average power, and increase the crushing force
achievement rate. However, the optimized FM is increased by 52.7%, so the optimized
mass of the inertia cone crusher is about three times as much as the hydraulic cone crusher
or spring crusher for the same industrial scale, which increases the manufacturing cost. In
this paper, we design a more effective dynamic balancing mechanism for the inertia cone
crusher, which decreases the amplitude and minimizes the mass of the inertia cone crusher.
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4. Design of Dynamic Balancing Mechanism
4.1. Mechanics Principle of Dynamic Balancing

The total crushing force of the single exciter GYP-type inertia cone crusher is provided
by the eccentric vibrator and the mantle, as shown in Equation (16):

Fcr = Fice + Fucve (16)

where Fcr is the total crushing force, Fice is the equivalent centrifugal force generated by
the mantle, and Fucve is the equivalent exciting force generated by the eccentric vibrator.

The inertia cone crusher with the dynamic balancing mechanism is shown in
Figure 11a. The dynamic balancing mechanism is mainly composed of a balancer and
feedback mechanism. A balancer is added to the GYP-type inertia cone crusher, which can
similarly rotate on the opposite side of the vibration exciter. In this way, the vibration of
the crusher can be minimized to decrease the mass of the fixed and moving cone. Through
a feedback mechanism to increase the crushing force, the kinetic energy of the balancer can
be utilized efficiently.

Figure 11. The dynamic balancing inertia cone crusher: (a) vertical cross-section and (b) mechanical analysis of main
mechanism.

The planar layout of forces acting on the mantle cone is shown in Figure 11b. Fic, Fucv
and Fbec are the centrifugal forces generated by the mantle, eccentric vibrator and balancer,
respectively.

Fic = micω2ei; Fucv = mucvω2eu; Fbec = mbecω2eb (17)

where mic, mucv and mbec are the mass of the mantle, eccentric vibrator and balancer,
respectively; eic, eucv and ebec are the eccentric distance of the mantle, eccentric vibrator
and balancer, respectively; ω is the drive shaft speed. The value of Fbec should conform to
Equation (18).

Fuic = (mucv + mic)ω
2eui = Fbec (18)
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where Fuic is the equivalent force of the centrifugal force generated by the moving cone,
and eui is the equivalent eccentric distance of the moving cone. Based on the lever principle,
the vector force Fbeci can be expressed as

Fcr + Fbeci + Fuic + R1 + Gc = 0 (19)

where Fbeci is the force acting on the moving cone by the feedback mechanism, R1 is the
constraint reaction of spherical joint O1, and Gc is the gravity of the moving cone.

Compared with Equations (16) and (19), it can be seen that the inertia cone crusher
with the dynamic balancing mechanism adds the feedback force compared with the single
exciter crusher. Therefore, the dynamic balancing mechanism can obviously decrease the
amplitude of the fixed cone and increase the crushing force. In this way, the mass of the
fixed and moving cone is minimized, and the manufacturing cost decreases significantly.

4.2. Elementary Prototype of Laboratory Experiments
4.2.1. Experimental Devices

Corresponding experiments are validated to verify the dynamic balancing mechanism.
However, it is an impossible task for us to manufacture an industrial-scale inertia cone
crusher with the dynamic balancing mechanism. In this paper, a laboratory prototype with
the same dynamic balancing mechanism is developed. The amplitude, power draw and
product size distribution of the laboratory crusher can be collected by some experimental
devices, and the results are compared with the crusher without the dynamic balancing
mechanism. The crusher without the dynamic balance can provide the same theoretical
crushing force as the dynamic balance prototype. The experimental devices and dynamic
signal acquisition systems are shown in Figure 12. The feed material is a 7.5–10 mm white
marble, and the amplitude, power draw and product size distribution for the two driving
speed levels (450 and 650 rpm) are compared in the following sections.

Figure 12. The photo of laboratory prototype experiments for (a) experimental devices, (b) signal acquisition systems and
(c) mechanical analysis of main mechanism.

4.2.2. Amplitudes of Test Points

The displacements of two test point are sampled by displacement sensors in
Figure 12a. The experimental data of two test points in the x direction are displayed
for the drive speeds of 450 rpm and 650 rpm, as shown in Figure 13. In Table 3, the test data
from the balancing crusher and without balancing mechanism are summarized. The results
show that the amplitude and deflection angle of the balancing crusher are decreased by
80.6% and 64.2%, compared with the crusher without a balancing mechanism. Therefore,
the good vibration reduction performance of the dynamic balancing mechanism is verified
by experimental comparison.
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Figure 13. Comparison of the displacements between balancing crusher and without balancing mechanism for (a) 450 rpm
case, and (b) 650 rpm case.

4.2.3. Power draw and Product Size Distribution

The input power of the motor is sampled by an electrical parameter test instrument
in Figure 12b. The experimental data are displayed for the drive speeds of 450 rpm
and 650 rpm, as shown in Figure 14. Figure 14 shows that the average power of the
balancing crusher is decreased by 20.9%, compared with the crusher without a balancing
mechanism. Therefore, the dynamic balancing mechanism can effectively reduce the energy
consumption and running cost of the inertia cone crusher.

Figure 14. Comparison of the input powers between balancing crusher and without balancing mechanism (a) 450 rpm case,
and (b) 650 rpm case.

The product size distribution is collected by square sieves in Figure 12c. The exper-
imental data are displayed for the drive speeds of 450 rpm and 650 rpm, as shown in
Figure 15. The product size distribution displays a relatively good correspondence between
the balancing mechanism and without the balance. It can be seen that the mechanism
realizes the purpose of utilizing the inertia force and kinetic energy of the balancer.
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Figure 15. Comparison of the product size distribution between balancing mechanism and without balance (a) 450 rpm
case, and (b) 650 rpm case.

4.3. Optimization Verification of Industrial-Scale Inertia Cone Crusher

To verify the optimization performances and two mass variables (FM and MM), the
simulated experiments using MBD–DEM coupling are performed on the industrial-scale
inertia cone crusher with the dynamic balancing mechanism. The fixed cone mass and the
moving cone mass (including the dynamic balancing mechanism mass) are 6.44 t and 3.82 t,
respectively. Compared with Section 3.4, the optimized crushing force achievement rate
is over 95% using with the dynamic balancing mechanism. Furthermore, the optimized
amplitude and average power are decreased by 33.1% and 10.2%, respectively, as shown in
Figure 16.

Figure 16. Comparison of the performance of industrial-scale inertia cone crusher between balance and without dynamic
balance for (a) amplitude case, (b) power draw case, and (c) product size distribution case.

In Figure 16c shows the product size distributions for the case balancing mechanism
and the case without are compared. It can be seen that the balance case is slightly finer
than the without-balance case. Due to the amplitude, the average power and product size
distribution have been improved, and the good crushing performance of the dynamic bal-
ancing mechanism is verified in the industrial-scale inertia cone crusher. Furthermore, the
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fixed cone mass and the moving cone mass are decreased by 78.9% and 22.8%, respectively.
The dynamic balancing mechanism significantly reduces the manufacturing cost.

5. Conclusions

In the inertia cone crusher design, an inevitable problem concerns how to determine
the two mass variables (fixed cone mass and moving cone mass), which can affect the
crusher dynamic performances. Firstly, the crushing process of the inertia cone crusher
is simulated using the MBD–DEM coupling. Predictive regression models, in which the
two mass variables are taken as influencing factors, and the crushing force achievement
rate, amplitude and average power are taken as the performance goals, are explored by
the design of simulation experiments. In addition, it is found that when the achievement
rate ηf is over 90%, the decrease in amplitude As and average power Pa, and the increase
in ηf, are very small with increasing FM. Due to the optimized values of ηf and FM being
90% and 30.54 t, the optimized amplitude As, average power Pa, and MM are decreased by
37.1%, 33.1% and 10.2%, respectively, compared with the original crusher.

The optimized FM is increased by 52.7%, which increases the manufacturing cost.
In this paper, a new and more cost-effective dynamic balancing mechanism of inertia
cone crusher is achieved in order to reduce FM. The vibration reduction and inertia force
utilization of the dynamic balancing mechanism are verified by the elementary prototype of
the laboratory experiment. Moreover, the effect of FM and MM reduction is verified by the
MBD–DEM simulation of the industrial inertia cone crusher. Compared with the without-
balance case (Section 3.4), the amplitude, average power and product size distribution
have been improved, and the FM and MM are decreased by 78.9% and 22.8%. As such,
from a manufacturer’s perspective, the manufacturing cost decreases significantly. In order
to reduce the running costs for users, the future work will prioritize manually using the
design of simulation experiments around the optimum drive shaft speed, the eccentric
distance of eccentric vibrator and the discharge gap.
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Appendix A

Table A1. Simulated experiment scheme of two mass variables.

Simulation
Run FM—m1 (t) MM—m2 (t) Achievement

Rate—ηf (%)
Operative
Force—Fo

(kN)

Amplitude—
As

(mm)

Deflection
Angle—γd

(deg)

Average
Power—Pa

(kW)

1 11 3.1 85.79 418.43 7.09 0.213 105.39
2 11 3.5 82.96 455.65 7.85 0.239 118.06
3 11 4.0 81.97 515.24 8.75 0.269 154.19
4 11 4.5 80.04 562.98 9.63 0.301 171.62
5 11 5.0 79.38 623.81 10.59 0.329 199.30
6 11 5.5 75.76 653.85 11.36 0.358 231.51
7 11 5.9 73.83 697.79 11.95 0.383 248.23
8 15 3.1 88.75 432.20 6.31 0.177 86.16
9 15 3.5 86.36 472.11 7.03 0.198 100.78
10 15 4.0 85.34 536.38 7.78 0.225 133.59
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Table A1. Cont.

Simulation
Run FM—m1 (t) MM—m2 (t) Achievement

Rate—ηf (%)
Operative
Force—Fo

(kN)

Amplitude—
As

(mm)

Deflection
Angle—γd

(deg)

Average
Power—Pa

(kW)

11 15 4.5 84.35 593.22 8.64 0.254 148.01
12 15 5.0 81.94 643.82 9.39 0.280 168.72
13 15 5.5 78.48 666.15 10.16 0.304 207.90
14 15 5.9 77.67 723.95 10.77 0.326 229.78
15 20 3.1 90.87 443.19 5.23 0.145 79.47
16 20 3.5 89.18 491.92 5.86 0.164 88.69
17 20 4.0 88.13 553.81 6.55 0.186 121.53
18 20 4.5 87.67 616.62 7.22 0.213 135.34
19 20 5.0 85.67 673.25 7.91 0.231 149.18
20 20 5.5 81.87 697.92 8.41 0.254 187.17
21 20 5.9 80.71 743.23 9.08 0.272 202.72
22 25 3.1 92.94 452.84 4.21 0.121 73.14
23 25 3.5 91.15 502.39 4.76 0.135 76.02
24 25 4.0 90.29 570.54 5.32 0.155 105.89
25 25 4.5 89.87 643.46 5.99 0.176 122.67
26 25 5.0 88.31 694.31 6.45 0.193 138.81
27 25 5.5 84.91 726.74 7.05 0.231 165.17
28 25 5.9 87.01 779.00 7.48 0.229 184.56
29 30 3.1 94.36 459.72 3.47 0.102 68.53
30 30 3.5 92.97 510.62 3.91 0.115 72.56
31 30 4.0 92.12 578.33 4.40 0.131 93.88
32 30 4.5 91.48 645.52 4.81 0.149 113.45
33 30 5.0 89.96 706.50 5.35 0.163 129.62
34 30 5.5 87.39 754.20 5.83 0.180 149.31
35 30 5.9 86.84 799.67 6.21 0.193 155.07
36 35 3.1 95.48 465.18 2.83 0.087 64.54
37 35 3.5 93.80 515.13 3.08 0.094 69.68
38 35 4.0 92.91 585.44 3.59 0.113 82.87
39 35 4.5 92.96 653.76 3.98 0.128 109.54
40 35 5.0 91.02 716.72 4.46 0.141 121.50
41 35 5.5 91.04 785.69 4.66 0.155 134.31
42 35 5.9 89.98 827.12 4.91 0.168 136.34
43 39 3.1 96.68 470.81 2.47 0.079 62.20
44 39 3.5 94.36 520.17 2.77 0.880 67.96
45 39 4.0 94.13 591.51 3.09 0.100 78.30
46 39 4.5 93.44 657.93 3.39 0.114 105.51
47 39 5.0 92.38 725.88 3.77 0.125 114.60
48 39 5.5 92.08 802.48 3.91 0.138 128.06
49 39 5.9 90.88 836.75 4.43 0.149 129.78

Table A2. The results of ANOVA for prediction regression coefficients.

Model Regression
Coefficient—B

Standardization
Coefficient—Be t Value p Value Confidence Interval for B

Lower Upper

f η

FM 0.628 1.097 7.718 <0.01 0.464 0.792
MM −0.400 −1.943 0.59

FM·FM −0.011 −0.937 −8.080 <0.01 −0.013 −0.08
MM·MM −0.557 −0.878 −17.980 <0.01 −0.619 −0.494
FM·MM 0.083 0.759 7.940 <0.01 0.062 0.104
Constant 82.196 82.400 <0.01 80.185 84.206

f A

FM −0.197 −0.762 −18.703 <0.01 −0.225 −0.169
MM 2.162 0.836 58.740 <0.01 2.063 2.261

FM·FM 0.003 0.583 17.664 <0.01 0.0025 0.0034
MM·MM −0.131 −2.331 0.025
FM·MM −0.039 −0.799 −28.692 <0.01 −0.043 −0.036
Constant 3.708 19.341 <0.01 3.192 4.224

f P

FM −1.679 −0.340 −2.641 0.011 −2.960 −0.398
MM 64.107 1.299 28.872 <0.01 59.632 68.582

FM·FM 0.068 0.697 6.689 <0.01 0.048 0.088
MM·MM 0.174 0.935 0.355
FM·MM −0.979 −1.039 −11.804 <0.01 −1.146 −0.812
Constant −56.084 −4.850 <0.01 −79.391 −32.777
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