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Abstract: Selecting internal hyperparameters, which can be set by the automatic search algorithm,
is important to improve the generalization performance of machine learning models. In this study,
the geological, remote sensing and geochemical data of the Lalingzaohuo area in Qinghai province
were researched. A multi-source metallogenic information spatial data set was constructed by
calculating the Youden index for selecting potential evidence layers. The model for mapping mineral
prospectivity of the study area was established by combining two swarm intelligence optimization
algorithms, namely the bat algorithm (BA) and the firefly algorithm (FA), with different machine
learning models. The receiver operating characteristic (ROC) and prediction-area (P-A) curves were
used for performance evaluation and showed that the two algorithms had an obvious optimization
effect. The BA and FA differentiated in improving multilayer perceptron (MLP), AdaBoost and
one-class support vector machine (OCSVM) models; thus, there was no optimization algorithm that
was consistently superior to the other. However, the accuracy of the machine learning models was
significantly enhanced after optimizing the hyperparameters. The area under curve (AUC) values of
the ROC curve of the optimized machine learning models were all higher than 0.8, indicating that the
hyperparameter optimization calculation was effective. In terms of individual model improvement,
the accuracy of the FA-AdaBoost model was improved the most significantly, with the AUC value
increasing from 0.8173 to 0.9597 and the prediction/area (P/A) value increasing from 3.156 to 10.765,
where the mineral targets predicted by the model occupied 8.63% of the study area and contained
92.86% of the known mineral deposits. The targets predicted by the improved machine learning
models are consistent with the metallogenic geological characteristics, indicating that the swarm
intelligence optimization algorithm combined with the machine learning model is an efficient method
for mineral prospectivity mapping.

Keywords: machine learning; bat algorithm; firefly algorithm; Youden index; P-A curve; ROC curve
analysis; mineral prospectivity mapping

1. Introduction

In the information era, mineral resources information is becoming increasingly abun-
dant. It is significant enough to construct accurate and efficient mineral prediction models
and carry out quantitative mineral prospectivity mapping by data mining and artificial
intelligence to exploit mineral resources. Data-driven models are commonly used in min-
eral prospectivity mapping, and specific mathematical models are used to quantitatively
describe the statistics of potential evidence or spatial distribution to predict mineral tar-
gets [1–4]. With the rapid development of machine learning theory and technology, the
toolset based on the data-driven models has been increasingly enriched. Machine learn-
ing technology can adaptively simulate the relationship between input and output and
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is effective in solving nonlinear mineral resource prediction. According to the expected
results of the algorithm, machine learning can be divided into supervised learning [5], un-
supervised learning [6,7], semi-supervised learning [8–10], and reinforcement learning [11].
Supervised learning uses known training samples to adjust the hyperparameters of the
classification or regression to achieve the desired performance, including artificial neural
network (ANN) [12,13], decision tree [14], adaptive neural fuzzy system [15], constrained
boltzmann machine [16], support vector machine (SVM) [17–20], random forest (RF) [21,22],
extreme learning machine (ELM) [23], and MaxEnt models [24].

When using a machine learning model to predict mineral targets, it is important to
effectively determine the internal key hyperparameters of models, such as the network
weight of ANN, fault tolerance penalty factor and kernel hyperparameter of SVM, and
the number of growing trees of RF. In the practical application of the machine learning
model, it is very difficult to identify the optimal value of model hyperparameters effectively.
Some previous studies used the grid search or random optimization approaches to find
the optimal value in predefined hyperparameter values, but frequently failed to find the
global optimal hyperparameter, which was not likely to be contained in the predefined hy-
perparameter value [25,26]. In recent years, many optimization algorithms have been put
forward and gradually used to optimize the internal hyperparameters of the machine learn-
ing model, for example, genetic algorithm (GA) [27,28], and particle swarm optimization
(PSO) [29–31]. However, these classical optimization algorithms are sensitive to the initial
hyperparameters setting, making it easy to fall into local optimal solutions and causing the
convergence rate of the algorithm to slow down later. In addition, bat algorithm (BA) [32],
firefly algorithm (FA) [33], ant colony algorithm (ACA) [34] and other emerging swarm
intelligence algorithms have also been widely used to balance the global and local search
ability of the algorithm and improve the model hyperparameter optimization performance.

In this study, multilayer perceptron (MLP), one-class support vector machine (OCSVM),
and AdaBoost were applied to establish mineral prospectivity mapping models. In the
modeling process, the key hyperparameters of different machine learning models were
optimized by BA and FA. Meanwhile, the area under curve (AUC) value of the receiver op-
erating characteristic (ROC) curve was selected as the fitness value of the optimal objective
function, optimizing the number of hidden neurons of MLP and the fault tolerance penalty
coefficient and kernel hyperparameter of OCSVM, and updating learning times and the
weight reduction coefficient of the weak regression of AdaBoost. The AUC value of the
ROC curve and the prediction/area (P/A) value of the prediction-area (P-A) curve were
applied to evaluate the model performance by analyzing the prediction results of machine
learning methods before and after hyperparameter optimization. The main contribution of
this paper is the proposal that the performance of machine learning models combined with
BA or FA can be improved in mineral prospectivity mapping.

2. Methods (Machine Learning Models and Hyperparameter Optimization)
2.1. MLP Model

MLP is a network structure commonly used in artificial neural network (ANN), which
is a multilayer composite of perceptrons consisting of input layer, hidden layer, and output
layer. Besides the input layer, each node of the other layers is a neuron with a nonlinear
activation function [35,36]. The MLP network learning process consists of building a
feature vector and passing it to the hidden layer. The result is then calculated by weight
and activation function and passed to the next layer. In this process, continuous learning
and adjustment only occur during the training feedback signal. In the classification process,
it must be passed forward until reaching the output layer [37–39]. The output steps of MLP
are as follows [40]:

The weighted sum of the input was calculated by

sj =
n

∑
i=1

(
WijXi

)
− θj, j = 1, 2, . . . , h (1)
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where n is the number of input nodes, Wij is the connection weight from i-th node of the
input layer to j-th node of the hidden layer, θj is the bias of the j-th hidden node, and Xi is
the i-th input. The output information of each hidden node was calculated by

Sj = sigmoid
(
sj
)
=

1(
1 + exp

(
−sj
)) , j = 1, 2, . . . , h (2)

The output function of the hidden node and the final output information passing
activation function were calculated respectively by Equations (3) and (4):

ok =
h

∑
j=1

Wjk·Sj − θk, k = 1, 2, . . . , m (3)

Ok = sigmoid(ok) =
1

(1 + exp(−ok))
, k = 1, 2, . . . , m (4)

where Wjk is the connection weight from the j-th hidden node to the k-th output node
and θk is the bias of the k-th output node. Because the weight and bias affect the final
output value, it is necessary to find the best connection weight and bias to train the MLP
for equaling the actual output to the expected output as much as possible.

2.2. AdaBoost Model

In AdaBoost, the weights of the same samples are constantly updated, and the weak re-
gressions with different weights are gathered together to form a final strong regression [41].
The weight of each weak regression is calculated according to the predicting accuracy of
each sample in each training set and the overall predicting accuracy of the last training
set. In addition, the distribution weight of each sample is updated and the regression
results obtained from each training are weighted and summed as the final output result
of the strong regression [42,43]. The specific processes of the AdaBoost algorithm are as
follows [44,45]:

A weak regression algorithm and training set were defined by {(x1, y1), . . . (xN , yN)},
and the weight vector of the training data was initialized by

w1 =
[
w(1)

1 , w(1)
2 , · · ·w(1)

N

]T
, w(1)

i = 1/N, i = 1, 2, · · · , N (5)

The weak regression Gm(x) was obtained with the training set of weight vector w(m)

distribution, and the training error of each sample xi in the weak regression was calculated by

ei,m = |Gm(xi)− yi| (6)

The prediction error rate Em of the weak regression Gm(x) on the training data set was
calculated by

Em = p(ei,m > θ) =
N

∑
i=1

wmi I(ei,m > θ) (7)

where Em is the sum of weights of training samples when ei,m > θ, and θ was the predeter-
mined threshold.

The weight coefficient αm of Gm(x) was calculated by

αm =
1

2eEm
(8)

which represented the importance of Gm(x) in the final prediction.
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Finally, the following formula was used to update the weight distribution of each
sample in the training set for the next iteration.

wm+1,i =


wmi
Zm
× 1, ei(t) > θ

wmi
Zm

, ei(t) ≤ θ
(9)

By iteration, the weight of the training samples with larger error in the weak regression
Gm(x) increased, while that of the training samples with smaller error remains unchanged.
After weight conversion, the AdaBoost model focused on the training samples with low
predictive accuracy.

The linear combination was constructed by normalization factor Zm, calculated by

Zm =
N

∑
i=1

wmi (10)

The final strong regression was obtained by

G(x) =
M

∑
m=1

amGm(x) (11)

2.3. OCSVM Model

The OCSVM model, a special case of the SVM model, can process unidentified data. A
subset of the input space is estimated as the supporting set of the high dimension probability
distribution of the input data. The samples not belonging to the supporting set and
extracted from the high dimension probability distribution are identified as multivariate
abnormal samples [46]. OCSVM is used to determine the minimum region boundary, Γ,
making the decision function, f (x), satisfy the boundary conditions [47–49]. Γ contains
at least (1 – v)m normal samples, where m is the number of training samples and v is the
proportionality coefficient to control the abnormal samples in the training samples.

The algorithm first nonlinearly transforms the training sample from the input space
to the regenerative Hilbert space, Φ : Rd → H , where the dimension H is infinite, and
the function f (x) is easily determined. In this space, f (x) can map the inner product
function and compute the inner product of an infinite dimensional mapping space by
kernel functions in the input space, K : Rd × Rd → R .

K(x, y) = 〈Φ(x), Φ(y)〉H = exp
(
−‖x− y‖2/2σ2

)
(12)

The SVM model is in condition 〈w, Φ(xi)〉H ≥ b − ξi and ξi ≤ 0, i = 1, 2, . . . , m,
maximizing the following formula:[

1
2

w2
H

]
+

[
1

vm

m

∑
i=1

ξi − b

]
(13)

where ξi is a slack variable that can prevent the model from overfitting. This equation is a
conditional optimization, and the solution is as follows:

f (x) =
m

∑
i=1

αiK(xi, x)− b (14)

meanwhile,
m

∑
i=1

αiK
(
xi, xj

)
, j ∈ [1, 2, . . . , m] (15)

where αi is the Lagrange multiplier.
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2.4. Bat Algorithm

BA is a heuristic search algorithm, which optimizes the search process by simulating
the usage of sonar to detect prey and avoid obstacles. The fitness value is used to select the
location of bats, and the iterative search process, where the less feasible solution is replaced,
is simulated based on survival of the fittest. After initializing each hyperparameter, the
heuristic search starts from a random position, zi, in the d-dimension search space [50,51].
The bats search for prey at a fixed frequency, at different wavelengths and sounds. During
prey search, the bats automatically adjust the wavelength based on the distance to the prey.
In each iteration, (0 < t < T), the global search is conducted to update the flight speed
and space position of each bat. The space positions of each bat are used to calculate the
fitness value of the objective function, and the one corresponding to the maximum fitness
value is selected as the current optimal position [52–55]. The updating formula of speed
and space position is as follows:

ft = fmin + ( fmax − fmin) · β , vt+1
i = vt

i +
(
zt

i − z∗
)
· fi , zt+1

i = zt
i+vt+1

i (16)

where vt
i , vt+1

i represent the flight speed of the bat i at t and t + 1, respectively; zt
i , zt+1

i
represent the location of the bat i at t and t + 1, respectively; z∗ represents the global
optimal position; fi is the pulse frequency of the bat i; β is a random number between [0,1];
( fmin, fmax) is the range of pulse frequency. After each iteration, the intensity and frequency
of the sound are updated according to the attenuation coefficient of pulse loudness and the
increased coefficient of pulse frequency.

2.5. Firefly Algorithm

FA is a novel bionic swarm intelligent optimization algorithm proposed by Krishnanand
and Ghose in 2005 [56]. n fireflies with different initial brightness values are randomly
distributed. The brightness is related to the function value of the current position. The
better the position, the higher the brightness [57,58]. Each firefly looks for others that
are brighter through a line of sight (known as dynamic decision domain RDI), forming
a neighbor collection. The firefly with the highest relative brightness is chosen with the
roulette probability method. The brightness, position, and dynamic decision domain
are updated and reiterated to find the next suitable firefly [59]. The iterative process of
the algorithm is divided into brightness update, position update, and dynamic decision
domain update [60].

Brightness update depends on the fitness value, f (xi(t)), of the corresponding objec-
tive function at different positions:

li(t) = (1− ρ)li(t− 1) + γ f (xi(t)) (17)

where ρ is fluorescein volatility and γ is the fluorescein replacement rate.
Within dynamic decision domain radius, γi

d(t), firefly i selects other fireflies with
higher brightness to constitute the domain set, Ni(t), and moves to firefly j in the domain

with probability pij(t) =
lj(t)−li(t)

∑
k∈Ni(t)

lk(t)−li(t)
.

The position updates are as follows:

xi(t + 1) = xi(t) + α(
xj(t)− xi(t)
‖xj(t)− xi(t)‖

) (18)

where, α is mobile step and ‖xj(t)− xi(t)‖ is the European distance between fireflies.
The dynamic decision domain is equivalent to the field of vision of fireflies, which

will reduce if there are too many companions. The formula is

ri
d(t + 1) = min {rs, max{0, ri

d(t) + β(nt − |Ni(t)|)
}}

(19)
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where β is the updated rate of dynamic decision domain, |Ni(t)| is the number of neigh-
boring fireflies, and rs is the radius of perception.

2.6. Construction of Mapping Mineral Prospectivity Model

The regional stratigraphy, geological formation, magmatic activity, and geochemical
and remote sensing geological data were extracted after studying the basic geological data
of the study area and the metallogenic condition of known mineral deposits, establishing
the multi-source metallogenic information spatial database. MLP, AdaBoost, and OCSVM
methods were applied and combined with BA and FA, constructing mineral resource
prediction models. The ROC and P-A curves were used to evaluate the metallogenic
prediction effect of the different combined models and analyze their metallogenic prediction
potential. The specific process is shown in the Figure 1.
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Figure 1. Calculation process of mineral potential.

3. Study Area and Information Extraction
3.1. Geological Setting and Mineral Deposits

The study area was located in the west of Qinghai province on the East Kunlun
orogenic belt, which is a part of the polymetallic metallogenic belt in the East Kunlun
Mountains. It has experienced a complex geological formation evolution and has good
potential for polymetallic prospecting. The tectonic position in the area belongs to the
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Qinling-Qilian-Kulun orogenic system. It is adjacent to the Qaidam Basin in the north, and
the Kunbei Deep fault zone runs through the central part of the region. The southern part is
bounded by the Kunzhong fault zone and connected with the subduction complex zone of
the south slope of East Kunlun [61]. The stratigraphic distribution in the area is relatively
complete, with the terrestrial volcanic sedimentary formation of Late Paleozoic-Mesozoic
in the north, the marine volcanic sedimentary series of Early Paleozoic Qimantage Group
in the middle, and the ancient metamorphic series of the Paleoproterozoic Jinshuikou
Group in the south [62]. The regional strata from new to old are: Quaternary Holocene
system, Middle Neogene system and Late Pleistocene system, Triassic Elashan Forma-
tion, Carboniferous Shiguizi and Dagangou Formation, Devonian Maoniushan Formation,
Ordovician-Silurian Tanjianshan Group, Jinshuikou Group and Baishahe Formation of
archaeozoic era, as shown in Figure 2.
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Regional geological formation, intrusions, and polymetallic mineralization are con-
trolled by the NWW-EW trending deep fault, which constitutes the Kunbei fault zone
throughout the study area [63]. There were strong tectono-magmatic activities in the Kun-
bei fault zone during the Silurian and Late Permian. The earth crust stretches depleted
mantle of the environment to form the parent basaltic magma after the collision. The
magmatic activities are mainly developed in different stages of the Variscan-Indosinian
orogenic cycle, which are composed of Early Permian, Late Triassic, and a small amount of
Early Cretaceous intermediate-acid intrusive rocks. In particular, granite intrusive rocks
expose in large quantities, which are distributed in the form of batholith and stock. The
intermediate-acid rock mass is mainly distributed on the north side of the Kunbei fault
in the form of small scale batholith and stock, and the distribution direction is consistent
with the regional tectonic direction. The base-neutral rock mass is mainly distributed
in the North Kunlun magmatic rock zone in the form of large-scale batholith. Regional
mineralization occurs near the contact zone between different strata and intrusive rocks
of different periods [64,65]. The metallogenic geological conditions in the study area are
superior, and more than 10 mineral deposits have been discovered so far, including the Xiar-
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ihamu large magmatic Cu-Ni sulfide deposit, the upper Lalinggaoli River skarn-porphyty
Mo-polymetallic deposit, and the lower Lalinggaoli River skarn Fe-Cu deposit. It is one of
the important mineral exploration areas in the west of East Kunlun and is also a key area
of concern for geological researchers.

It is concluded that the controlling factors of polymetallic mineralization in this area
are determined mainly by analyzing the metallogenic characteristics of the existing min-
eral deposits, combined with previous research results [23,66]: (1) NWW-EW trending
deep faults provide sufficient active conditions for diagenesis and mineralization. (2) Dif-
ferent types of skarn, hornfels, and keratinized rocks are formed by the metasomatism
of the Indosinian and Yanshanian intrusions and strata contact zones of different pe-
riods, among which the skarn type mineralization related to contact metasomatism is
developed and provides favorable conditions for Cu-Ni sulfide mineralization and skarn-
porphyry polymetallic mineralization. (3) Magmatic intrusive complexes are formed in
Indosinian, and their parent basaltic magma provides metal sources for regional polymetal-
lic mineralization. Intermediate-acidic and basic magmatic intrusions, which are formed
by assimilation-contamination occurring between the parent basaltic magma and acidic
crustal components and/or partially melted crust, provide metal and heat sources for skarn
and skarn-porphyry polymetallic mineralization.

3.2. Metallogenic Information Extraction

The metallogenic information data obtained included mainly regional stratigraphy,
geological formation, and geochemical and remote sensing geological data through col-
lection and field investigation; the regional stratigraphy and geological formation data
were from the regional geological report completed by the Qinghai Geological Survey
Institute. The geochemical data were derived from a recent digital geological project in
the study area, and remote sensing geological information was derived from tectonic and
mineralization alteration information extracted from remote sensing images. Analyzing
the results of controlling factors of polymetallic mineralization, the existing metallogenic
information of the study area was combined. Then the metallogenic information data were
divided into three categories, namely, metallogenic geological background, remote sensing
geological, and geochemical element anomaly information. These data were extracted
from geological and mineral data, remote sensing images, and stream sediments, respec-
tively. As a result, a total of 17 different metallogenic information were extracted. This
information included the key and favorable factors for mineralization in the study area.
With the GIS software platform, the study area was divided into 18,600 grid cells, each
with a size of 0.3039 × 0.3041 km2, considering the scale of geological background data,
sampling density of 1:50,000 water system sediments of geochemical elements, and the
cell area of remote sensing geological anomaly information, meanwhile guaranteeing that
the grid numbers of the horizontal and vertical direction are integers. Seventeen areas of
multi-source metallogenic information were converted to the same projection coordinate
system and rasterized on the same scale as the grid cell, constructing the multi-source
metallogenic information spatial database.

3.2.1. Metallogenic Geological Background Information

The magmatic intrusions in the region are intense and frequent, and the intermediate-
acid intrusions related to mineralization can be preliminarily divided into the Middle
Triassic, the Late Triassic, and the Early Cretaceous. The rock types are monzogranite,
granodiorite, tonalite, quartz diorite, syenogranite, and moyite. Analyzing the regional
geological data and the distribution of known minerals, three intermediate-acid intrusions
and the lithological information of four geological masses, including carbonatite of the
Tanjianshan Group and Dagangou Formation, monzogranite, granodiorite and quartz
diorite of Middle and Late Triassic, were stored as vector information and selected as
metallogenic geological background information (see Figure 2).
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3.2.2. Element Concentration Anomaly Information

Geochemical data were from four 1:50,000 stream sediment geochemical measure-
ment results in the study area, with a 1170 km2 total sampling area and 8282 samples
collected, with an average sampling density of 7.1/km2. During the field sampling, some
sample points were added, and unreasonable points (especially the eolian sand cover
area) were eliminated to better control the catchment area. The sampling points were
evenly distributed in the high-level water system. In addition, the samples were tested by
Qinghai Rock and Mineral Analysis and Research Center, where the concentration values
of 16 geochemical indexes were tested in total. The processing, testing and analysis of the
samples all met the relevant specification requirements and quality standards.

The evolution of the rock composition was closely related to the diagenetic age, and
there were significant differences between the diagenetic compositions in different periods.
The evolution of the rock composition in the study area was from basic, to neutral, to
acidic, and the corresponding trace elements enriched in different rocks were combined,
which provided metallogenic materials for the tectonic accumulation. The metallogenic
characteristics of magmatic Cu-Ni sulfide deposits and skarn-porphyry Mo-polymetallic
deposits were analyzed, and the 1:200,000 regional geological results that were conducted
by Qinghai Geology and Mineral Bureau in 1986 were combined. The regional abundance
characteristics of elements and the distribution characteristics of elements in different
strata are summarized as follows: The known metal mineralization and mineralization
clues were closely related to the internal and external contact zone of the intrusions, and
multiple periods of intermediate-acid magmatic activities brought abundant medium- and
low-temperature hydrothermal metallogenic elements and hydrothermal conditions to
this area. The regional background contents and discrete eigenvalues of Ni, Pb, W, Au,
Zn, and Ag elements were large, and the local enrichment trend was obvious. The spatial
distribution of Pb, Cu, Ni, Cr, and W element anomalies was controlled by faulted structure
and magmatic activities. The known small iron deposit as well as copper, lead, zinc, and
iron mineral occurrences were exposed in the higher anomaly area of Cr, Ni, Pb, and W
elements. Based on the above analysis results, Ag, Cu, Cr, Pb, Ni, Zn, Mo, and W elements
were selected as metallogenic geochemical information.

The background and anomaly information of geochemical elements was needed to
separate effectively for enhancing the mineralization indication of geochemical information.
The content of trace elements in various natural substances should generally obey the
lognormal or normal distribution, which can be used as the basis for determining the
background value and the anomaly threshold by the quantitative statistical method. In this
study, the mean iteration method was used to process geochemical elements. The analysis
of arithmetic mean, variance, and variation coefficient of eight geochemical elements,
including Ag, Cr, Cu, Mo, Ni, Pb, W, and Zn, indicated that both the raw and logarithmic
values of each element were not likely to obey normal distribution because each element
had the extreme value, and the standard deviation and variation coefficient were also large.
Therefore, the iterative method was applied to process the extreme outliers of element data

as follows: the mean value,
−
X, and corresponding standard deviation, σ, of each element

were calculated; extreme values were eliminated with
−
X± 3σ as the limits; the mean and

standard deviation of the data were recalculated. The calculation was done when there

was no extreme value, and all data was distributed between
[−

X− 3σ,
−
X + 3σ

]
. It can be

seen from Table 1 that after iterative elimination calculation, the distribution of the original
data was greatly improved. The logarithmic frequency histograms of each element after
iteration are shown in Figure 3; it can be seen that although the standard deviation and
variation coefficient of individual elements are still very large, almost all elements obey
normal distribution.
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Table 1. The eigenvalues of each element after iteration.

Element Ag Cr Cu Mo Ni Pb W Zn

Mean 52.07 34.97 8.76 0.52 3.09 28.42 1.11 45.53
Standard deviation 1.28 1.77 1.85 1.02 2.03 1.38 1.18 1.54
Variation coefficient 0.02 0.05 0.21 1.96 0.66 0.05 1.06 0.03
Anomaly threshold 54.63 38.51 12.46 2.56 7.15 31.18 3.47 48.61

Note: ω(Ag, Au)/10−9 and other elements: 10−6.
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The observed values of water sediments of each geochemical index were gridded
in Surfer software (Surfer 8.0, Golden Software, Golden, CO, USA) using the reciprocal
interpolation method of distance, and the grid space accuracy was consistent with the
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evaluation cell grid. Additionally, the mean and logarithmic values of the standard de-
viation of each element were converted into true values, and the sum of the mean and

two times of the standard deviation (
−
X ± 2σ) were used as the anomaly lower limit to

extract geochemical anomaly information. The anomaly distribution maps of each element,
which were made by Surfer software, overlayed and compared with the known mineral
deposits (Figure 4). It can be seen that the anomaly of each element was closely related
to the known metallogenic cells, and the delineated anomaly focusing area corresponded
to the spatial location of known mineral occurrences, indicating that calculation of the
anomaly lower limit was valid and reliable. Vector information extracted from these four
geological bodies was stored in the MapGis software spatial database (MapGis 7.0, China
University of Geosciences, Wuhan, China) as geochemical mineralization information in
the study area.
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(f) Geochemical anomaly of Pb; (g) Geochemical anomaly of W; (h) Geochemical anomaly of Zn.

3.2.3. Remote Sensing Evidence Information

The study area was located at the junction of Qaidam and Kunlun blocks, with
well-developed faults, which provided sufficient conditions for regional diagenesis and
mineralization. In this study, manual visual interpretation was used to extract the structural
information of fault and contact zone based on texture and shape features of remote sensing
images. The ETM+ and “ZY-1” 02C data were selected, where ETM+ was the Landsat 7
satellite image data, with 30 m resolution, and “ZY-1” 02C were the first high-resolution
remote sensing data in China, with 2 m resolution. The middle and large scale linear
structures in the region were extracted with ETM+ remote sensing images, and “ZY-1” 02C
data were applied to extract the small secondary linear structures in the key metallogenic
area (Figure 5). In data-driven mineral predicting, the target variable is usually point
entity (known deposit and mineral occurrence) and the predicting variable is surface entity.
When wired or point entities are in the predicting variables, buffer analysis in GIS is
needed to convert them into surface entities. The linear structures were buffered with a
distance of 200 m, and the results were expressed as polygon shapes (Figure 6), because
the average collection density of geochemical sample points was no less than 7.1/km2.
Additionally, the regional magmatic activities were frequent, which was closely related
to polymetallic mineralization, and the rock exposed well. Therefore, combined with the
spectral characteristics of polymetallic mineralization alteration, iron-stained and hydroxyl
alteration information caused by the ferritization and jarpsite mineralization characteristics
were extracted from the ASTER remote sensing images with principal component analysis.
Because chloritization mineralization characteristics cause hydroxyl alteration anomaly,
the linear structures and alteration zones that contained Fe+ and OH- were used as remote
sensing evidence information (Figure 7).
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4. Mapping Mineral Prospectivity
4.1. Map Layer Selection

In mineral predicting, the metallogenic control conditions or the altered states of
conditional combination were assigned by binary assignment. If the existence of a space
entity could be used as a favorable marker for mineralization, the evaluation grid cell
where the sign was located was assigned a 1 value, otherwise, it was assigned a 0 value.
The evaluation grid cells after assignment were equal to the discrete random variables
in probability theory. In addition, the statistical method was applied to quantitatively
study the relationship of the comprehensive information variables to one another, and
the relationship with the output state of mineral resources (deposit-bearing and non-
deposit-bearing), so as to realize the quantitative selecting of comprehensive information
variables. Therefore the information variables that were not related to mineralization or
redundant with other information variables were eliminated. In this study, the Youden
index, commonly used in medical statistical analysis, was introduced into the optimization
of metallogenic evidence layers. The correlation between metallogenic information and
mineral deposit output state was measured, and the comprehensive metallogenic prediction
variables were optimized by using the Youden index. The Youden index is defined as the
difference between True Positive Rate (TPR) and False Positive Rate (FPR).

yd = TPR− FPR (20)

TPR = tp/(tp + f n) (21)

FPR = f n/(tn + f p) (22)

In medical statistics, one class can be marked as positive and the other as negative
when solving problems. Assuming that the training samples are composed of P positive
and N negative samples, the classification results can be expressed as in the following four
situations: tp represents the true positives in predicted positive classes; tn represents the
true negatives in predicted negative classes; fp represents the false positives in predicted
negative classes (the actual negatives recognized as positives); fn represents the false
negatives in predicted positive classes (the actual positives recognized as negatives). TPR
represents the proportion of true positives in predicted positive classes to the total actual
positives, and FPR represents the proportion of false positives in predicted positive classes
to the total actual negatives. In metallogenic information prediction, TPR represents the
proportion of the number of deposit-bearing cells recognized as abnormal cells to the
total number of abnormal cells in predicted results, and FPR represents the proportion
of the number of non-deposit-bearing cells recognized as background cells to the total
number of background cells in predicted results. The Youden index was between −1 and
+1, representing the difference between the probability of a positive sample predicted and
a negative actual predicted value. In addition, it means the percentage of the benefits
that exceed the costs in prediction, and it is a statistic that describes the comprehensive
characteristics of benefit and cost in metallogenic prediction. The Youden index of each
evidence layer was calculated by training cells. When the Youden index is between 0 and 1,
it indicates that the probability that the sample predicted value is positive is higher than
the probability that the actual predicted value is negative, and the evidence layer is highly
correlated with the known mineral deposits. When the Youden index is between −1 and 0,
it indicates that the probability that the sample predicted value is positive is lower than
the probability that the actual predicted value is negative, namely the number of non-
deposit-bearing cells identified as background cells accounts for a high proportion of the
total predicted background cells. This result means that the cost of metallogenic prediction
exceeds the benefit and has a negative effect on metallogenic prediction. Therefore, the
layers with a Youden index higher than 0 have a spatial correlation with the known mineral
deposits, which can predict exploration targets as predictor variables. The calculation
results are shown in Table 2.
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Table 2. Youden index for metallogenic evidence layers.

Layer Correlation Intension Layer Correlation Intension

Ag 0.3884 Iron oxide alteration 0.1342
Cr 0.3194 Hydroxyl alteration 0.0801
Cu 0.3942 Linear structure 0.1405
Mo 0.2111 Monzonitic granite −0.0094
Ni 0.3349 Granodiorite −0.2158
Pb 0.2073 Quartz diorite −0.0058
W 0.2114 Carbonate 0.0669
Zn 0.2359

It can be seen from Table 2 that 12 evidence layers had a Youden index higher than 0,
including Ag, Cr, Cu, Mo, Ni, Pb, W, Zn, iron oxide alteration, hydroxyl alteration, linear
structure, and carbonate. The 12 evidence layers selected by the Youden index and one
target layer that contains known mineral deposits were spatially overlayed and used to
train the learning data during the machine learning modeling process. Using 12 evidence
layers and one target layer as input and output data for modeling, 18,600 grid cells in the
study area were trained, where the deposit-bearing and non-deposit-bearing cells were
assigned values of 1 and 0, respectively. These numbers represent that the grid contained
or did not contain known polymetallic deposits (mineral occurrences), respectively.

4.2. Machine Learning Model Combined with Hyperparameter Optimization

BA and FA were applied to optimize the hyperparameters of different machine learn-
ing models. These two optimization algorithms were needed to define the fitness value
of the objective function as the standard for hyperparameter optimization calculation.
When the fitness value reached the optimal value, the hyperparameters of the machine
learning models obtained the optimal solution. In this study, the AUC value of the ROC
curve was selected as the fitness value of the optimal objective function. The AUC value
can be considered as the probability that the number of correctly predicted grid cells is
higher than that of incorrectly predicted grid cells [67]. The higher the AUC value, the
better the performance of the model in the mineral potential prediction [68,69]. The AUC
value is applied to evaluate the classification performance when multiple classifiers are
compared. According to the Wilcoxon Mann–Whitney statistic [70,71], the AUC value can
be expressed as

AUC =
1

mn

m

∑
i=1

n

∑
j=1

ϕ
(

xi, yj
)

(23)

ϕ
(
xi, yj

)
=


1 xi > yj

0.5 xi = yj
0 xi < yj

(24)

When using BA and FA to optimize the hyperparameters of machine learning models,
the search space of the algorithm was a one-dimensional or two-dimensional space with
model hyperparameters as coordinate axes. Artificially setting the space range of hyperpa-
rameters, the iterative search process started from the random position in the search space.
Thus, the model hyperparameter corresponding to the maximum fitness function value
obtained in the iterative search process was the best for modeling hyperparameters. In this
study, the number of hidden layer neurons in MLP, the updated learning times and the
weight reduction coefficient of the weak regression in AdaBoost, and the fault tolerance
penalty coefficient and kernel hyperparameter in OCSVM were optimized respectively
by using the two algorithms, and the AUC value of the ROC curve was selected as the
fitness function. The hyperparameter optimization process is shown in Figures 8 and 9,
and the metallogenic prediction program of machine learning models combined with
hyperparameter optimization was written on Python platform.
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4.2.1. MLP Model Combined with Hyperparameter Optimization

The metallogenic probability of each grid cell was calculated using the MLP model
to map the mineral prospectivity of the study area. The greater the value of the grid cell,
the more likely the grid cell was to be a deposit-bearing cell. In the regression prediction
process, the setting of the number of hidden layer neurons, Nhid, would influence the
prediction results of the MLP model. Therefore, the number of hidden layer neurons, Nhid,
was an important hyperparameter. BA and FA were used to optimize the Nhid in the MLP
model. For determining the search space of BA and FA populations, the value range of
Nhid was defined as (0,300], according to experience.

The initial hyperparameters of BA include population size L, iterations T, upper
and lower pulse frequency fmin and fmax, upper and lower limits of pulse intensity Amin
and Amax, the attenuation coefficient of pulse loudness α, and pulse frequency increase
coefficient γ. BA is not sensitive to other initial hyperparameters, except iterations T. In
this study, the population size L = 20, iterations T = 50, pulse frequency range fmin = 0,
fmax = 1, pulse intensity range Amin = 0, Amax = 1, attenuation coefficient of pulse loudness
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α = 0.9, pulse frequency increase coefficient γ = 0.9, and the BA was initialized as the
default hyperparameters.
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In this study, the initial hyperparameters of FA were set as follows: number of fireflies
n = 60, iterations T = 50, fluorescein volatility ρ = 0.4, fluorescein update rate γ = 0.6, initial
value of brightness l0 = 10, moving step value α = 0.6, dynamic decision domain updating
rate β = 0.8, perceived radius rs = 5, the number of fireflies in the neighborhood N(t) = 5,
and the FA was initialized as the default hyperparameters.

According to the setting search range of Nhid, BA and FA performed optimization
calculation in the defined search space, and the fitness function AUC value of different
iterations is shown in Figure 10. It can be seen that the AUC value gradually increased with
the increase of iterations T. When iterations T = 27, the AUC value reached the maximum,
as seen in Figure 10a, and the corresponding Nhid = 96. When iterations T = 36, the curve
reached a stable state, as seen in Figure 10b, and the corresponding Nhid = 39.
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Figure 10. Curves of area under curve (AUC) value: (a) bat algorithm multilayer perceptron (BA-
MLP); (b) firefly algorithm multilayer perceptron (FA-MLP).

4.2.2. AdaBoost Model Combined with Hyperparameter Optimization

The AdaBoost model was applied to the metallogenic prediction of the Lalingzaohuo
area, and the CART decision tree was selected as the weak regression of the AdaBoost model.
During regression prediction, the update learning times, t, and the weight reduction coefficient,
v (0 < v < 1), of the weak regression were two important hyperparameters. Small t was
challenging to fit, while large t was easy to overfit. For the same training set, smaller v meant
more times were needed to select the weak regression. In addition, the two hyperparameters t
and v should be optimized and adjusted together. Therefore, BA and FA were respectively used
to optimize and calculate t and v of the AdaBoost model. For determining the search space of
BA and FA populations, the value range of update learning times t and the weight reduction
coefficient v were defined as (0,200] and (0,1], respectively. In the process of calculation,
T = 20, and the other hyperparameters were set the same as those in Section 4.2. During the
optimization process, the change curve of the AUC value was as shown in Figure 11. As seen
from Figure 11, in the BA-AdaBoost model, when iteration reached 12, the AUC value reached
the maximum, and the update learning times t and the weight reduction coefficient v were 98
and 0.1332, respectively. In the FA-AdaBoost model, when iteration reached 16, the AUC value
reached the maximum, and the update learning times t and the weight reduction coefficient v
were 75 and 0.1335, respectively.
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4.2.3. OCSVM Model Combined with Hyperparameter Optimization

The OCSVM model was used to calculate the value of the decision function f (x) of
each geological statistic cell. If f (x) > 0, geological statistical cells belonged to a non-
deposit-bearing area; otherwise, they belonged to a deposit-bearing area (exploration target
area). For the convenience of application, the negative number of the statistical cell decision
function was used. The larger it was, the more possible it was to be a deposit-bearing cell.
During the modeling process, the selection of kernel functions influences the results of the
OCSVM model. The commonly used kernel functions include polynomial kernel function,
radial basis kernel function, and sigmoid kernel function. In this study, the Gaussian
radial basis kernel function was selected as the kernel function. The fault tolerance penalty
coefficient γ and kernel hyperparameter σ2, two necessary adjustment hyperparameters,
were optimized by BA and FA. For determining the search space of BA and FA populations,
the value range of fault tolerance penalty coefficient γ and kernel hyperparameter σ2 were
defined as (0,10] and (0,1], respectively. In the calculation process, the iterations T = 30 and
the remaining initial hyperparameters were set the same as those in Section 4.2. During the
optimization process, the change curve of AUC value was as shown in Figure 12. As seen
from Figure 12, in BA-OCSVM, when the iteration reached 14, the AUC value reached the
maximum, and the output fault tolerance penalty coefficient γ and kernel hyperparameter
σ2 were 0.00845 and 0.88328, respectively. In FA-OCSVM, when the iteration reached 19,
the AUC value reached the maximum, and the output fault tolerance penalty coefficient γ
and kernel hyperparameter value σ2 were 6.82289 and 0.36972, respectively.
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4.3. Mineral Potential Mapping

The mineral prospectivity mapping model was established using the optimized hyper-
parameters; it was applied to calculate the metallogenic potential value of each evaluation
cell. The value range of the mineral potential of each evaluation cell was different because
of the different principles of the three machine learning models. The results for the MLP
and AdaBoost models represented the metallogenic probability of the evaluation grid cell,
while the results of the OCSVM model were the decision function values corresponding
to the selected kernel function. Although the result ranges of the three machine learning
models were different, it did not affect the prediction of mineral resources, because the
mineral potential was evaluated according to the prediction value of the evaluation grid
cell. The high value area of mineral potential was delineated with the optimal threshold
method. This method specified that the area delineated by the optimal threshold and the
known mineral deposits have the maximum spatial correlation, where optimal threshold
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was calculated by the Youden index. Meanwhile, TPR represented the proportion of the
number of deposit-bearing cells recognized correctly to the total number of deposit-bearing
cells in the predicted result, and FPR represented the proportion of the number of non-
deposit-bearing cells recognized correctly to the total number of non-deposit-bearing cells
in the predicted result. The maximum and minimum of the calculated metallogenic advan-
tage index were taken as the endpoints of the continuous interval, which was divided into
1000 equal sub-intervals, each of which was regarded as a threshold. The model was used
to calculate the TPR and FPR corresponding to the thresholds, and the TPR minus the FPR
was used to calculate the Youden index. The threshold corresponding to the maximum
Youden index was selected as the optimal threshold for delineating the exploration targets,
and the maximum Youden indices and optimal thresholds of different models were as
shown in Table 3. With the GIS software platform and the optimal thresholds, the mineral
potential maps of different machine learning models after optimizing were established
(Figure 13). In order to compare the effect of metallogenic prediction, the low and high
value areas of mineral potential were represented by green and blue, respectively, the
known mineral deposits were represented by red dots, and the layer of known mineral
deposits was overlayed with the mineral potential map.

Table 3. Maximum Youden indices and optimal thresholds for different models.

Model BA-MLP FA-MLP BA-AdaBoost FA-AdaBoost BA-OCSVM FA-OCSVM

Maximum Youden index 0.6649 0.55489 0.807039 0.815599 0.70648 0.52872
Threshold 0.0028 0.0014 0.0452 0.0167 109.7745 96.05151
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5. Results

For comparing and analyzing the metallogenic prediction effect of machine learning
models before and after parameter optimization, the original MLP, AdaBoost, and OCSVM
models were applied to study the modeling and prediction of mineral potential. Setting the
default value of hyperparameters in Python’s scikit-learn module as the hyperparameter
value of the three models, the hidden layer neurons, Nhid, of the MLP model was set as 50,
the update learning times, t, and the weight reduction coefficient, v, of the AdaBoost model
were set as 10 and 0.1, respectively, and the fault tolerance penalty coefficient, γ, and kernel
hyperparameter value, σ2, of the OCSVM model were set as 1 and 0.1, respectively. In this
section, the mineral prospectivity mapping results were statistically evaluated using ROC
and P-A curves. ROC curve analysis has been increasingly applied in the field of machine
learning. It has insensitivities in category distribution and cost as well as good intuition
and strong understanding [72,73]. The coordinate system for the ROC curve is formed by
taking the FPR and TPR as the X-axis and Y-axis, respectively. After having been trained,
the discrete and binary output points correspond to the points in the coordinate system,
i.e., a set of single points is obtained by setting different thresholds for the same classifier.
These points are connected in a curve from left to right in the ROC coordinate system. The
ROC curve has a monotonically decreasing slope. The optimal classifier can be selected
from a set of classifiers according to their ROC curves [74,75] The better a classifier is, the
closer its ROC curve is to the upper left corner of the ROC space [76,77]. The AUC value
represents the area under the ROC curve, and its calculation method is shown in Equations
(23) and (24), using the AUC value to evaluate classification performance. The range of
the AUC value is between (0,1). The closer the ROC curve is to the upper left corner of the
ROC space, the closer the AUC value calculated by the model is to 1.0. The TPR and FPR
corresponding to different thresholds within the range of the metallogenic probability of
different models could be obtained by calculating mineral potential, and the ROC curves are
drawn as shown in Figure 14. It can be seen that although the ROC curves are intersecting,
the ROC curves (blue) corresponding to the original machine learning models without
hyperparameter optimization are all lower than that of the machine learning models after
hyperparameter optimization, indicating the optimized machine learning model is better
than the corresponding original model in metallogenic prediction.

In addition, in a study area, the model predicting accuracy, P, and predicted area per-
centage, A, can be calculated according to the mineral potential maps and the distribution
of known mineral occurrences. P represents the benefits of the model prediction, and A rep-
resents the cost of the model prediction, using P and A values to draw a P-A curve [78,79].
In this study, according to the mineral potential value of the evaluation grid cell calculated
by the three models, the P and A of corresponding models were calculated when different
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metallogenic potential was taken as the threshold. In addition, P-A curves of different
machine learning models were drawn. In Figure 15, the horizontal axis of the coordinate
system is the value of metallogenic potential calculated by the model. In addition, the
ratio of P value to A value can be used as statistics. When the ratio becomes larger, the
scale of the predicted targets will be larger; the target area will be smaller; manpower,
material resources, and financial input will be less; the effect of the prediction model will
be better [80]. Therefore, the height of the intersection point of the predictive accuracy and
the predicted area percentage curves can be used to evaluate the performance of the model.
Meanwhile, the intersection point of the two curves corresponds to the optimal threshold
of the mineral prediction results, which can be used to further delineate the prospecting
target area (Figure 15).
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The AUC value and P/A value with different hyperparameter optimization algorithms
were calculated and compared with results without hyperparameter optimization (Table 4)
to analyze the metallogenic prediction effects of machine learning models.
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By analyzing ROC curves (Figure 14), P-A curves (Figure 15) and evaluation indices
(Table 4) of machine learning models, the following conclusions can be obtained:

1. The AUC values obtained by the machine learning models were all above 0.7, indi-
cating that the metallogenic prediction results are consistent with the distribution
regularity of known mineral deposits and mineralization points in the area. The Ad-
aBoost model had the best effect, where the AUC value reached 0.9579 after using the
FA algorithm, while the AUC value of the BA-OCSVM model was 0.8758, and that of
the BA-MLP model was 0.8712.

2. The BA and FA hyperparameter optimization algorithms have an obvious effect, and
the accuracy of the MLP, AdaBoost, and OCSVM models was improved after opti-
mization. The accuracy of the FA-AdaBoost model was improved most significantly,
with the accuracy 17.42% higher after optimization. For the MLP and OCSVM models,
the accuracy of the BA algorithm after optimization was higher than that of the FA
algorithm, and the predicting accuracy of BA-MLP increased 11.29%, while that of
the FA-MLP model only increased 2.41%.
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Table 4. Evaluation indices of different prediction models.

Model AUC P/A

MLP 0.7828 2.449
BA-MLP 0.8712 5.533
FA-MLP 0.8017 3.745

AdaBoost 0.8173 3.156
BA-AdaBoost 0.9588 8.182
FA-AdaBoost 0.9597 10.765

OCSVM 0.8056 3.954
BA-OCSVM 0.8758 7.417
FA-OCSVM 0.8262 6.769

6. Discussion

1. The BA and FA, which have the same structural characteristics, belong to the global
optimization algorithm based on population random optimization. In the search do-
main, each bat or firefly represents a solution of the optimization function; the fitness
value evaluates their position and finds the optimal individual by adjusting its own
population hyperparameters. As the difference of machine learning model structures,
different iteration times are defined in the test. The optimization hyperparameter of
the MLP model is only one, as its structure is simple, while the optimization hyper-
parameter number of the AdaBoost and OCSVM models is two. The later defined
iteration times are 20 and 30, and the computational speed is slow. The results show
that BA and FA can converge a global maximum in the number of iterations set, and
at the same time, the AdaBoost and OCSVM models spare more time for searching
optimal hyperparameters.

2. The evaluation indices results show that the characteristic regularity of the ROC curve
is basically consistent with the AUC curve, while the P-A curve and the P/A index
can provide another accuracy evaluation standard for the mineral potential prediction
model in terms of prospecting benefit. For example, the AUC value of the BA-MLP is
0.8712, while the AUC value of the BA-OCSVM is 0.8758. The calculated values of
the ROC curve evaluation indices of the two models are very close, meaning that the
evaluation effect of the model cannot be compared. However, it can be found that
the P-A curve intersection of the OCSVM model is obviously higher than that of the
BA-MLP model, where the P/A value of BA-OCSVM is 7.417, while the P/A value of
BA-MLP is 5.533, which indicates the superiority of the BA-OCSVM model in terms
of prospecting benefit.

3. When comparing the three kinds of mineral potential maps (Figure 13) after hyperpa-
rameter optimization, the range and space distribution trend of the predicted high
potential prospecting area have a high similarity. Besides the known mineral zone,
the models delineate a potential prospecting area in the northeast, northwest, and
southwest of the study area. The mineralized geological environment of the northeast
is relatively superior, where the Ordovician-Silurian Tanjianshan Group and the car-
bonate formation of Early Carboniferous Dagangou Group are the main formations,
and the monzonitic granite of Late Triassic is the main intrusive mass. Skarn mineral
deposit is more likely to be formed in this high-value distribution region, which is
the same with the forecast results of the model, and will be a key area for detailed
geological and mineral investigation in the future. The north of Kunbei fault is in the
northwest, Tanjianshan Group and the carbonate formation of Early Carboniferous
Dagangou Group distribution as linear along the structural line direction under the
control of fault. Monzogranite of the early Jurassic distributed in the north of sedi-
mentary strata, where the contact sites are more likely to form a skarn belt. Stacking
the metallogenic potential and geological map, the partial high value area is in the
contact zone of carbonate rock strata and intrusive body. The metallogenic potential
in the southwest is distributed in the intrusive body of different periods, and the high
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value area is distributed sporadically, with the possibility of mineralization being
very small.

4. BA and FA perform excellently in hyperparameter optimization calculation; how-
ever, in the modeling calculation, it is found that there are still some problems in
the combination of this kind of swarm intelligence optimization algorithm and ma-
chine learning model, which need to be further analyzed. One problem is that both
algorithms need to set a large number of initial hyperparameters. However, in this
study, only the corresponding relationship between the iterations T and the fitness
function value is tested, and others use the default values. The other problem is that
the machine learning model optimized by this kind of algorithm takes a long time to
run. In the BA-MLP model, the calculation time of the machine learning model with
optimized hyperparameters is about eight times that of the original model, which
affects the test efficiency to a certain extent.

7. Conclusions

1. The mineral prospectivity mapping models are constructed under conditions where
the search space needs to be set and the optimal hyperparameters are automatically
searched by combining bat and firefly swarm intelligence optimization algorithms
with different machine learning models. Compared with the traditional optimization
algorithms, the BA and FA are free to switch between global and local optimization
processes and have more opportunities to find the global optimal hyperparameters of
machine learning models.

2. The BA and FA have different improvement effects on MLP, AdaBoost, and OCSVM
models. The accuracy of the machine learning models is greatly improved after
hyperparameter optimization, indicating that the model hyperparameter optimization
is effective and reliable in the application of machine learning methods.

3. ROC and P-A curves are applied to quantitatively evaluate the prediction performance
of the mineral prospectivity mapping models. The evaluation results show that the
AUC value can effectively measure the accuracy of the different models, but it is
not the only index. The P/A value of the curve intersection is calculated by the P-A
curve. The higher the value is, the more accurate the metallogenic prediction. The P-A
curve represents the prospecting benefit under limited manpower, material resources,
and financial resources, and the P/A value can be used as the accuracy evaluation
standard for another mineral potential prediction.
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