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Abstract: The bioreduction of Fe(III) oxides by dissimilatory iron-reducing bacteria may result in the
formation of a suite of Fe(II)-bearing secondary minerals, including magnetite (a mixed Fe(II)/Fe(III)
oxide), siderite (Fe(II) carbonate), vivianite (Fe(II) phosphate), chukanovite (ferrous hydroxy car-
bonate), and green rusts (mixed Fe(II)/Fe(III) hydroxides). In an effort to better understand the
factors controlling the formation of specific Fe(II)-bearing secondary minerals, we examined the
effects of Fe(III) oxide mineralogy, phosphate concentration, and the availability of an electron
shuttle (9,10-anthraquinone-2,6-disulfonate, AQDS) on the bioreduction of a series of Fe(III) oxides
(akaganeite, feroxyhyte, ferric green rust, ferrihydrite, goethite, hematite, and lepidocrocite) by
Shewanella putrefaciens CN32, and the resulting formation of secondary minerals, as determined by
X-ray diffraction, Mössbauer spectroscopy, and scanning electron microscopy. The overall extent of
Fe(II) production was highly dependent on the type of Fe(III) oxide provided. With the exception
of hematite, AQDS enhanced the rate of Fe(II) production; however, the presence of AQDS did not
always lead to an increase in the overall extent of Fe(II) production and did not affect the types of
Fe(II)-bearing secondary minerals that formed. The effects of the presence of phosphate on the rate
and extent of Fe(II) production were variable among the Fe(III) oxides, but in general, the highest
loadings of phosphate resulted in decreased rates of Fe(II) production, but ultimately higher levels of
Fe(II) than in the absence of phosphate. In addition, phosphate concentration had a pronounced effect
on the types of secondary minerals that formed; magnetite and chukanovite formed at phosphate
concentrations of ≤1 mM (ferrihydrite), <~100 µM (lepidocrocite), 500 µM (feroxyhyte and ferric
green rust), while green rust, or green rust and vivianite, formed at phosphate concentrations of
10 mM (ferrihydrite), ≥100 µM (lepidocrocite), and 5 mM (feroxyhyte and ferric green rust). These
results further demonstrate that the bioreduction of Fe(III) oxides, and accompanying Fe(II)-bearing
secondary mineral formation, is controlled by a complex interplay of mineralogical, geochemical,
and microbiological factors.

Keywords: green rust; siderite; magnetite; chukanovite; vivianite; dissimilatory iron reduction;
iron oxide

1. Introduction

Iron(III) oxides—a term which we use to include formal Fe oxides, oxyhydroxides, and
hydroxides—are common constituents of soils and sediments and are present in a variety
of mineralogical forms, including ferrihydrite, goethite (α-FeOOH), akaganeite (β-FeOOH),
lepidocrocite (γ-FeOOH), feroxyhyte (δ′-FeOOH), hematite (α-Fe2O3), and maghemite
(γ-Fe2O3). The biogeochemistry of Fe in most aquatic and terrestrial environments is
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driven largely by microbial activity, and the presence of Fe(II) in near surface suboxic and
anoxic environments is typically the result of the activity of iron(III)-reducing bacteria
(IRB) and archaea. These phylogenetically diverse microorganisms couple the oxidation
of an electron donor (organic compounds or molecular hydrogen, H2) to the reduction of
Fe(III) to Fe(II) [1–15]. The Fe(II), resulting from the microbial reduction of Fe(III) oxides,
can be present as a broad range of Fe(II) species, including soluble and adsorbed Fe(II)
and mineral phases containing structural Fe(II) (e.g., magnetite (Fe3O4), siderite (FeCO3),
vivianite [Fe3(PO4)2·8H2O], green rust, chukanovite [Fe2(OH)2CO3], and Fe(II)-bearing
clays) [16–25].

Many factors have been identified as contributing to the formation of specific Fe(II)-
bearing secondary minerals during the microbial reduction of Fe(III) oxides, including
Fe(III) oxide mineralogy [19,25,26]; Fe(III) oxide particle aggregation [27]; the presence
of electron shuttles [17]; the rate and extent of Fe(II) production [17,19,28–30]; the extent
of Fe(II) sorption on the parent Fe(III) oxide [25]; the species of IRB and the number
of cells present [31–33]; the concentration and type of electron donor [34–37]; the type of
organic matter present (including humic substances and microbially-produced extracellular
polymeric materials) [31,33,38]; and the presence of phosphate and other oxyanions (silicate,
molybdate, arsenate, etc.) [17,31,39–41].

Under the conditions typical of near surface aquatic and terrestrial environments,
Fe(III) oxides are relatively insoluble, which makes their use as terminal electron acceptors
for anaerobic respiration more challenging than for soluble terminal electron acceptors
that are easily transported into the cell (e.g., molecular oxygen, nitrate, sulfate, etc.).
Some IRB utilize outer-membrane reductases [42] or electrically conductive structures
(often described as nanowires) [43,44] to transfer electrons to Fe(III) oxides via direct
physical contact with the oxide surface. The need for physical contact with the Fe(III)
oxide can be readily overcome by the use of soluble compounds or materials that can
be reversibly oxidized and reduced, often called electron transfer mediators or electron
shuttles. The oxidized form of the electron shuttle can be reduced by the organism, and
then, in its reduced form, can transfer electrons to the Fe(III) oxide at a distance, and
is thus reoxidized. Due to the fact that electron shuttles can be cycled repeatedly, the
presence of even relatively low concentrations of electron shuttles can have a substantial
effect on Fe(III) oxide reduction. A wide variety of organic and inorganic compounds
(both endogenous and exogenous) have been shown to function as electron shuttles in
the bioreduction of Fe(III) oxides, including humic and fulvic acids [45–50]. The ability
of humic substances to act as electron shuttles has largely been attributed to quinone
groups within their structures, [51–53] and model quinones, such as 9,10-anthraquinone-
2,6-disulfonate (AQDS), have been widely used as analogs for quinone groups in humic
substances [17,45,54,55].

In soils and sediments, phosphate is commonly found in association with Fe(III) oxides.
The interactions between phosphate and Fe(III) oxides in aquatic and terrestrial systems
are highly dynamic and involve multiple processes, including adsorption/desorption, the
precipitation/dissolution of surface Fe-phosphate phases, and the occlusion/incorporation
of phosphate within Fe(III) oxides [56,57]. Indeed, the interactions of phosphate with
Fe(III) oxides has significant effects on the mineralization pathways of Fe phases during Fe
redox transformations [58–64]. Several studies have shown a close association between the
presence of phosphate and the formation of green rust during the reduction of ferrihydrite,
lepidocrocite, and akaganeite by IRB [17,31,40,65–67].

Green rusts are layered Fe(II)-Fe(III) hydroxides with a pyroaurite-type structure—
i.e., alternating positively charged Fe(II)-Fe(III) hydroxide layers and hydrated anion
layers with the general composition [FeII

4 FeIII
2 (OH)12]2+ [(A)2/n yH2O]2−, where A

is an n-valent anion (e.g., Cl−, SO4
2−, or CO3

2−) and y denotes varying amounts of
interlayer water (y = 2 to 4). They are found in Fe(II)-Fe(III) transition zones in a variety of
aquatic and terrestrial environments, including groundwater [68,69], surface waters [70],
soils [71–76], and sediments [77–79]. In these environments, green rust minerals, such as
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fougérite, trébeurdenite, and mössbauerite [80–82], may play a central role in Fe redox
cycling. Despite their importance in Fe biogeochemistry (including a possible role in the
emergence of life on Earth [83]), many questions remain about the processes leading to
their formation during microbial Fe(III) reduction, including the role(s) of phosphate and
Fe(III) oxide mineralogy.

In this study, we examine the effects of Fe(III) oxide mineralogy (in the presence
and absence of an electron shuttle) and the presence of phosphate on the bioreduction of
hematite, goethite, maghemite, ferrihydrite, lepidocrocite, feroxyhyte, and ferric green rust
by the Shewanella putrefaciens strain CN32, an IRB isolated from subsurface sediment [84],
and the subsequent formation of secondary minerals using X-ray diffraction (XRD), 57Fe
Mössbauer spectroscopy, and scanning electron microscopy (SEM).

2. Materials and Methods
2.1. Fe(III) Oxides

Ferrihydrite was prepared by titrating 0.5 M FeCl3 to pH 7.5 via the dropwise addition
of 1.0 M KOH with continuous mixing, which is based on the procedure described by
Schwertmann and Cornell [85]. Goethite was synthesized by aging ferrihydrite under
alkaline conditions at 70 ◦C for 60 h [85]. Hematite was synthesized by the forced hydrolysis
of a 0.02 M solution of FeCl3 in 0.002 M HCl at 98 ◦C for 10 days [85]. Lepidocrocite was
synthesized by the air oxidation of a ferrous chloride solution using a modified version of
the procedure in Schwertmann and Cornell [85]. Briefly, 30 g of FeCl2·4H2O was dissolved
in 900 mL of water and the resulting solution was filtered through a 0.2 µm nylon filter
to remove any Fe(III) solids present. The pH of the solution was adjusted to 6.0 with
0.5 M NaOH and the resulting blue/green suspension was sparged with air. The pH of
the suspension was maintained at pH 5.5–6.0 by the dropwise addition of 0.5 M NaOH
until base consumption ceased (~1 h). Maghemite was prepared by heating lepidocrocite
at 190 ◦C under an ambient atmosphere for 4 h followed by 1 h at 240 ◦C. Feroxyhyte was
prepared by the rapid oxidation of Fe(OH)2 by hydrogen peroxide. Briefly, in a glove box
containing an anoxic atmosphere (Coy Laboratory Products, Grass Lake, Michigan, 3–5%
H2 in N2 and Pd catalyst to maintain O2 in the box < 1 ppm), 400 mL of 0.5 M FeSO4 was
titrated to pH 6.5 with anoxic 1.0 M NaOH to remove Fe(III), which precipitated as green
rust and was subsequently removed by filtration. The filtered 0.5 M Fe(II) solution was
then titrated to pH 12, which was accompanied by the precipitation of Fe(OH)2 (white
rust). The white rust suspension was removed from the glove box and 100 mL of 40%
H2O2 was immediately added with rapid mixing on a magnetic stirplate, resulting in the
near instantaneous formation of reddish brown feroxyhyte. Ferric carbonate green rust
was prepared as described by Latta et al. [86]. Subsequent to synthesis, all phases (except
maghemite) were repeatedly washed by centrifugation and resuspension in ddH2O, then
dried at 60 ◦C and ground to pass a 200-mesh sieve; ferrihydrite was washed, but not dried
(to avoid the irreversible agglomeration of ferrihydrite particles).

The specific surface areas of the iron oxides were determined by multipoint Brunauer,
Emmett, and Teller (BET) analysis of N2 adsorption with a Micromeritics Tristar II Surface
Area Analyzer (Micromeritics Instruments Corporation, Norcross, GA, USA); all samples
were degassed under vacuum (50 mTorr) at 30 ◦C for at least 30 h prior to analysis. The
morphology of the iron oxide crystals was examined by scanning electron microscopy
(SEM). Samples for SEM were prepared by depositing ~500 µL of an aqueous suspension of
the iron oxide on aluminum specimen mounts, allowing the solids to settle, removing the
overlying liquid with a pipette, and drying the solids under an ambient atmosphere before
imaging on a Hitachi S-4700-II FEG-SEM (Hitachi High-Technologies Corporation, Tokyo,
Japan). The identities of the iron oxides were confirmed by powder X-ray diffraction (pXRD)
with a Rigaku MiniFlex X-ray diffractometer (Rigaku Corporation, Tokya, Japan) using
Ni-filtered Cu Kα radiation, scanned between 5◦ and 80◦ 2θ at a speed of 0.1◦ 2θ·min−1.
The XRD patterns were analyzed with the JADE 9 software package (MDI, Livermore, CA,
USA) to remove the background through polynomial fitting and the Kα2 components.
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2.2. Bioreduction Experiments

The bioreduction experiments were conducted in sterile 160 mL serum bottles con-
taining 100 mL of sterile defined mineral medium (DMM) [55] with 80 mM Fe(III) in the
form of the corresponding Fe(III) oxide, 75 mM formate as the electron donor, phosphate
(0–10 mM depending on the experimental system), and 100 µM AQDS as an electron
shuttle in AQDS-amended systems. The DMM was prepared by combining all components
(except the electron donor, phosphate, and AQDS), and the pH was adjusted to 7.5 by
titration with 1 M NaOH, portioned into serum bottles, and autoclaved. After the medium
cooled to ambient temperature, the electron donor, phosphate, and AQDS were added
from filter-sterilized stock solutions; all systems amended with phosphate also contained
AQDS. The bottles were sealed with rubber septa and aluminum crimp caps and made
anoxic by sparging with sterile argon. All experimental systems were prepared in duplicate.
After 24 h, a 2 mL sample of suspension was removed from each of the bottles that had
been amended with phosphate to determine the extent of phosphate uptake by the Fe(III)
oxides. The sample was filtered through a 0.22 µm nylon filter and the filtrate was saved
for the measurement of phosphate concentration. The inoculum was prepared from late-
log-phase cultures of S. putrefaciens CN32 (American Type Culture Collection BAA-543),
as described by O’Loughlin et al. [12]. Experiments were initiated by spiking each bottle
with the volume of inoculum needed to achieve a cell density of ~5 × 109 cells mL−1.
The bottles were placed on a roller drum and incubated at 30 ◦C in the dark. Samples
of the suspensions—for monitoring Fe(II) production, as well as for the identification of
secondary minerals by pXRD, SEM, and 57Fe Mössbauer spectroscopy—were collected
with sterile syringes. Unless otherwise indicated, sample collection and processing were
conducted in a glove box containing an anoxic atmosphere.

2.3. Analytical Methods

The reduction of Fe(III) was monitored by measuring the total Fe(II) content of 0.75 M
HCl extracts of the suspensions (Fe(II)tot, referred to hereafter as Fe(II)). Samples for Fe(II)
analysis were prepared by adding 0.75 mL of anoxic 1 M HCl to 0.25 mL of suspension (the
addition of 100 µL of concentrated HCl to samples containing magnetite was needed to
ensure the dissolution of all Fe(II) phases). After 1 week, the samples were centrifuged at
25,000× g for 10 min. The Fe(II) concentrations in the supernatants were determined by the
ferrozine assay [87]. Briefly, 1 mL of HEPES-buffered ferrozine reagent [88] was added to
50 µL of supernatant, and the absorbance at 562 nm was measured. Phosphate concentra-
tion was determined by inductively coupled plasma-optical emission spectroscopy using a
Perkin Elmer 4300DV instrument.

Changes in the mineralogy of the suspensions were monitored by pXRD with a
Rigaku MiniFlex X-ray diffractometer with Ni-filtered Cu Kα radiation. Samples for pXRD
analysis were collected by filtration on 25 mm diameter, 0.22 µm nylon filters and covered
with 8.4 µm thick Kapton® film under anoxic conditions. Although the pXRD analysis
was conducted under ambient atmosphere, samples prepared in this manner showed no
evidence of oxidation when scanned between 5◦ and 80◦ 2θ at a speed of 1.25◦ 2θ min−1.
The pXRD patterns were analyzed with the JADE 7 software package (MDI, Livermore,
CA, USA) to remove the background through polynomial fitting and also to remove the
Kα2 components.

Samples for SEM imaging were prepared by placing 500 µL of suspension on alu-
minum specimen mounts, allowing the solids to settle, removing the overlying liquid with
a pipette, and drying the film of solids in a glove box. Specimens were briefly (<30 s)
exposed to air during transfer to the Hitachi S-4700-II FEG-SEM.

Transmission Mössbauer spectroscopy was performed with a variable temperature
He-cooled system with a 1024 channel detector. The 57Co source used (~50 mCi) was in a
Rh matrix at room temperature. All center shifts reported are relative to an α-Fe foil at room
temperature. Samples were prepared by filtering the cell suspension (approx. 4 mL) in an
anoxic glove box with recoverable filter paper. The filter paper was then sealed between
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two pieces of 5 mm Kapton tape to avoid oxidation while the sample was mounted. No
indication of inadvertent oxidation was observed. Spectral fitting was done using Recoil
Software (version 1.01998, University of Ottawa, Ottawa, ON, Canada). Voigt-based fitting
was used to model the spectra to determine the hyperfine parameters and the relative areas
between phases. The Lorentzian linewidth was held at 0.12 mm·s−1, as it was the linewidth
measured on the spectrometer for an ideally thick α-Fe foil. The relative peak areas (1:1
for doublets, 3:2:1:1:2:3 for sextets) were held constant throughout fitting. Each phase was
fitted with only a single component (i.e., multiple QS and H distributions were not allowed
for a single phase in fitting).

3. Results
3.1. Fe(III) Oxide Bioreduction

The rate and extent of bioreduction of the Fe(III) oxides varied substantially based
on mineralogy (Figure 1 and Table 1). Within ~80 days, only 3% (on a mol Fe(III) basis)
of hematite and 10% of goethite were reduced, compared to 58% of maghemite, 57% of
ferrihydrite, and 49% of ferric green rust. The intermediate reduction of 36%, 32%, and 30%
of added Fe(III) occurred for akaganeite, lepidocrocite, and feroxyhyte, respectively. The
rate of Fe(III) oxide bioreduction was poorly correlated with oxide surface area (Figure 2).
These results are consistent with previous studies showing that highly crystalline phases,
such as hematite and goethite, are less bioavailable for microbial iron reduction than less
crystalline phases, such as ferrihydrite and lepidocrocite [26,84,89–91].
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Figure 1. (A) Initial (<5 days) Fe(II) production during the bioreduction of Fe(III) oxides by S. putrefaciens CN32 and (B)
over a period of ~80 days. Data for akaganeite are from O’Loughlin et al. [67].

Table 1. Surface area, Fe(II) production, and maximum Fe(II) production rates.

System Surface Area (SA) m2·g−1 Fe(II)tot
a mM Fe(II)tot Production During Bioreduction b mM·day−1

Akaganeite c 30.66 ± 0.33 28.8 ± 0.7 13.7 ± 4.3
Feroxyhyte 63.85 ± 0.83 24.3 ± 2.0 4.15 ± 0.23

Ferric Green Rust 91.52 ± 1.2 38.8 ± 1.0 21.3 ± 1.7
Ferrihydrite 290 ± 0.0 d 45.9 ± 0.6 22.1 ± 0.6

Goethite 51.13 ± 0.61 8.0 ± 0.6 0.60 ± 0.09
Hematite 21.93 ± 0.21 2.4 ± 0.2 0.17 ± 0.08

Lepidocrocite 73.13 ± 0.76 25.6 ± 0.7 22.4 ± 0.3
Maghemite 79.81 ± 0.68 46.4 ± 1.0 30.1 ± 3.4
a At ~80 days after inoculation. b Fe(II) production rates were calculated by linear regression using least-squares regression of the data
during the period of maximum sustained Fe(II) production. c Data for akaganeite are from O’Loughlin et al. [67]. d The value for the
surface area of ferrihydrite is from Roden [90].
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Figure 2. Relationship between Fe(II) production rate and Fe(III) oxide surface area. Ferrihydrite (F)
was not included in the correlation. Dashed lines indicate 95% confidence intervals. A = akaganeite,
FX = feroxyhyte, FGR = ferric green rust, G = goethite, H = hematite, L = lepidocrocite, and
M = maghemite.

3.2. Hematite

Within the first 24 h of incubation, ~1 mM Fe(II) was produced from the bioreduction
of hematite (Figure 3), followed by a more gradual increase in Fe(II) to 2.44 mM by day
78. A final measurement was made 928 days after inoculation, at which point 6.9 mM
Fe(II) was produced, corresponding to a reduction of 8.6% of the hematite. The presence of
the electron shuttle AQDS had essentially no effect on the rate of hematite bioreduction
(Table 2); however, over time the extent of Fe(II) production in the AQDS-amended system
was significantly greater. The presence of both AQDS and 500 µM phosphate resulted in a
significant increase in the initial rate of hematite bioreduction and higher levels of Fe(II)
through the initial 74 days of the incubation, although by day 744 there was essentially no
difference between either AQDS-amended system.
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Ferrihydrite + AQDS + 10 mM P 71.8 ± 3.4 46 61.46 ± 2.46 76.8 ± 3.1 GR, Viv GR, Viv GR, Viv 
a Fe(II) production rates were calculated by linear regression using least-squares regression during the period of maximum 
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Figure 3. (A) Initial (<20 days) Fe(II) production during the bioreduction of hematite by S. putrefaciens CN32 and (B)
over a period of up to 928 days. Error bars indicate one standard deviation. AQDS—9,10-anthraquinone-2,6-disulfonate;
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Table 2. Maximum Fe(II) production rates, Fe(II) production, extent of Fe(III) reduction, and identification of secondary minerals.

System
Fe(II)tot Production

Rate a

(mM·day−1)

Final
Measurement

(day)

Fe(II)tot
b

(mM)

Fe(III)
Reduced b

(%)

Identification of Secondary Minerals c

XRD Mössbauer SEM

Hematite 0.17 ± 0.08 928 6.91 ± 0.46 8.6 ± 0.6 Sid (trace) ND Sid (minor)
Hematite + AQDS 0.19 ± 0.10 928 9.91 ± 1.61 12.4 ± 2.0 Sid (trace) ND Sid (minor)

Hematite + AQDS + 500 µM P 0.73 ± 0.08 744 8.98 ± 0.28 11.2 ± 0.3 Sid (trace) ND Sid (minor)
Goethite 0.60 ± 0.09 1060 21.93 ± 3.04 27.4 ± 3.8 inconclusive Chuk Chuk

Goethite + AQDS 1.05 ± 0.28 1060 32.21 ± 1.60 40.3 ± 2.0 inconclusive Chuk Chuk
Goethite + AQDS + 500 µM P 1.07 ± 0.18 744 3.20 ± 0.89 4.0 ± 1.1 inconclusive ND Chuk

Maghemite 30.1 ± 3.4 184 58.84 ± 1.66 73.6 ± 2.1 Mag, Chuk Mag, Chuk Mag, Chuk
Maghemite + AQDS 124.3 ± 12.5 184 56.20 ± 1.43 70.3 ± 1.8 Mag, Chuk Mag, Chuk Mag, Chuk

Maghemite + AQDS + 10 µM P 137.8 ± 11.6 184 56.92 ± 1.03 71.2 ± 1.3 Mag, Chuk ND Mag, Chuk
Maghemite + AQDS + 100 µM P 141.8 ± 7.2 184 59.60 ± 2.34 74.5 ± 2.9 Mag, Chuk ND Mag, Chuk
Maghemite + AQDS + 1 mM P 114.6 ± 1.1 184 60.35 ± 2.26 75.4 ± 2.8 Mag, Chuk Mag, Chuk Mag, Chuk

Maghemite + AQDS + 10 mM P 108.1 ± 11.2 184 39.66 ± 2.73 49.6 ± 3.4 Mag, Viv Mag, Viv Mag, Viv
Ferrihydrite 62.2 ± 5.8 46 29.20 ± 2.10 36.5 ± 2.6 Mag, Chuk ND Mag, Chuk

Ferrihydrite + AQDS 110.6 ± 3.6 46 44.30 ± 1.02 55.4 ± 1.3 Mag, Chuk Mag, Chuk Mag, Chuk
Ferrihydrite + AQDS + 10 µM P 111.2 ± 3.8 46 39.78 ± 4.86 49.7 ± 6.1 Mag, Chuk ND Mag, Chuk

Ferrihydrite + AQDS + 100 µM P 114.8 ± 6.0 46 40.60 ± 3.42 50.8 ± 4.3 Mag, Chuk ND Mag, Chuk
Ferrihydrite + AQDS + 1 mM P 73.0 ± 7.8 46 40.80 ± 0.06 51.0 ± 0.1 Mag, Chuk Mag, Chuk Mag, Chuk

Ferrihydrite + AQDS + 10 mM P 71.8 ± 3.4 46 61.46 ± 2.46 76.8 ± 3.1 GR, Viv GR, Viv GR, Viv

a Fe(II) production rates were calculated by linear regression using least-squares regression during the period of maximum sustained Fe(II)
production. b At the time of the final measurement. c Siderite (Sid); Not determined (ND); Chukanovite (Chuk); Magnetite (Mag); Vivianite
(Viv); and Green rust (GR).

Analysis of the solids in the hematite bioreactors by pXRD initially showed no evi-
dence of crystalline secondary minerals (Figure 4). Following long-term incubation, indica-
tions of siderite are evident in all the treatments. Small, imperfect rhombohedral (pseudo-
cubic) crystals were observed in the solids (Figure 5). The crystals were 200–500 nm on the
edge and were dispersed as single crystals in a hematite groundmass. The overall morphol-
ogy of these crystals is similar to that of siderite formed during the bioreduction of Fe(III)
oxides [17,92–94]. Previous studies of the bioreduction of hematite have reported the for-
mation of magnetite and vivianite as secondary minerals [22,95,96]; however, there was no
indication that either of these phases formed in any of our hematite bioreduction systems.

3.3. Goethite

Within the first seven days after inoculation, the rate of Fe(II) production during
goethite bioreduction was 0.60 ± 0.09 µM·day−1, after which the rate decreased consid-
erably (Figure 6). The presence of AQDS increased the initial rate of Fe(II) production to
1.05 ± 0.28 µM·day−1, and throughout the experiment, the amount of Fe(II) was greater
compared to the unamended system (Figure 6 and Table 2). The addition of 500 µM phos-
phate had no effect on the initial rate of Fe(II) production; however, after day 8, the Fe(II)
levels remained essentially unchanged.

Although siderite and vivianite have been observed as secondary minerals, result-
ing from the bioreduction of goethite [84,93,97,98], analysis of the solids in the goethite
bioreactors by pXRD provided no conclusive evidence of crystalline secondary minerals
(Figure 7). However, there is a small peak at ~34◦ 2θ in the diffraction pattern of the
solids from both the unamended and AQDS-amended bioreactors at 1060 days. This peak
corresponds to a prominent chukanovite peak in the diffraction patterns of secondary
minerals, formed during the bioreduction of akaganeite, lepidocrocite, and maghemite by
S. putrefaciens CN32 under conditions similar to those in the goethite bioreactors in this
study [31,66,67]. 57Fe Mössbauer analysis of the solids in both systems indicated ~20%
chukanovite (Table 3). In addition, SEM imaging of the solids in bioreactors with and
without AQDS amendment show platy crystallites with a morphology consistent with that
of biogenic chukanovite [21,41,66], among residual goethite crystals (Figure 8B,C). There
was no evidence of secondary mineral formation in the goethite bioreactors amended with
both AQDS and phosphate; however, the goethite did become more crystalline (Figure 7),
and goethite crystallite morphology changed from acicular to lath-like (Figure 8A,D).
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hydroxy carbonate (chukanovite).
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Figure 6. (A) Initial (<45 days) Fe(II) production during the bioreduction of goethite by S. putrefaciens CN32 and (B) over a
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hydroxy carbonate (chukanovite).
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Figure 8. SEM images of the goethite used in this study (A) and the solids at the end of the incubations in the goethite
bioreduction systems in the absence (B) and presence of AQDS (C) and AQDS with 500. µM phosphate (D). The arrow in
panel C is pointing to bladed chukanovite crystallites.

Table 3. Fit parameters from Mössbauer analysis of the secondary minerals in the indicated systems.

Sample
Temp CS QS H RA

(K) (mm·s−1) (mm·s−1) (T) Mineral (%)

Goethite
140 0.46 −0.12 47.9 Goethite 80.0

1.25 2.28 Chukanovite 20.0

Goethite + AQDS

270 0.39 −0.13 39.2 Goethite 78.4
1.16 2.03 Chukanovite 21.6

140 0.46 −0.12 47.9 Goethite 72.6
1.25 2.27 Chukanovite 27.4

77 0.48 −0.12 49.8 Goethite 71.0
1.27 2.37 Chukanovite 29.0

Maghemite
140 1.26 2.21 Chukanovite 45.7

0.72 −0.04 46.8 Magnetite (oct 2.5) 34.8
0.38 0.00 49.7 Magnetite (tet 3) 19.5

Maghemite + AQDS
140 1.26 2.21 Chukanovite 40.8

0.72 −0.04 46.4 Magnetite (oct 2.5) 38.9
0.38 0.00 49.6 Magnetite (tet 3) 20.4

Maghemite + AQDS + 1 mM P
140 1.26 2.26 Chukanovite 41.0

0.73 −0.05 46.0 Magnetite (oct 2.5) 37.0
0.38 0.00 49.3 Magnetite (tet 3) 22.1
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Table 3. Cont.

Sample
Temp CS QS H RA

(K) (mm·s−1) (mm·s−1) (T) Mineral (%)

Maghemite + AQDS + 10 mM P
140 1.28 3.00 Vivianite 18.2

0.72 0.04 45.4 Magnetite (oct 2.5) 47.7
0.40 −0.05 49.9 Magnetite (tet 3) 34.1

Ferrihydrite
77 1.28 2.29 Chukanovite 60.9

0.39 −0.01 49.9 Magnetite 1 17.1
0.79 −0.09 47.3 Magnetite 2 22.0

Ferrihydrite + AQDS + 1 mM P

140 1.26 2.40 Chukanovite 56.0
0.72 −0.03 46.4 Magnetite (oct 2.5) 29.4
0.38 −0.02 49.5 Magnetite (tet 3) 14.5

77 1.29 2.48 Chukanovite 47.7
0.38 0.02 50.0 Magnetite 1 15.1
0.80 −0.13 46.8 Magnetite 2 37.2

Ferrihydrite + AQDS + 10 mM P

77 0.46 0.40 Green Rust Fe(III) 17.0
1.19 2.87 Green Rust Fe(II) 40.8
1.39 2.98 Vivianite 42.2

13 0.48 0.38 Green Rust Fe(III) 19.2
1.26 2.84 Green Rust Fe(II) 65.5
1.47 3.04 Vivianite 15.3

3.4. Maghemite

Maghemite was readily reduced by CN32 (Figure 9) with an initial rate of Fe(II)
production of ~30 mM·day−1. The presence of AQDS resulted in a 4-fold increase in
the initial rate of Fe(II) production, but over time the overall extent of Fe(III) reduction
was the same as the non-AQDS-amended system (Table 2). The pXRD patterns of the
solids in the AQDS- and AQDS+ systems at the end of the incubation were similar, with
both showing remnant maghemite peaks, as well as peaks corresponding to chukanovite
(Figure 10). Likewise, 57Fe Mössbauer analysis of the solids in both systems showed similar
levels of chukanovite and magnetite (Table 3). Maghemite is isostructural with magnetite
and is the fully oxidized end member of a solid solution with stoichiometric magnetite
as the fully reduced end member. As such, maghemite can be reduced to magnetite via
topotactic transformation. The transformation from maghemite to magnetite is apparent
in the Mössbauer spectra, due to the appearance of an octahedral Fe2.5+ signal, which
has a center shift (~0.72 mm/s) that differs from the center shift for octahedral Fe3+ and
tetrahedral Fe3+ (~0.38 mm/s). The octahedral Fe2.5+ mixed valence signal is a consequence
of electron hopping, occurring between octahedral sites at a rate substantially faster than
the characteristic time of Mössbauer spectroscopy [99]. Although the magnetite largely
retains the morphology of the parent maghemite crystallites, the edges are more irregular
and there is significant pitting (Figure 11A,B). Bladed chukanovite crystallites are evident
in both AQDS- and AQDS+ systems (Figure 11C,D).

The effect of phosphate concentration (0–10 mM) on maghemite bioreduction was
observed in AQDS-amended systems. Phosphate concentration had essentially no effect
within the first 23 h of incubation (Figure 9A). Fe(II) levels in the 10 mM phosphate system
were higher from day 1.5 through day 3 than those in the systems with 1 mM phosphate or
less; however, from day 31 through to the end of the incubation, the Fe(II) concentration in
the 10 mM phosphate system was significantly lower (~40 mM versus 55–60 at day 184).
Chukanovite and magnetite were identified as secondary minerals in the 0, 0.01, 0.1, and
1 mM phosphate systems; however, the 10 mM phosphate system contained vivianite and
magnetite (Table 3, and Figures 10 and 11); the formation of magnetite in the 0.01 and
0.1 mM phosphate systems was not directly observed but inferred from the Mössbauer
analysis of the 0, 1, and 10 mM phosphate systems (Table 3).
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Figure 9. (A) Initial (<7 days) Fe(II) production during the bioreduction of maghemite by S. putrefaciens CN32 and (B) over
a period of 184 days. Error bars indicate one standard deviation.

3.5. Ferrihydrite

The bioreduction of ferrihydrite produced ~27 mM Fe(II) within 24 h, after which the
Fe(II) concentrations remained essentially stable until the end of the incubation (Figure 12).
Analysis of the solids by pXRD 46 days after inoculation indicated the presence of magnetite
and FHC (Figure 13). The magnetite was in the form of aggregated, nominally cubic
crystallites ~10 nm (Figure 14A), consistent with the nano-scale magnetite commonly
observed as a secondary mineral of ferrihydrite bioreduction [17,29,100]. Irregular, bladed
chukanovite crystals were dispersed among the magnetite groundmass (Figure 14B). The
initial rate of Fe(II) production was nearly double in the presence of AQDS (Table 2)
and the overall extent of Fe(II) production at the end of the incubation was substantially
greater than in the absence of AQDS (44 mM versus 29 mM). Ferrihydrite was transformed
to magnetite and chukanovite (Figures 13 and 14C), with chukanovite as the dominant
secondary mineral (Table 2). Although the initial rate of Fe(II) production was lower in the
presence of 1 mM phosphate, overall, phosphate concentrations from 0.01–1 mM had little
effect on the extent of ferrihydrite bioreduction (Figure 12). Magnetite and chukanovite
were observed as secondary minerals over this range of phosphate concentrations; however,
the phases became less crystalline with increasing phosphate concentration (Figure 13) and
the chukanovite crystallites became increasingly irregular (Figure 14D–F). The addition of
10 mM phosphate resulted in a biphasic Fe(II) production profile. After the initial 6 h period
of rapid Fe(II) production (71.8 ± 3.4 mM·day−1), a rate of 1.58 ± 0.05 mM·day−1 was
sustained from day 1 through 23, resulting in the accumulation of ~60 mM Fe(II). At this
phosphate concentration, green rust and vivianite formed as secondary minerals (Figure 13
and Table 2); magnetite and chukanovite were not evident. The green rust crystallites were
platy and nominally hexagonal (Figure 14G,H) but did not have the well-defined edges
often reported for biogenic green rust [17,18,66,101]. The vivianite was present as tabular
crystallites up to 25 µm in the longest dimension and occasionally as twins (Figure 14G,H),
consistent with previous reports of biogenic vivianite resulting from the bioreduction of
ferrihydrite [19,66,92,94,102].
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Figure 10. pXRD analysis of the solids in the maghemite bioreduction systems at the end of the incubations (184 days). FHC
is ferrous hydroxy carbonate (chukanovite).
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Figure 11. SEM images of the maghemite used in this study (A) and the solids at the end of the incubation (184 days) in the
maghemite bioreduction systems with no added phosphate in the absence of AQDS (B,C) and the presence of AQDS with
no added phosphate (D), 10 µM phosphate (E), 100 µM phosphate (F), 1 mM phosphate (G), and 10 mM phosphate (H).
The arrows in panel C and D are pointing to bladed chukanovite crystallites.
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Figure 12. (A) Initial (<2 days) Fe(II) production during the bioreduction of ferrihydrite by S. putrefaciens CN32 and (B) over
a period of 46 days. Error bars indicate one standard deviation.

3.6. Lepidocrocite

The presence of AQDS significantly enhanced the rate of Fe(II) production during
lepidocrocite bioreduction, but resulted in only a minor increase in the overall extent
of Fe(II) production (Figure 15 and Table 4): ~80% of Fe(II) production occurred within
0.9 days in the presence of AQDS but it took 4.8 days to achieve the same extent in
the absence of AQDS. pXRD analysis of the solids remaining in both systems at the
end of the incubation showed the formation of magnetite and no indication of residual
lepidocrocite (Figure 16); however, SEM imaging of the solids showed both fine-grained
magnetite (~50 nm) and bladed micron-sized chukanovite crystallites (Figure 17B–D).
Magnetite and chukanovite are commonly reported products of the microbial reduction
of lepidocrocite [18,26,27,31,41,66,103], but there were no indications of less commonly
observed secondary minerals, such as siderite or goethite [97].

Table 4. Maximum Fe(II) production rates, Fe(II) production, extent of Fe(III) reduction, and identification of secondary
minerals.

System
Fe(II)tot Production Final Fe(III)

Rate a Measurement Fe(II)tot
b Reduced b Identification of Secondary Minerals c

(mM·day−1) (day) (mM) (%) XRD Mössbauer SEM

Lepidocrocite 12.7 ± 1.9 77 27.63 ± 1.01 34.5 ± 1.3 Mag, Chuk ND Mag, Chuk
Lepidocrocite + AQDS 25.9 ± 6.9 77 31.95 ± 0.40 39.9 ± 0.5 Mag, Chuk ND Mag, Chuk

Lepidocrocite + AQDS + 1 µM P 28.6 ± 3.2 77 30.18 ± 0.86 37.7 ± 1.1 Mag, Chuk ND Mag, Chuk
Lepidocrocite + AQDS + 10 µM P 29.9 ± 1.8 77 31.06 ± 0.81 38.8 ± 1.0 Mag, Chuk ND Mag, Chuk
Lepidocrocite + AQDS + 25 µM P 29.2 ± 1.4 50 30.69 ± 2.05 38.4 ± 2.6 Mag, Chuk ND Mag, Chuk
Lepidocrocite + AQDS + 50 µM P 12.6 ± 4.2 50 33.00 ± 2.15 41.3 ± 2.7 Mag, Chuk ND Mag, Chuk

Lepidocrocite + AQDS + 75 µM P Rep 1 9.8 ± 2.7 50 37.16 46.5 Mag, Chuk ND Mag, Chuk
Lepidocrocite + AQDS + 75 µM P Rep 2 4.4 ± 1.3 50 54.75 68.4 GR ND GR

Lepidocrocite + AQDS + 100 µM P 2.0 ± 0.1 77 55.19 ± 1.19 69.0 ± 1.5 GR ND GR
Lepidocrocite + AQDS + 1 mM P 3.3 ± 0.4 77 60.04 ± 0.07 75.1 ± 0.1 GR ND GR

Lepidocrocite + AQDS + 10 mM P 1.9 ± 0.1 77 71.36 ± 4.30 89.2 ± 5.4 GR, Viv ND GR, Viv
Feroxyhyte 4.4 ± 0.2 78 24.28 ± 2.10 30.4 ± 2.6 Mag, Chuk ND Mag, Chuk

Feroxyhyte + AQDS 23.3 ± 3.2 78 24.51 ± 6.02 30.6 ± 7.5 Mag, Chuk Mag, Chuk Mag, Chuk
Feroxyhyte + AQDS + 500 µM P 0.6 ± 0.01 156 55.07 ± 2.92 68.8 ± 3.7 Mag, Chuk Mag, Chuk Mag, Chuk
Feroxyhyte + AQDS + 5 mM P 0.7 ± 0.03 156 59.93 ± 1.65 74.9 ± 2.1 GR, Viv ND GR?, Viv

Ferric Green Rust 18.9 ± 0.1 98 38.01 ± 1.00 47.5 ± 3.3 Mag, Chuk ND Mag, Chuk
Ferric Green Rust + AQDS 91.3 ± 5.3 98 39.12 ± 2.02 48.9 ± 1.6 Mag Mag, Chuk Mag, Chuk

Ferric Green Rust + AQDS + 500 µM P 100.4 ± 5.8 98 36.07 ± 2.10 45.1 ± 7.6 Mag, Chuk Mag, Chuk Mag, Chuk
Ferric Green Rust + AQDS + 5 mM P 1.1 ± 0.1 98 64.64 ± 1.78 80.8 ± 5.4 GR GR GR

a Fe(II) production rates were calculated by linear regression using least-squares regression during the period of maximum sustained Fe(II)
production. b At the time of the final measurement. c Magnetite (Mag); Chukanovite (Chuk); Not determined (ND); Vivianite (Viv); and
Green rust (GR).
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is ferrous hydroxy carbonate (chukanovite).
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Figure 14. SEM images of the solids at the end of the incubation (46 days) in the ferrihydrite bioreduction systems with
no added phosphate in the absence of AQDS (A,B) and in the presence of AQDS with no added phosphate (C), 10 µM
phosphate (D), 100 µM phosphate (E), 1 mM phosphate (F), and 10 mM phosphate (G,H).
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Figure 15. (A) Initial (<15 days) Fe(II) production during the bioreduction of lepidocrocite by S. putrefaciens CN32 and (B)
over a period of 79 days. Error bars indicate one standard deviation. Unless otherwise indicated, all systems contained
100 µM AQDS.

In a previous study, we observed that the presence of 500 µM phosphate had a
substantial effect on the rate and extent of Fe(II) production and the formation of secondary
minerals during the bioreduction of lepidocrocite by CN32 [31]. In this study, we examined
the effects of a broad range of phosphate concentrations on lepidocrocite bioreduction
in systems amended with AQDS. The addition of either 1 µM or 10 µM phosphate had
little effect on the Fe(II) production profiles compared to the unamended system; the rates
of Fe(II) production and total Fe(II) concentrations were essentially the same (Figure 15
and Table 4). Likewise, magnetite and chukanovite were the only observed secondary
minerals (Figures 16 and 17D). The addition of 100 µM phosphate resulted in an order of
magnitude decrease in the rate of Fe(II) production (2.0 ± 0.1 mM·day−1, compared to
29.9 ± 1.8 mM·day−1 in the 10 µM phosphate system), but the final Fe(II) concentration
was nearly double (55.2 ± 1.2 mM relative to 31.1 ± 0.9 mM in the 10 µM phosphate
system). Green rust was the only secondary mineral evident in the pXRD pattern of the
solids remaining at the end of the incubation (Figure 16) and there was no indication of
the formation of any transient or intermediate secondary minerals during bioreduction
(Figure 18). The hexagonal, platy green rust crystallites had a morphology (Figure 17F)
consistent with that of biogenic green rust [17,18,104]. These results are essentially the same
as what we previously observed in an identical experimental system that was amended
with 500 µM phosphate [31]. Increasing the phosphate concentration from 100 µM to 1 mM
resulted in a significant increase in the rate of Fe(II) production and a small increase in
the final Fe(II) concentration (Table 4), and green rust was the only observed secondary
mineral (Figures 16 and 17G). The addition of 10 mM phosphate resulted in a biphasic
Fe(II) production profile (Figure 15). After an initial pulse of 11.0 ± 0.8 mM Fe(II) within
the first 0.9 days, Fe(II) production continued at a sustained rate of 1.9 ± 0.1 mM·day−1

through until day 30, ultimately leading to the accumulation of 71.4 ± 4.3 mM Fe(II) at the
end of incubation. At this phosphate concentration, both green rust and vivianite formed
as secondary minerals (Figures 16 and 17H).
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Figure 16. pXRD analysis of the solids in the lepidocrocite (0–10 mM added phosphate) bioreduction systems at the end of
the incubations (79 days). All phosphate-amended systems contained 100 µM AQDS. FHC is ferrous hydroxy carbonate
(chukanovite).
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Figure 17. SEM images of the lepidocrocite used in this study (A) and the solids at the end of the incubations with no
added phosphate in the absence of AQDS (B,C) and presence of AQDS with no added phosphate (D), 10 µM phosphate
(E), 100 µM phosphate (F), 1 mM phosphate (G), and 10 mM phosphate (H). The solids in the system amended with 1 µM
phosphate were identical to those in D.
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Given that there was a clear transition in the rate and extent of Fe(II) production,
as well as the formation of secondary minerals between 10 and 100 µM phosphate, we
examined lepidocrocite bioreduction over this range of concentrations at a finer scale. The
Fe(II) production profiles (rate and extent) and secondary mineral formation (magnetite
and chukanovite) were similar for 0, 10, and 25 µM phosphate-amended systems (Figure 19
and Table 4). The results for the systems with 50 µM phosphate amendment were similar,
except for a short initial lag and slightly higher Fe(II) concentration at the end of the
incubation. The addition of 75 µM phosphate resulted in distinctly different outcomes
between the duplicate bottles. Replicate 1 exhibited an initial lag in Fe(II) production that
was followed by a relatively lower rate of Fe(II) production (compared to the 0, 10, 25,
and 50 µM treatments); at the end of the incubation, replicate 1 had a slightly higher Fe(II)
concentration, and magnetite and chukanovite were the only secondary minerals identified
by pXRD and SEM (Figures 20 and 21B). However, the Fe(II) production profile for replicate
2 of the 75 µM phosphate treatment was distinctly different from replicate 1. The rate of
Fe(II) production was much slower and was sustained over a longer period of time, similar
to the 100 µM treatment. As with the 100 µM treatment, replicate 2 had a higher final Fe(II)
concentration, and green rust was the only secondary mineral observed by pXRD and
SEM (Figures 20 and 21C). These results suggest a narrow tipping point with respect to
phosphate concentration and lepidocrocite bioreduction kinetics, extent, and secondary
mineral formation. Below the critical phosphate concentration, Fe(II) production rates are
“fast” and magnetite and chukanovite form as secondary minerals, whereas above the
critical phosphate concentration, Fe(II) production is slower, the overall extent is greater,
and green rust is observed as the sole secondary mineral.

3.7. Feroxyhyte

The bioreduction of feroxyhyte was essentially complete within 11 days after inoc-
ulation (Figure 22). The rate of Fe(II) production was 5 times faster with the addition of
AQDS; however, both AQDS- and AQDS+ systems contained ~24 mM Fe(II) at the end of
the incubation (Table 4). A highly crystalline magnetite, consisting of 50–100 nm nominally
cubic crystallites and well-formed bladed chukanovite crystallites, formed in both treat-
ments (Figures 23 and 24B–D), with no indications of other secondary minerals or residual
feroxyhyte (Figure 23 and Table 5). There is little information available on secondary
minerals resulting from feroxyhyte bioreduction; however, the formation of magnetite
in our study is similar to the formation of magnetite during feroxyhyte bioreduction by
Geobacter sulfurreducens [26].

The addition of 500 µM phosphate greatly inhibited the kinetics of feroxyhyte
bioreduction—0.6 ± 0.01 mM Fe(II) day−1 compared to 23.3 ± 3.2 mM Fe(II) day−1 in
the system without phosphate—however, the amount of Fe(II) produced by the end of
the incubation was two-times greater (Table 4). Magnetite and chukanovite both formed
as secondary minerals (Figure 23), but chukanovite was the dominant product (Table 5)
and present as poorly formed, irregular crystals (Figure 24E). Increasing the phosphate
concentration to 5 mM resulted in a similar bioreduction profile with respect to Fe(II)
production kinetics and final Fe(II) concentration (Figure 22 and Table 4), but in place
of magnetite and chukanovite, vivianite and green rust formed as secondary minerals
(Figure 23), both of which were poorly developed (i.e., irregular crystallites not exhibiting
typical morphologies for green rust or vivianite) (Figure 24F).
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Figure 18. Time series of pXRD analysis of the solids in the 100 µM phosphate-amended lepidocrocite bioreduction system.
FHC is ferrous hydroxy carbonate (chukanovite).
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Figure 19. (A) Initial (<12 days) Fe(II) production during the bioreduction of lepidocrocite by S. putrefaciens CN32 and (B)
over a period of 51 days. Error bars indicate one standard deviation. All systems contained 100 µM AQDS.

3.8. Ferric Green Rust

Ferric green rust was readily reduced by CN32 (Figure 25), with an initial Fe(II)
production rate of ~19 mM·day−1. The presence of AQDS resulted in a nearly 5-fold
increase in the initial rate of Fe(II) production (~91 mM·day−1), but over time the overall
extent of Fe(III) reduction was the same as the non-AQDS-amended system (Figure 25 and
Table 4). The addition of 500 µM phosphate had no effect on either the rate or extent of
Fe(II) production; however, the maximum rate of sustained Fe(II) production decreased
to ~1 mM Fe(II) day−1 and the final Fe(II) concentration increased by >70% in the 5 mM
phosphate-amended system (Figure 25 and Table 4).

The bioreduction of ferric green rust by CN32 resulted in the formation of magnetite
and chukanovite in all but the 5 mM phosphate system (Table 4). In the absence of added
phosphate, highly crystalline magnetite formed in both the AQDS- and AQDS+ systems
(Figure 26), and the crystallites were larger (50–250 nm) than the magnetite that formed
in any of the other Fe(III) oxide systems we examined (Figure 27B–D). A somewhat less
crystalline, finer-grained magnetite was observed in the system amended with 500 µM
phosphate (Figure 27E). There was little indication of chukanovite in the diffraction patterns
of the solids; however, SEM imaging of the solids showed well-formed bladed chukanovite
crystals (Figure 27C–E) and Mössbauer analysis indicated that ~15% and ~27% of the
iron in the solids was present as chukanovite in the AQDS+ systems containing 0 and
500 µM phosphate, respectively (Table 5). These results are in contrast to previous studies
of the bioreduction of ferric green rust that have reported green rust as the only secondary
mineral [66,101]. In the 5 mM phosphate-amended system, pXRD and Mössbauer analysis
indicated the transformation of ferric green rust to green rust (Figure 26 and Table 5). The
green rust crystals were substantially larger than the parent ferric green rust (in some cases,
>5 µm across) and in some instances exhibiting the terracing of the layers (Figure 27F–H).
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Figure 20. pXRD analysis of the solids in the lepidocrocite (0–100 µM phosphate) bioreduction systems at the end of the
incubations (46 days). FHC is ferrous hydroxy carbonate (chukanovite).
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Figure 21. SEM images of the solids at the end of the lepidocrocite bioreduction incubations with 50 µM phosphate (A),
75 µM phosphate replicate 1 (B), 75 µM phosphate replicate 2 (C), and 100 µM phosphate (D). The solids in the system
amended with 25 µM phosphate were identical to those in A.
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Figure 22. (A) Initial (<22 days) Fe(II) production during the bioreduction of feroxyhyte by S. putrefaciens CN32 and (B) over
a period of up to 156 days. Error bars indicate one standard deviation.
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Figure 23. pXRD analysis of the solids in the feroxyhyte bioreduction systems at the end of the incubations (46 days). FHC
is ferrous hydroxy carbonate (chukanovite).
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Figure 24. SEM images of the feroxyhyte used in this study (A) and the solids at the end of the incubations in the feroxyhyte
bioreduction systems with no added phosphate in the absence of AQDS (B,C) and presence of AQDS with no added
phosphate (D), 500 µM phosphate (E), and 5 mM phosphate (F).
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Figure 27. SEM images of the ferric green rust used in this study (A), and the solids at the end of the incubations (98 days)
with no added phosphate in the absence of AQDS (B,C), and presence of AQDS with no added phosphate (D), 500 µM
phosphate (E), and 5 mM phosphate (F–H).
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Table 5. Fit parameters from Mössbauer analysis of the secondary minerals in the indicated systems.

Sample Temp (K) CS (mm·s−1) QS (mm·s−1) H (T) Mineral RA (%)

Feroxyhyte + AQDS
77 1.30 2.29 Chukanovite 21.3

0.39 −0.01 50.7 Magnetite 1 36.6
0.83 −0.05 47.9 Magnetite 2 42.1

Feroxyhyte + AQDS + 500 µM P
77 1.29 2.34 Chukanovite 62.0

0.58 −0.07 50.6 Magnetite (oct 2.5) 19.2
0.38 −0.08 50.0 Magnetite (tet 3) 18.8

Ferric Green Rust + AQDS

140 1.30 2.18 Chukanovite 15.0
0.72 −0.01 47.5 Magnetite (oct 2.5) 51.2
0.39 0.00 50.5 Magnetite (tet 3) 33.8

77 1.35 2.26 Chukanovite 14.6
0.39 −0.01 50.7 Magnetite 1 40.1
0.83 −0.05 48.0 Magnetite 2 45.3

Ferric Green Rust + AQDS + 500 µM P

140 1.26 2.20 Chukanovite 26.3
0.77 −0.02 45.6 Magnetite (oct 2.5) 46.5
0.37 0.00 50.2 Magnetite (tet 3) 27.3

77 1.30 2.30 Chukanovite 28.7
0.39 −0.01 50.6 Magnetite 1 33.3
0.82 −0.07 47.9 Magnetite 2 38.0

Ferric Green Rust + AQDS + 5 mM P

140 0.47 0.72 Green Rust Fe(III) 20.6
1.27 2.78 Green Rust Fe(II) 79.4

77 0.47 0.39 Green Rust Fe(III) 20.7
1.27 2.81 Green Rust Fe(II) 79.3

4. Discussion
4.1. Fe(II)-Secondary Mineral Formation in Relation to Parent Fe(III) Oxide in Unamended Systems

In our experimental systems, the bioreduction of Fe(III) oxides by S. putrefaciens CN32
resulted in the formation of siderite, magnetite, chukanovite, green rust, or vivianite,
depending on the experimental conditions. Except for hematite and goethite, magnetite
was the dominant secondary mineral observed in the absence of added phosphate. Among
the Fe(III) oxides we examined, hematite and goethite had the lowest levels of bioreduction,
consistent with previous studies also showing the diminished bioreduction of hematite
and goethite, compared to phases such as ferrihydrite, lepidocrocite, akaganeite, and
feroxyhyte [19,26,84,91,105,106].

Relative to other Fe(III) oxides, secondary mineral formation during hematite biore-
duction has not been widely studied. Behrends and Van Cappellen [22] reported the
formation of magnetite and siderite following hematite bioreduction, although magnetite
was only observed at bicarbonate concentrations > 5 mM. They proposed that the formation
of magnetite is dependent on the relative rates of Fe(II) and Fe(III) supply in the aqueous
phase, with the rate of soluble Fe(II) production, determined by the bioreduction rate
and the rate of soluble Fe(III) formation, determined by the non-reductive dissolution of
the hematite—the latter increasing with increasing bicarbonate concentrations. However,
Luo et al, [96] examined hematite bioreduction at <0.1 mM bicarbonate and observed
only magnetite. In our experimental system, siderite was the only secondary mineral
observed. Although we did not measure bicarbonate concentrations, we can estimate that
our system contained at least 3.5 mM carbonate, based on the production of ~7 mM Fe(II)
and the stoichiometry of the reduction of Fe(III) coupled with formate oxidation (2Fe(III) +
HCO2− + H2O)→ 2Fe(II) + HCO3− + 2H+). Therefore, bicarbonate is not the only control
determining magnetite formation during the bioreduction of hematite.

As with hematite, studies of secondary mineral formation during goethite biore-
duction are rather limited. Although siderite formation is commonly observed under
high bicarbonate concentrations (e.g., 30 mM) [84,93,94], it has also been observed in sys-
tems containing as low as ~2 mM bicarbonate [97]. We did not observe siderite in our
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goethite bioreduction experiment, even though at least 11 mM of bicarbonate was gener-
ated, based on the amount of Fe(II) produced; rather, chukanovite formed, despite the fact
that chukanovite should be metastable, relative to siderite, under our conditions [107]. The
formation of chukanovite has been reported in studies of the bioreduction of akaganeite,
ferrihydrite, lepidocrocite, and maghemite [21,27,31,41,66,67,108] (as well as for feroxyhyte
and ferric green rust, as observed in this study), but not goethite. In these previous studies,
magnetite or green rust initially formed as secondary minerals, and chukanovite formation
was at their expense, making it essentially a tertiary mineral. In our study, chukanovite
truly appears to be a secondary mineral of goethite bioreduction, as no intermediary phases
were observed.

Magnetite and chukanovite were secondary minerals of the bioreduction of the re-
maining Fe(III) oxides (Tables 2 and 4). Magnetite is commonly reported as a product
of microbial reduction of akaganeite [20,21,26,67], ferrihydrite [16,17,28,29,100,109–112],
lepidocrocite [26,27,31,41,97,104], feroxyhyte [26], and maghemite [66]. The reductive
transformation of Fe(III) oxides to magnetite can occur by either solid-state transformation
(topotactic) or dissolution-reprecipitation (reconstruction) mechanisms, depending on the
parent Fe(III) oxide and the experimental conditions. In our experimental system, the
transformation of poorly crystalline maghemite to poorly crystalline magnetite was clearly
topotactic, given that magnetite is isostructural with maghemite and there was no change
in crystallite morphology (Figure 11A,B; note that the pitting evident on the magnetite
crystallites was likely due to continued bioreduction). Ferrihydrite is characterized by
small crystal size (<10 nm) and the formation of magnetite of similar size and morphology
during ferrihydrite bioreduction has been attributed to topotactic transformation [17,29].
However, magnetite can also form by reconstructive processes [113] that can involve the
formation of intermediate Fe phases [114], which result in magnetite specimens having
sizes/morphologies different from ferrihydrite. In our experimental system, ferrihydrite
transformation resulted in a poorly crystalline and very fine-grained (~10 nm) magnetite,
consistent with a topotactic transformation. However, the magnetite specimens formed
during the bioreduction of lepidocrocite, feroxyhyte, and ferric green rust were highly crys-
talline and likely produced by a dissolution-reprecipitation process, given how dissimilar
the morphologies of these magnetites are from their parent Fe(III) oxides. The lepidocrocite
used in our study consisted of elongated lath-like crystallites ~10 nm wide and up to 40 nm
long that were transformed to nominally cubic magnetite ~50 nm in size. The thin, nomi-
nally hexagonal 25–75 nm wide feroxyhyte crystallites were bioreduced to 50–100 nm cubic
and highly crystalline magnetite. The bioreduction of thin, nominally hexagonal ferric
green rust crystallites up to 200 nm across were reduced to cubic/octahedral magnetite
ranging in size from 50 to 250 nm.

The formation of magnetite as a secondary mineral of Fe(III) oxide bioreduction
has often been linked to “high” rates of Fe(III) reduction for topotactic transformation,
or “high” rates of soluble Fe(II) and Fe(III) supply for transformation by dissolution-
precipitation [22,28,29] and our results are consistent with these observations. In our study,
magnetite did not form during hematite or goethite bioreduction, which had maximum
Fe(II) production rates of 0.17 and 0.60 mM Fe(II) day−1, respectively. Conversely, mag-
netite formed during the bioreduction of all of the other Fe(III) oxides examined, which
had maximum Fe(II) production rates, ranging from 4.4 to 62.2 mM Fe(II) day−1. Magnetite
also formed during the bioreduction of akaganeite in a separate study (13.7 mM Fe(II)
day−1), under conditions identical to those in this study [67].

4.2. Impact of AQDS on Fe(II) Secondary Mineral Formation

The presence of AQDS has been shown to enhance the rate and often the extent of the
bioreduction of a wide range of Fe(III) oxides [17,26,30,32,45,46,55,84,115–118]. In our ex-
perimental systems AQDS-enhancement of the rate of Fe(II) production ranged from 11.8%
for hematite to 430% for feroxyhyte. However, the presence of AQDS did not always lead
to an increase in the overall extent of Fe(II) production, as there was no statistically signifi-
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cant difference between AQDS- and AQDS+ treatments in the bioreduction of maghemite,
feroxyhyte, and ferric green rust.

Although the presence of electron shuttles almost always results in the enhanced
microbial reduction of Fe(III) oxides, there does not appear to be a consistent effect of
electron shuttles on secondary mineral formation. Fredrickson et al. [17] and Zachara
et al. [64,84] reported that AQDS affects both the types of secondary minerals and their
relative crystallinity. Cutting et al. [26] found differences between AQDS- and AQDS+
systems in the relative amounts of goethite and magnetite formed during the bioreduction
of akaganeite, lepidocrocite, and schwertmannite. In a previous study, we found that the
bioreduction of akaganeite in the presence of AQDS resulted in the formation of a more
crystalline magnetite than in its absence. Moreover, most of the magnetite formed in the
AQDS+ system was ultimately transformed to chukanovite, but only a minor amount of the
magnetite in the AQDS- system was converted to siderite. Conversely, Zegeye et al. [32],
O’Loughlin [55], and Coker et al. [117] reported that the presence or absence of AQDS
had no effect on the formation of specific secondary minerals during the bioreduction
of lepidocrocite or ferrihydrite. The apparent inconsistencies in the effect of AQDS on
secondary mineral formation may be due to differences in experimental conditions other
than the presence/absence of AQDS.

In this study, AQDS had little effect on the formation of specific secondary min-
erals; that is, the secondary minerals that formed during the bioreduction of a specific
Fe(III) oxide were the same in the presence and in the absence of AQDS (Tables 2 and 4)
and there was no apparent difference in their crystallinity. Previous studies identifying
chukanovite as a product of Fe(III) oxide bioreduction have all been in the presence of
AQDS [21,27,31,41,66,108]. However, we observe chukanovite formation even in the ab-
sence of AQDS, indicating that AQDS is not essential for chukanovite formation. The
presence of AQDS appears to affect the abundance of chukanovite, as our Mössbauer
analysis shows a greater proportion of chukanovite in the AQDS-amended goethite system
and there are indications in the pXRD data that AQDS may have enhanced the reduction
of magnetite to chukanovite in the ferrihydrite system. It is therefore likely that AQDS
significantly affects SMP distribution only in cases when the rate of Fe(II) supply is the
major factor in determining biomineral formation.

4.3. Phosphate Effects on Fe(II) Secondary Mineral Formation

The effect of phosphate on secondary mineral formation in our experimental systems
varied depending on the parent Fe(III) oxide and the phosphate concentration. In the case
of hematite, the presence of 500 µM phosphate had no apparent effect, as siderite was
the only observed secondary mineral, with or without phosphate. This is in contrast to
the study of Yan et al. [95], where the bioreduction of hematite by G. sulfurreducens led to
vivianite formation; however, the Fe:PO4 ratio was 1:2 (~2 mM Fe and 4 mM phosphate)
compared to 160:1 in our study. Behrends and Van Cappellen reported that the presence
of both 1 mM and 50 mM phosphate completely inhibited the formation of magnetite as
a secondary mineral during the bioreduction of hematite (~32 mM Fe) by S. putrefaciens
strain 200R, with the presumed formation of a ferrous phosphate phase in the system
amended with 50 mM phosphate [22]. Similarly, vivianite, but not magnetite, formed
during the bioreduction of hematite by S. putrefaciens CN32 [84]. However, magnetite
formation during the bioreduction of hematite (167 mM Fe) by Shewanella oneidensis strain
MR-1 was not inhibited in the presence of 3 mM phosphate, as both magnetite and vivianite
were observed [96].

In our experimental system, chukanovite was the only secondary mineral that formed
during goethite bioreduction in the presence or absence of 500 µM phosphate; however,
there was a notable increase over time in the crystallinity of goethite in the presence of
500 µM phosphate that was accompanied by a change in crystallite morphology from
acicular to lath-like. A study of the bioreduction of goethite (either 5, 10, or 100 mM Fe) by
S. putrefaciens strain CN32 in the presence of 440 µM phosphate reported siderite as the only
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secondary mineral indicated by pXRD analysis [93]; however, there was no phosphate-free
system for comparison. In a separate study, goethite bioreduction by S. putrefaciens CN32
in the presence of 4 mM phosphate resulted in the formation of siderite and vivianite (with
vivianite forming first) compared to siderite alone in the absence of phosphate [84].

The presence of phosphate seemed to have little effect on the bioreduction of maghemite
to magnetite. At phosphate concentrations ≤ 1 mM, magnetite and chukanovite were the
only observed secondary minerals, with roughly equivalent amounts of magnetite and
chukanovite in the phosphate-free system and the system with 1 mM phosphate. These
results are consistent with a previous study showing that the presence of 0.21 wt% (as
P) structural phosphate in maghemite had no effect on secondary mineral formation [66].
However, in the presence of 10 mM phosphate, magnetite and vivianite formed, with no
indication of chukanovite. As the transformation of maghemite to magnetite is topotactic, it
is perhaps not surprising that phosphate did not seem to inhibit magnetite formation, even
as the phosphate loading on maghemite reached the sorption capacity (Table 6). The forma-
tion of vivianite in the 10 mM phosphate system is consistent with the high concentration
of phosphate remaining in solution (~9 mM) after phosphate sorption by maghemite.

As discussed in Section 4.1, magnetite and chukanovite were observed as secondary
minerals during the bioreduction of ferrihydrite, lepidocrocite, feroxyhyte, and ferric
green rust in the absence of phosphate. Several previous studies have shown a close
association between the presence of phosphate and the formation of green rust at the
expense of magnetite during the reduction of ferrihydrite, lepidocrocite, and akaganeite by
IRB [17,31,40,65–67] However, most of these studies have been binary in their approach;
i.e., phosphate was either absent or present at a single concentration/loading, and even
those that have examined phosphate effects at multiple concentrations offer limited insight
as to the sorption density or aqueous concentration range over which phosphate inhibits
magnetite formation; either because magnetite was inhibited even at the lowest phosphate
concentration/loading examined or by the presence of other similar oxyanions (e.g., sil-
icate) [39,40,66]. In our study, we observe clear phosphate concentration effects on the
formation of magnetite versus green rust; magnetite and chukanovite formed at phosphate
concentrations of ≤1 mM (ferrihydrite), <~100 µM (lepidocrocite), 500 µM (feroxyhyte
and ferric green rust), while green rust, or green rust and vivianite, formed at phosphate
concentrations of 10 mM (ferrihydrite), ≥100 µM (lepidocrocite), and 5 mM (feroxyhyte
and ferric green rust).

Phosphate binds strongly to Fe(III) oxides through the formation of inner-sphere
complexes [119] that are known to affect the stability and subsequent transformations of
Fe(III) oxides (including biotic and abiotic reduction) [39,120,121]. As such, the extent of
phosphate sorption to an Fe(III) oxide may have some bearing on the formation of specific
secondary minerals. This is clearly the case for vivianite, a ferrous phosphate mineral.
Vivianite is commonly reported in systems where phosphate loadings are high enough
to maintain solution phase phosphate concentrations that support vivianite precipitation.
For example, in our study, vivianite was only observed in systems where the equilibrium
solution phase phosphate concentrations of >4 mM are expected (Table 6). It is less clear
how phosphate sorption affects the formation of green rust versus magnetite. We observed
a level of phosphate coverage for ferrihydrite, lepidocrocite, and feroxyhyte, below which
magnetite (and chukanovite) formed and above which green rust (and vivianite) formed
(Table 6); however, the threshold level was specific to each Fe(III) oxide. Borch et al. [39]
examined secondary mineral formation during ferrihydrite bioreduction by S. putrefaciens
CN32 under conditions of 0%, 50%, and 100% phosphate coverage. Both magnetite and
green rust were observed at 0% and 50% coverage, but only green rust formed at 100%
coverage. The differences between their study and ours are noteworthy in two respects.
First, they observed green rust formation in the absence of phosphate, and second, both
green rust and magnetite were observed in the same system. In our experiments, we
never observed magnetite and green rust in the same system; indeed, magnetite formed
in one replicate bottle in the system containing lepidocrocite and 75 µM phosphate, and
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green rust formed in the other (Table 4). It is also worth noting that the effect of the
extent of phosphate coverage varied among the Fe(III) oxides; for example, phosphate
coverage of nearly 70% capacity had no effect on the secondary minerals that formed in
the hematite and goethite systems, while a completely different secondary mineral formed
in the lepidocrocite system, with coverage as low as 7% capacity (Table 6). Furthermore,
green rust was never observed as a product of maghemite bioreduction, even at nominal
coverage > 100% of the calculated capacity (Table 6). As we discuss in the next section,
other factors, in addition to phosphate concentration, have been identified as potentially
contributing to the formation of green rust during Fe(III) oxide bioreduction, and both
our study and that of Borch et al. [39] did not examine phosphate effects in the absence of
some of these other factors. As such, our results offer only partial insight into the effects of
phosphate on secondary mineral formation.

Table 6. Phosphate sorption on Fe(III) oxides.

System
Total Added
Phosphate

(mM)

Phosphate in
Solution after

48 h (mM)

Amount of
Phosphate
Sorbed (%)

Amount of Phosphate
Sorbed Per Surface
Area (µmol·m−2)

Phosphate
Sorption Capacity a

(µmol·m−2)

Fraction of
Sorption

Capacity Occupied

Secondary
Minerals
Observed

Hematite 0.500 0.271 45.9 1.64 2.40 0.68 Sid

Goethite 0.500 ND b 100 1.38 2.10 0.66 Chuk

Maghemite

0.010 ND 100 0.02 1.80 0.01 Mag/Chuk
0.100 ND 100 0.20 0.11 Mag/Chuk
1.000 0.068 93.2 1.83 1.02 Mag/Chuk

10.000 8.997 10 1.97 1.09 Mag/Viv

Ferrihydrite

0.010 ND 100 <0.01 3.10 <0.01 Mag/Chuk
0.100 ND 100 0.04 0.01 Mag/Chuk
1.000 ND 100 0.44 0.14 Mag/Chuk

10.000 4.854 51.5 2.28 0.73 GR/Viv

Lepidocrocite

0.001 ND 100 <0.01 2.60 <0.01 Mag/Chuk
0.010 ND 100 0.02 0.01 Mag/Chuk
0.100 ND 100 0.19 0.07 GR
0.500 ND 100 0.96 0.37 GR
1.000 0.373 62.7 1.21 0.46 GR

10.000 9.126 8.7 1.68 0.73 GR/Viv

Feroxyhyte 0.500 ND 100 1.10 2.50 0.44 Mag/Chuk
5.000 4.207 15.9 1.72 0.70 GR/Viv

Ferric Green Rust
0.500 ND 100 0.63 — — Mag/Chuk
5.000 2.104 57.9 3.66 — GR/Viv

Akaganeite 0.500 ND 100 2.30 6.20 0.37 GR

a Fe(II) Phosphate sorption capacity values are from Borggaard [121]. b ND, non-detectable (<0.0097 µM).

4.4. Formation of Green Rust as a Secondary Mineral during Fe(III) Oxide Bioreduction

The formation of green rust as a secondary mineral during the bioreduction of Fe(III)
oxides was first reported by Fredrickson et al. during the reduction of ferrihydrite by S. pu-
trefaciens CN32 [17]. Since then, green rusts have been reported as products of the microbial
reduction of Fe(III) oxides in laboratory-based studies under a wide range of experimental
conditions [12,18,19,23,27,29,31–33,36,38–41,55,65,101,108,118,122–124]. In addition to the
presence/concentration of phosphate, other factors have been proposed to contribute to
the formation of green rusts during Fe(III) oxide bioreduction, including the presence of
other oxyanions (arsenate, silicate, molybdate, tungstate, etc.) [31,41]; the presence and
nature of dissolved organic carbon (including humic substances and microbially produced
extracellular polymeric materials) [31,33,38]; the species and population size of IRB [31–33];
the type and concentration of the electron donor [18,36,37]; the rate and extent of Fe(II)
production [17,19,125]; the presence of electron shuttles [17]; the sorption of Fe(II) to the
parent Fe(III) oxide [25]; the extent of aggregation of Fe(III) oxide particles [27]; Fe(III)
oxide mineralogy (this study). Despite over 20 years of investigation, a definitive and
comprehensive understanding of the key factor(s) and mechanisms of green rust formation
during microbial Fe(III) oxide reduction remains elusive. However, the factors mentioned
above do suggest some common themes; in particular, mineralogical characteristics of
specific Fe(III) oxides, sorbate interactions, and bioreduction rate.
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Green rusts form as secondary minerals during the microbial reduction of many
Fe(III) oxides, including ferrihydrite ([19,29,33,36,39,40,65,122,126] and this study), lepi-
docrocite ([12,18,27,31,32,41,55,66,101,104,108,118,123] and this study), mixtures of ferrihy-
drite and lepidocrocite [23,38], akaganeite [67], magnetite [124], schwertmannite [127], and
ferric green rust ([66,101] and this study). Our study shows that green rust can also form
during the bioreduction of feroxyhyte. However, green rusts have not been reported to
form during the bioreduction of hematite, goethite, and maghemite. Usman et al. [128] have
shown that green rust can be formed via the abiotic reductive transformation of goethite
and hematite by Fe(II), which they attribute to careful control of the experimental condi-
tions, which included the addition of Fe(II) at a level consistent with the 2:1 stoichiometric
ratio of Fe(II):Fe(III) in green rust and the addition of NaOH to provide an OH−:Fe(III)
ratio of 3 (final pH ~6.3). Given the high levels of Fe(II) required for the transformation of
goethite and hematite to green rust, it is perhaps not surprising that green rust has not been
observed as a product of the bioreduction of either Fe(III) oxide, given the comparatively
low levels (and perhaps slow kinetics) of Fe(II) that are typically reported ([26,84,89–91] and
this study). Currently, there are no reports of the biotic or abiotic reduction of maghemite to
green rust and it is unclear if this is because this topic has not been well studied or because
the process does not happen; however, Etique et al. [124] have reported the formation of
green rust as a secondary mineral during the bioreduction of magnetite, which suggest
that it is the former, as maghemite is readily reduced to magnetite.

Several studies have proposed a link between the rate of Fe(II) production and
the formation of green rust relative to other secondary minerals (e.g., magnetite and
siderite) [17,19,28,31,32,125]. Indeed, a clear delineation was observed between “fast” Fe(II)
production kinetics and magnetite formation versus green rust formation with “slow” Fe(II)
production rates during the bioreduction of lepidocrocite [31,125]. In this study we did
not observe a clear correlation between Fe(II) production rate and green rust formation.
During the bioreduction of ferrihydrite, feroxyhyte, ferric green rust, and lepidocrocite, we
observed rates of Fe(II) production from 0.6–100 mM Fe(II) d−1 in systems where magnetite
formed, and from 0.7–72 Fe(II) d−1 in systems where green rust formed (Tables 2 and 4).
As such, it appears that the Fe(II) production rate alone is not the determining factor for
GR formation, but in some cases it may be an indicator of other processes having more
direct control on secondary mineral formation.

The surfaces of Fe(III) oxides are effective sorbents for a wide range of ligands found
in various natural and engineered environments, and several of the studies showing green
rust formation during Fe(III) oxide bioreduction suggest that the presence of many of these
ligands favors green rust formation, typically at the expense of magnetite. As already
discussed, green rust formation has been linked to phosphate concentration. The presence
of other oxyanions, such as silicate, arsenate, molybdate, and tungstate, also favor green
rust formation [31,41]; however, borate, even at higher surface coverage, does not [31].
Likewise, there are differences in the effects of various organic ligands. Among low molec-
ular mass organic acids, green rust formed in the presence of citrate, but not oxalate [31].
Among humic substances (a class of naturally occurring, chemically heterogeneous organic
oligoelectrolytes, derived primarily from the decomposition of bacteria, algae, and higher
plant material that are ubiquitous in aquatic and terrestrial environments), the formation of
green rust was favored in the presence of humics with greater aromatic content and larger
molecular weights, while magnetite formed in the presence of humics with higher levels of
polypeptides and polysaccharides [31]. Bacteria produce EPS (a heterogeneous mixture of
polysaccharides, proteins, lipids, and nucleic acids), which sorb to iron oxides, and EPS
from IRB has been shown to favor the formation of green rust [31,33]. Furthermore, IRB
themselves associate with Fe(III) oxide surfaces [129,130], and high cell numbers of IRB
also tend to favor green rust formation [27,31,32]; however, the specific cell density, leading
to green rust formation, seems to be species dependent [31,33].

Although there have been numerous studies examining the link between ligand
sorption on Fe(III) oxides and green rust formation during microbial Fe(II) oxide reduction,
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the processes leading to the formation of green rust versus magnetite are still unclear. Green
rust has been reported as a metastable intermediate in the abiotic formation of magnetite
following the sorption of Fe(II) to lepidocrocite [131] or ferrihydrite [62,132,133] in aqueous
suspensions. However, the presence of ligands such as phosphate or arsenate/arsenite
either slowed the rate of green rust transformation to magnetite or completely inhibited
it [62,134], consistent with the stabilization of green rusts by the sorption of organic and
inorganic ligands [41,58,59,135–138]. In contrast to these abiotic systems, green rust has
not been observed as an intermediate phase during magnetite formation as a secondary
mineral of the bioreduction of Fe(III) oxides. In our study, either green rust or magnetite
formed; there was never the co-occurrence of the phases, even in the lepidocrocite system
containing 75 µM phosphate, where one replicate bottle formed only green rust and the
other formed only magnetite.

The formation of green rust during the bioreduction of Fe(III) oxides could occur via
either a reconstructive (dissolution-reprecipitation) or a solid-state/topotactic (structural
rearrangement) process. Mann et al. [62] and Hansen et al. [139] proposed that green rust
formation occurs via the solid-state rearrangement of ferrihydrite following the sorption of
Fe2+. Solid-state transformation was also invoked for the formation of green rust during the
bioreduction of ferrihydrite in the presence of phosphate, for which the sorption of phos-
phate to ferrihydrite was proposed to inhibit magnetite formation [17,40]. However, the
morphological differences between the nanoparticulate ferrihydrite and the micron-sized
green rust crystals are not consistent with a purely topotactic or pseudomorphic process
for ferrihydrite transformation to green rust, and a similar argument can be made for the
transformations of akaganeite, feroxyhyte, and lepidocrocite. During the bioreduction of
lepidocrocite in the presence of phosphate, O’Loughlin et al. [66] reported a progressive
transition in particle morphology from lepidocrocite to green rust, consistent with an initial
structural reorganization of lepidocrocite to proto green rust particles that then grow to
achieve the characteristic platy, hexagonal morphology of typical green rust. The formation
of green rust during the bioreduction of akaganeite, ferrihydrite, and feroxyhyte might
proceed by a similar process involving the sorption of phosphate or other ligands.

As satisfying as it would be to propose a consistent model for the mechanism of green
rust formation during Fe(III) oxide bioreduction, such an understanding remains elusive.
Moreover, the conflicting and often contradictory data suggest that there are perhaps
multiple pathways to green rust formation.

4.5. Environmental Relevance

Dynamic redox conditions are ubiquitous in aquatic and terrestrial systems across
all geographic zones (polar, temperate, and tropical) and are evident in a diverse range
of environments, including stratified lakes, lacustrine and marine sediments, floodplains
and wetland environments, groundwater–surface water interaction zones, and many oth-
ers. Throughout these varied environments, the activity of Fe(III)-reducing microbes
is coupled with several major ecosystem processes, including the mineralization of or-
ganic matter and accompanying the release of CO2, the uptake and release of nutrients
(e.g., N and P), and the mobility and transformations of contaminants. Moreover, it is
largely due to microbially-driven Fe(III) reduction that Fe(II) is typically one of the most
abundant reductants in aquatic and terrestrial environments under suboxic and anoxic
conditions [140–142]. However, the reactivity of Fe(II) is highly dependent on its chemical
speciation [143–147], so insights into the factors that influence the formation of specific
Fe(II) phases has important implications for understanding Fe biogeochemistry and con-
taminant and nutrient transformations in natural and engineered environments. Among
the Fe(II)-bearing secondary minerals resulting from microbial reduction of Fe(III) oxides,
green rusts are particularly effective reductants for a wide range of contaminants of concern,
including nitrate, chlorinated solvents, nitroaromatics, azo dyes, toxic metals, metallolids,
and radionuclides [86,143,144,148–168]. Therefore, identifying the factors that lead to the
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formation of green rusts and other reactive Fe(II) phases can contribute to better water
quality management in natural and engineered environments.
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