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Abstract: This work analyzed the effectiveness of two electrical geophysical methods in characte-
rizing tailings dams. A large flotation cell used for sludge thickening in the concentration plant of
the Federico Mine (closed in 1985) within the old mining district of La Carolina (southeastern Spain)
was selected for this research. In addition to the direct information provided by the geology of the
study area and the surface exposure of the waste deposits, information regarding the construction
of this mining structure was available, which helped in the interpretations of the geophysical
survey data. In this study, two geophysical surveying methods were used simultaneously: Electrical
resistivity tomography (ERT) and induced polarization (IP). Six profiles were acquired, processed, and
interpreted. The length of the profiles allowed the obtaining of data reaching maximum investigation
depths ranging between 7 and 65 m. These profiles provided information for a detailed analysis of
the internal characteristics of the deposited materials. The lateral and vertical observed variations are
linked to different degrees of moisture content. The study also defines the geometry of the top of the
bedrock and the tectonics that affect the pouring/dumping hole. Old flotation sludge has resistivity
values that range between 1 and 100 Ωm (i.e., wet waste 1–30 Ωm, dry waste 30–100 Ωm), while
phyllites in the rocky substrate have resistivities larger than 200 Ωm and can even reach va-lues
greater than 1000 Ωm. Between the waste and unaltered phyllites, there is a supergene alteration
zone (weathering) with resistivity values between 100 and 200 Ωm. The IP method was used to
detect the presence of metals in the accumulated waste in the pond by analyzing the presence of
large chargeability anomalies. Anomalies were detected in four of the profiles, which ranged from
low (i.e., between 0 and 8 mV/V) to medium (i.e., between 8 and 18 mV/V) and high values (i.e., 18
and >30 mV/V).

Keywords: tailings dam; electrical resistivity tomography; induced polarization; La Carolina Mining
district; Spain

1. Introduction

Mineralized veins in the mining district of Linares and La Carolina (SE Spain) are
enriched in metallic sulfides, mainly galena (PbS), and have been exploited by underground
mining since pre-Roman times until the third quarter of the 20th century, when the last mine
closed. The materials extracted from the mine were subjected to a mineral concentration
process in treatment plants located nearby. Gravimetric methods were used until the
1950s. From then onward, flotation techniques became the preferred method causing
accumulations of generated wastes in tailings ponds and dams [1,2].

The metal crisis of the 1980s, along with the depletion of some deposits, caused mi-
ning company closures and the dismantling of their facilities, leaving waste on the ground
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without the necessary corrective measures being taken to avoid mobilization of the metals
contained in the waste. These conditions pose an environmental hazard, due to the lack of
preventive measures in the design (conditioning and waterproofing of the site). Failure
to seal and revegetate these abandoned sites have exposed the structures to the action of
atmospheric agents [3–7]. Mobilization of the metal(oid)s present in such wastes affects
the surrounding soils and channels, as has been shown, for example, in Goseong (Korea),
where high levels of Cu, Pb, As, and Zn have been measured and detected in crops [8].

In the Linares-La Carolina mining district, there are 33 tailings dams that accumulate
10,500,000 m3 of waste. This amount is extremely high, especially considering that in the
Region of Andalusia, 105 tailings dams have been inventoried out of a total of 344 metal
ore processing dams in Spain [9].

Currently, any remediation effort to be carried out requires detailed knowledge of the
characteristics of the accumulated waste. Good knowledge is needed about its limits and
variations both in depth and laterally and its relationship with the underlying substrate
to recognize possible leachate leakage areas, both at the foot of the dam and by direct
infiltration into the ground affecting the groundwater system.

Geophysical methods have been successfully used in mining research: Gravimetry [10,11],
magnetometry [10,11], electrical [12], electromagnetic [13], and seismic [14,15]. In recent
years, these techniques have been applied to evaluate and resolve environmental problems
associated with mining activity and the generated waste. In Spain, the electrical resistivity
tomography (ERT) technique has been used in a variety of mining districts. For example,
in Cartagena (SE Spain), multiple studies have recently evaluated the mobility of metals in
tailings dams [16,17], using a combination of ERT, mechanical drilling, and geochemical
techniques [18]. In the mining districts of Linares and La Carolina (southern Spain),
different tailings ponds and slag heaps have been characterized by applying all of these
techniques [3–7]. Similarly, in the Iberian Pyrite Belt (SW Spain), ERT has been used
to evaluate tailings ponds created during the concentration of massive sulfides and the
generation of acidic waters [19–21].

These methodologies have also been used in other mining districts worldwide. Such
is the case in Kettara (Morocco), where electrical geophysical methods have been applied to
study a sludge pond created from treating pyrrhotite [22]. In the Zaruma-Portovelo region
(Ecuador), ERT has been applied to study the proposed site of a gold mining sludge pond,
which was rejected because of possible landslide problems in the granites where this pond
would have been located [23]. Additionally, in the Haveri area of Finland, a combination of
geophysical and geochemical techniques has been used to evaluate the generation of acidic
waters from an Au-Cu mine tailings pond [24].

2. Description of the Study Area
2.1. Geological Setting

The study area is located in the municipality of La Carolina, Jaén (Figure 1a), in the
Sierra Monera mountain massif, specifically on the southeastern slope, which is the south-
eastern limit of the Hesperian massif [25,26]. Two large geological units are distinguished
regionally: The Palaeozoic basement (Figure 1c) and post-Hercynian cover.

The Palaeozoic basement consists of a metasedimentary series composed of phyllites
and quartzites from the Ordovician to the Carboniferous [27–29], and a granitic intrusion
was emplaced in this area at the end of the Hercynian orogeny [26].

Subsequent to this intrusion, an extensional episode occurred that favored hydrother-
mal fluid circulation though a network of fractures, which gave rise to the Philonian
reservoir in La Carolina. The veins exhibit mineral paragenesis that mainly consists of
sulfides with galena, chalcopyrite, sphalerite, and pyrite predominating, accompanied by
quartz, ankerite, and calcite [29].

On the Palaeozoic basement, the post-Hercynian series is horizontally positioned and
consists of Triassic, Miocene (not present in the work zone), and Quaternary materials,
which sometimes hide the discordantly arranged mineralized zones.
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Figure 1. (a) Location of the Federico mine dam (white box). (b) Federico Dam and location of the investigation profiles. 
(c) Geological cartography (based on the work of Castelló and Orviz in 1976) showing the position of the studied sector. 
Figure 1. (a) Location of the Federico mine dam (white box). (b) Federico Dam and location of the investigation profiles.
(c) Geological cartography (based on the work of Castelló and Orviz in 1976) showing the position of the studied sector.
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2.2. Mining Technique

Underground mining methods were used in this mining district [1] and included
shrinkage stoping and cut-and-fill stoping. These methods were the most common me-
thods for the Philonian deposits that presented subvertical veins in hard embedded rocks
(granites) and were the second-most common used for the mineralization that occurred
more in the upper part of the district and were sometimes disseminated (phyllites). The
shrinkage stoping technique consists of stripping minerals by drilling and blasting through
ascending horizontal strips from the bottom up. The overturned minerals are left in the
stope to serve as a working platform and as a provisional support for the gables until it is
finally abandoned once the chamber has been excavated [30]. In the cut-and-fill stoping
method, the void created by extracting the ore along a horizontal strip over the seam is
filled with loose material from waste rock, which can sometimes come from outside the
mine and serves as a support for the host rock and thus ascends during chamber excavation.

2.3. Tailings Dam

The Federico mine dam (Figures 1 and 2) is located at a site with the same name,
with UTM coordinates 444.900/4.239.700 and a height of 620 m. This tailing dam contains
600,000 m3 of slate and quartzite sludge.

The mineral concentration that took place in the La Carolina district was structured in
two stages. The stripped materials (with high grades of 18% to 20% galena after a previous
separation operation in the mine) were subjected to a gravimetric process from which,
on the one hand, the first galena concentrate was obtained and, on the other hand, some
mixed and high-grade wastes were then treated by a second flotation process. The flotation
method required milling the mixture to sizes below 1 mm (approximately 50–70 µm) to
release the minerals, and a fine concentrate of galena, as well as a residue that was pumped
into ponds and tailings dams.

These structures, as in the case of the Federico mine (Figure 1b), were built using a
depression in the ground where a gravel retaining wall was available to form the dam.
The flotation waste was pumped from the plant by discharging through a gutter placed
at the top of the dam through multiple outlets that were opened or closed to regulate the
deposition of the discharged sludge. The accumulated mud formed a beach area next to the
wall and a lake of process water. Water level management was carried out either through a
central chimney connected to a bottom drainage gallery (in ponds on horizontal terrain) or,
as in the case of Federico, through a lower drainage gallery built of masonry on a gravel
base, to which a drainage tube was connected through which the process water was freely
discharged to take it out of the structure [18] (Figure 2a–d).

In other similar structures of the La Carolina district, the waste metalloid contents
have been analyzed. Such is the case for the Aquisgrana sludge dam, where concentrations
of 544, 987, 8065, and 5186 mg/kg were obtained for As, Mn, Pb, and Zn, respectively [31].
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of a tailings dam. (c) Construction diagram of the Federico flotation tailing dam. (d) Details of the bottom drainage gallery 
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Ground resistivity measurements can be made with either an alternating current 
(AC) or a direct current (DC). Direct current (DC) resistivity methods use a controlled 

Figure 2. (a) Drainpipe connected to the bottom drainage gallery of the Federico dam. (b) Bottom discharge-type gallery of
a tailings dam. (c) Construction diagram of the Federico flotation tailing dam. (d) Details of the bottom drainage gallery of
the dam, which was constructed with masonry and covered with gravel.

3. Materials and Methods
Electrical Resistivity Tomography (ERT) and Induced Polarization (IP)

Ground resistivity measurements can be made with either an alternating current (AC)
or a direct current (DC). Direct current (DC) resistivity methods use a controlled source of
electrical current to produce an electrical voltage in the ground. Current is introduced into
the ground through a pair of electrodes and the potential field is measured using another
pair of electrodes.

The ERT technique can be considered an evolution (or combination) of other well-
stablished geoelectrical techniques, such as vertical electrical soundings (VES) and the
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constant separation traversing (CST). It is a noninvasive technique that produces nume-rical
models of the subsurface representing the 2D or 3D distribution of electrical resisti-vity
in the ground [32–35]. The technique consists of acquiring large datasets of apparent
resistivity in the field, filtering them, and finding a resistivity distribution of the ground
that produces a similar response to that measured in the field. The models are derived by
an iterative inversion process.

In recent years, this technique has expanded rapidly with the development of auto-
mated data acquisition systems capable of handling large amounts of data that are quickly
processed with appropriate tools and that facilitate the generation of increasingly complex
geological models [36].

In the data collection process, numerous electrodes are placed along a profile, with
separations determined as a function of the degree of resolution and depths to be inves-
tigated. Thus, the smaller the separation between electrodes, the greater the resolution
obtained and the lower the depth investigated, while increasing interelectrode separations
enable deeper depths of investigation but with lower resolution [33]. We have chosen the
Wenner–Schlumberger arrangement, which has a good penetration capacity and a good
sensitivity for both vertical and horizontal structures. Other electrode arrangements such
as the Wenner or dipole–dipole configurations, are more appropriate for sub-horizontal
structures and vertical structures, respectively.

The technique is being used with good results in different earth science fields: Stratig-
raphy [6,37,38], hydrogeology [39], environment [7,16,17,20,38], and mining [40,41].

The induced polarization (IP) method is used to measure the electrical charging
capacity of a given body or material in the subsoil and can detect those materials that have
the ability to store a current for a given time [32,42]. To apply this method, a known direct
current is applied between two electrodes (current electrodes) for a predetermined period
of time (usually longer than one second). When the current is abruptly terminated, the
voltage decay between another pair of electrodes (electrode potentials) is measured. A
parameter called apparent chargeability can be estimated by measuring the area under
the voltage decay curve. This value is normalized by the normal potential, Vo, which is
obtained during the period that the known voltage is applied to the current electrodes [43].

The equipment used in this work was a digital resistivity meter RESECS manufactured
by Deutsche Montan Technologie (DMT) (Figure 3a), which uses RESECS32 software for
field data acquisition. The data sequence is selected to measure the ground under the
profile with a dense cloud of measurement points. At each point, two parameters are
determined: The apparent electrical resistivity (measured in Ωm) and the apparent charge-
ability (measured in ms or mV/V). The resistivity meter controls the current application
and measures voltages using nonpolarizing electrodes with spiral lead cores immersed in
a saturated lead chlorite gel (Figure 3b).

In this work, six ERT resistivity and IP profiles were acquired (Figure 1b) with a
Wenner–Schlumberger configuration. For each profile, 64 electrodes were laid out. The
lengths of the profiles were 320 m for ERT-IP 1, 192 m for ERT-IP 2, 128 m for ERT-IP 3,
128 m for ERT-IP 4, 192 m for ERT-IP 5, and 36 m for ERT-IP 6. The electrode separation “a”
was 5, 3, 2, 2, 3, and 0.5 m, respectively (Figure 3c, profile ERT-IP 6). The parameters used to
measure the resistivity and the chargeability were as follows: Applied voltage = 800 V; time
of current injection = 1024 ms (with a delay of 10 ms to allow for stabilization and voltage
measurement); interval between measurements of 990 ms (where the voltage decay curves
were measured); no filters; and one repetition cycle (in profiles 1 to 5). In profile ERT-IP
6, an 880 V current was used; time of application = 2000 ms (with a delay of 50 ms) and
interval of 1000 ms (for voltage decay readings); a Bessel filter and two repetition cycles.
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Figure 3. (a) Deutsche Montan Technologie (DMT) RESECS resistivity meter. (b) Nonpolarizable
electrodes in the profile ERT-1. (c) Profile ERT-6 on the dam slope. (d) Crusts observed on the
dam slope.

To generate the resistivity and chargeability values, RES2DINV software (Loke and
Barker, 1996) was used, which uses the least squares method with forced smoothing
and a modified quasi-Newton optimization technique, in which a subsoil model is con-
structed using rectangular prisms. The resistivity values for each prism are determined
and the differences between the observed and calculated apparent resistivity values are
minimized [44–46]. The field apparent resistivity and apparent chargeability values were
previously processed and filtered with PROSYSII software (IRIS Instruments). At this stage,
the topographic information (topographic variations along the profile) was incorporated
into the data.

4. Discussion and Results
Electrical Resistivity Tomography (ERT) and Induced Polarization (IP)

Six ERT and IP profiles were acquired (Figure 1b) on a tailings dam in the abandoned
Federico Mine. One was longitudinally oriented (ERT-IP 1) along the major axis of the
tailings dam. Four were transversely oriented (minor axis of the tailings dam, ERT-IP 2,
3, 4, and 5). The last one was oriented along the maximum slope of the dam (ERT-IP 6).
Figures 4–6 show the derived resistivity and chargeability models.

The results of the study allow the geometry of the top of the bedrock basement to
be defined and provides information about the tectonic fractures. The flotation sludge
has resistivity values that range between 1 and 100 Ωm (wet waste 1–30 Ωm, dry waste
30–100 Ωm), while the phyllites of the rocky substrate have resistivities larger than 200 Ωm
and can even reach values over 1000 Ωm. Between the waste and the unaltered phyllites,
there is a supergene alteration zone (weathering) with resistivity values between 100 and
200 Ωm.
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induced polarization (IP) models IP-1 and IP-2, low chargeability values are shown as blue and yellow colors and red are
associated with the level enriched in metal(oid)s.
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on the sides of the profiles, and flotation waste with low resistivities (blue and green colors) are observed, which indicate
wet areas (dashed red line). ERT-6 (dam slope) exhibits a different response to the waste, with low values (in blue and green)
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observed, with the medium chargeability zone associated with wet sludge. IP-6 exhibits a strong chargea-bility anomaly
probably associated with levels of disseminated sulphides and metal(loid)s-enriched crust.
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In the six analyzed profiles, IP measurements were also conducted. The apparent
chargeability measurements were then inverted to obtain subsurface chargeability mod-
els (Figures 4–6). The inversion results differentiate three ranges of chargeability: Low
(0–8 mV/V), medium (8–18 mV/V), and high/very high (18–30 mV/V). Low chargeability
va-lues are probably associated with the absence of dispersed metals. They are character-
ized by a weak polarization phenomenon leading to the low observed chargeability values.

The ERT and IP 1 profile (Figure 4) has a length of 320 m in the N–S direction and
reaches a depth of 64 m. The final RMS error (for the simultaneous inversion of resistivity
and chargeability data) is 5.52%. The obtained resistivity distribution shows two distinct
units: The deepest is characterized by high resistivity values (between 200 and more
than 1000 Ωm) that correspond to the Palaeozoic substrate, which is composed mainly
by phyllites with quartzite intercalations. These materials are at the base of the profile,
are uniform, and exhibit a slight slope toward the South. Overlying these materials,
resistivities between 100 and 200 Ωm are found. They are associated with the weathering
of the phyllites. At the surface, flotation waste lays directly over these materials with
resistivities below 100 Ωm. They are composed by silts and fine sands with thicknesses up
to 35 m toward the S, adjacent to the dam wall. Within this waste, two different electrical
responses are observed: A zone with resistivities between 1 and 30 Ωm, where we assume
that the waste contains a high amount of moisture; and values between 30 and 100 Ωm,
which are characteristic of dry waste. The resistive materials observed at the southern end
of the profile correspond to the mine gravels used to form the dam wall.

The IP 1 model (Figure 4) shows generally low chargeability values (0 to 8 mV/V).
A moderate-amplitude anomaly (8–18 mV/V) appears centered inside the waste body
associated with a possible metallic sulfide-enriched zone. At the southern end, two maxima
are observed that could be related to objects buried in the gravel dam wall.

The ERT and IP 2 profile (Figure 4) has a length of 180 m and reaches a depth of 36 m.
The final RMS error is 1.60%. As in the previous profile, the phyllitic basement waste is
clearly differentiated from the bedrock. This waste can also be described according to
the resistivity values influenced by the moisture content. A very low-resistivity anomaly
surrounded by more resistive (less humid) sludge appears in the center of the model. It
should be noted that the low-resistivity values present in the lower part of the deposit
(9.5 Ωm) are associated with the bottom drainage gallery on a gravel base (Figure 2). The
deeper phyllites with high resistivities were reworked, creating a set of fractures asso-ciated
with the trough that serves as the discharge hole.

The IP 2 profile (Figure 4) shows a dominating low-chargeability distribution without
any remarkable anomaly.

The ERT and IP 3 model (Figure 5) has a length of 120 m and reaches a depth of 24 m.
The final RMS error is 2.53%. A wet core (low resistivities) is present within the waste.
There is another conductive zone toward the ENE, at the edge of the model. Given that the
wet core is located at the end of the dam, it may be associated with leaching zones. This
model also shows the possible presence of the bottom drainage gallery with low resistivity
values (Figure 2). It should be noted that in all models, an increase in resistivity (between
80 and 150 Ωm) is observed within the dry zone of the waste, which we associate with the
formation of crusts that have resulted from changes in the characteristics of the deposited
slurries that facilitated oxidation (Figure 3d). At the sides of the model, Palaeozoic resistive
phyllites are observed, probably associated with a fracture-type contact.

The IP-3 model (Figure 5) has an anomaly with high chargeability values located in
the center of the waste extending toward the bottom (although it seems to project from
the bottom upward). This anomaly is associated with the presence of the bottom drainage
gallery and filling gravels that surround the gallery (Figure 3a,b). This can also represent an
area that could be significantly enriched in metals at the initial location of the discharge of
the flotation fines. The two small peaks observed toward the WSW can also be asso-ciated
with metal-enriched areas.
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The ERT and IP 4 model (Figure 5) has a length of 120 m and reaches a depth of
24 m. The final RMS error is 8.64%. This profile exhibits the same electrical pattern, with
a wet core of low resistivity (<20 Ωm) enveloped by dry wastes (20–100 Ωm). The most
conductive zone, which is toward the ENE end of the profile, is observed close to the
phyllite contact. It could be a possible water circulation zone within the waste. The higher
resistivity values that we associate with crusts are also noteworthy, which in this profile are
clearly manifested on the dam surface (Figure 3d). Phyllites (high resistivities) are detected
at both ends of the profile.

The IP-4 model (Figure 5) exhibits low chargeability values. A small anomaly in the
lower part of the model is associated with the bottom drain.

The ERT and IP 5 model (Figure 6) has a length of 180 m and reaches a depth of 36 m.
The final RMS error is 10.93%. It presents a resistivity distribution similar to those of the
other profiles and clearly differentiates the phyllites (resistivities greater than 200 Ωm) from
the flotation waste (resistivities less than 200 Ωm). The phyllites are interrupted by a series
of fractures that constitute the trough. Several high-resistivity zones are observed in the
central core and in the lateral zone toward the ENE and in the bottom gallery (supported
and surrounded by gravels, Figure 2) within the waste depending on the moisture levels.
It should also be noted that the resistivities between 80 and 150 Ωm obtained in the waste
are associated with crust formation, which in this profile are observed both inside and on
the surface (Figure 3d).

The IP 5 model (Figure 6) exhibits two patterns in the chargeability distribution. Low
values characterize both the waste and phyllites. On the other hand, high values between 8
and 18 mV/V are observed both toward the WSW and in the background of the waste. We
associate these anomalies with zones enriched in metallic sulfides and wet waste.

In addition to the longitudinal and cross-sectional profiles, a high-density profile (ERT
and IP 6; Figure 3c, Figure 6) was aquired with an electrode spacing of 0.5 m on the slope
of the dam to study the lateral behavior of the waste. The RMS error is 5.07%. Two very
sharp resistivity changes are observed. One is associated with the contact between the
unaltered waste (5 to 100 Ωm) and the wet core (5 to 20 Ωm). The second is the contact
between high resistivities associated with the crusts observed inside and on the surface of
the waste (Figure 3d).

The detailed model, IP 6 (Figure 6), exhibits low background chargeability values and
a zone with high and very high values (8–30 mV/V) on the surface of the lower part of the
dam slope. The latter can be associated with a local concentration of metal sulfides.

5. Conclusions

In this work, two electrical geophysical methods (ERT and IP) were used in an inte-
grated manner to analyze their capability to model the inner structure of tailings dams.
For this study, the abandoned dam at the Federico mine (La Carolina, southeastern Spain)
was chosen. It contains flotation waste from an old washing plant, one of the most im-
portant in the mining district. The ERT and IP methods were used and their results were
compared with direct field observations and other available information regarding the
mining structure.

In the electrical tomography models, the mining wastes of the base rock (Palaeozoic
phyllites) are clearly defined. The method allows us to deduce the morphology of the
phyllitic substrate, which is controlled by the presence of fractures and which forms a
trough that serves as a repository for flotation wastes. ERT also allowed us to interpret
changes in the interior of the waste. Wet and dry areas were detected, in addition to crusts
and levels associated with higher metal sulfide contents. The presence of dam drainage at
the bottom of the dam is also detected with this method.

On the other hand, the IP method complements the information obtained with ERT and
shows three chargeability levels associated with the bottom of the waste, levels with sulfide
enrichment associated with crusts, and a level associated with the bottom drainage gallery.
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These indirect electrical methods are of interest for examining tailings ponds and
dams, as they allow the definition of both their morphology and deposition on the ground,
as well as their internal structures, and constitute a step that would be conducted prior to
conducting mechanical soundings.
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