
minerals

Article

Experimental Study on the Short-Term Uniaxial Creep
Characteristics of Sandstone-Coal Composite Samples

Dawei Yin 1, Feng Wang 1,*, Jicheng Zhang 1, Faxin Li 1, Chun Zhu 2 and Fan Feng 1

����������
�������

Citation: Yin, D.; Wang, F.; Zhang, J.;

Li, F.; Zhu, C.; Feng, F. Experimental

Study on the Short-Term Uniaxial

Creep Characteristics of

Sandstone-Coal Composite Samples.

Minerals 2021, 11, 1398. https://

doi.org/10.3390/min11121398

Academic Editor: Gianvito Scaringi

Received: 15 October 2021

Accepted: 8 December 2021

Published: 10 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 State Key Laboratory of Mine Disaster Prevention and Control, Shandong University of Science and
Technology, Qingdao 266590, China; yindawei@sdust.edu.cn (D.Y.); 202081010096@sdust.edu.cn (J.Z.);
lifaxin@sdust.edu.cn (F.L.); fengfan0213@sdust.edu.cn (F.F.)

2 School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China; zhu.chun@hhu.edu.cn
* Correspondence: wangfeng@sdust.edu.cn; Tel.: +86-137-8985-9661

Abstract: In this investigation, the uniaxial short-term creep tests with multi-step loading were
conducted on the sandstone-coal composite samples, and the characteristics of creep strength,
creep deformation, acoustic emission (AE), and creep failure of composite samples were studied,
respectively. The creep strength of the composite sample decreased with the stress-level duration,
which was mainly determined by the coal and influenced by the interactions with the sandstone. The
creep deformation and damage of sandstone weakened the deformation and damage accumulation
within the coal, resulting in the larger strength for the composite sample compared with the pure
coal sample. The axial creep strain of composite sample generally increased with the stress-level
or the stress-level duration under same conditions. The AE characteristics of composite sample
were related to the creep strain rate, the stress level, the stress level duration, and the local failure or
fracture during creep loading. The micro or macro failure and fracture within the composite sample
caused the rise in the axial creep strains and the frequency and intensity of AE signals, especially
the macro failure and fracture. The creep failures of composite samples mainly occurred within the
coal with the splitting ejection failure accompanied by the local shear failure, and no obvious failures
were found within the sandstone. The coal in the composite sample became more broken with the
stress-level duration.

Keywords: sandstone-coal composite samples; creep strength; creep deformation; acoustic emission
characteristics; creep failure; short-term uniaxial creep loading

1. Introduction

Coal is the foundation of energy, and the major resource in China, which effectively
promotes the development of economy and society nationally [1–3]. In order to ensure
the safety, high efficiency and green mining of coal resources in China, different types
and functions of coal pillars have been left around the mining area [4–8], such as the strip
coal pillar, the waterproof coal pillar, the section coal pillar, etc. A considerable number
of left coal pillars, as the permanent coal pillars, bear loads for a long time to support the
overlying strata and to control the surface subsidence or collapse [9–14]. The long-term
stability of these coal pillars determines the safety and stability of overlying strata, surface
buildings and ecological environment, etc. And their failure and instability can induce the
overlying strata caving and surface collapsing in China [7], for instance, the failure and
instability of left coal pillars in the 402 panel of Majiliang Coal Mine (Figure 1a) caused the
formation of an oval surface collapse area with about 79,103 m2; the failure and instability
of left coal pillars in the 404 panel of Wajinwan Coal Mine (Figure 1b) induced the formation
of an surface collapse area with about 163,000 m2, and resulted in 18 deaths and 19 injuries.
Therefore, it is important to investigate the long-term stability of these left coal pillars.
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Figure 1. Surface collapsing induced by the failure and instability of left coal pillars in China [4]: (a) 

Surface collapsing induced by the failure and instability of left coal pillars in 402 panel of Majiliang 

Coal Mine; (b) Surface collapsing induced by the failure and instability of left coal pillars in 404 

panel of Wajinwan Coal Mine. 

Many investigations have achieved that the long-term bearing failure and instability 

of the coal pillar are a mechanical behavior gradually developing from the edge to its in-

terior [4,7–12]. These are not only related to the properties of coal pillar itself, but also 

affected by the composite structure consisting of coal pillar and surrounding rock layers 

[6,7–36]. In other words, the instability of coal pillar is the result of the overall failure and 

instability of composite structure under overlying strata loads. Therefore, the long-term 

bearing characteristics and failure mechanisms of coal pillar should be investigated con-

sidering the composite structure. Generally, these composite structures were simplified to 

the rock–coal, coal–rock, and rock–coal–rock composite samples with a bonded or fric-

tional interface to study their mechanical behaviors in previous experimental and numer-

ical simulation investigations [12–36]. These studies focused on the effects of the height 

ratio of coal to rock [12,22,31–33], the interface between rock and coal [11–14,19], the com-

posite model [36], the loading conditions (uniaxial loading, triaxial loading, cyclic loading 

and unloading, and true triaxial loading) [14,21,24,25,27,34,35], the defects within the coal 

or rock, and the mechanical properties (strength, stiffness, lithology, etc.) of rock or coal 

[19,20,26] on the strength, deformation, energy evolution, electromagnetic radiation char-

acteristics [28,29], acoustic emission (AE) characteristics, and failure properties of compo-

site samples. These above achievements are of great significance to understand mechani-

cal characteristics of the composite structure consisting of coal pillar and surrounding rock 

layers. 

The creep tests on rock or coal samples are very important methods to understand 

the long-term bearing characteristics and failure mechanisms of coal or rock mass [37–46], 

and these investigations mainly focused on pure coal or rock samples. Fatemeh and Mark 

[37] carried out the creep experiments on clay- and carbonate-rich shale samples with 

short-term (4 h) and long-term (4 weeks) periods, respectively, the results showed that the 

shale samples follow the same creep trend through time, regardless of the loading history. 

Cao et al. [38] proposed a nonlinear damage creep constitutive model describing the creep 

deformation of soft rock. Maranini and Brignoli [39] investigated the creep behavior of a 

porous chalk, named Pietra Liccese, and proposed an elasto-viscoplastic model describing 

the slow irreversible deformation in time of the rock surrounding underground openings. 

Yang et al. [40] analyzed the influences of confining pressure and pore pressure on short-
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Figure 1. Surface collapsing induced by the failure and instability of left coal pillars in China [4]:
(a) Surface collapsing induced by the failure and instability of left coal pillars in 402 panel of Majiliang
Coal Mine; (b) Surface collapsing induced by the failure and instability of left coal pillars in 404 panel
of Wajinwan Coal Mine.

Many investigations have achieved that the long-term bearing failure and instability
of the coal pillar are a mechanical behavior gradually developing from the edge to its inte-
rior [4,7–12]. These are not only related to the properties of coal pillar itself, but also affected
by the composite structure consisting of coal pillar and surrounding rock layers [6–36].
In other words, the instability of coal pillar is the result of the overall failure and instability
of composite structure under overlying strata loads. Therefore, the long-term bearing
characteristics and failure mechanisms of coal pillar should be investigated considering the
composite structure. Generally, these composite structures were simplified to the rock–coal,
coal–rock, and rock–coal–rock composite samples with a bonded or frictional interface
to study their mechanical behaviors in previous experimental and numerical simulation
investigations [12–36]. These studies focused on the effects of the height ratio of coal to
rock [12,22,31–33], the interface between rock and coal [11–14,19], the composite model [36],
the loading conditions (uniaxial loading, triaxial loading, cyclic loading and unloading,
and true triaxial loading) [14,21,24,25,27,34,35], the defects within the coal or rock, and the
mechanical properties (strength, stiffness, lithology, etc.) of rock or coal [19,20,26] on the
strength, deformation, energy evolution, electromagnetic radiation characteristics [28,29],
acoustic emission (AE) characteristics, and failure properties of composite samples. These
above achievements are of great significance to understand mechanical characteristics of
the composite structure consisting of coal pillar and surrounding rock layers.

The creep tests on rock or coal samples are very important methods to understand
the long-term bearing characteristics and failure mechanisms of coal or rock mass [37–46],
and these investigations mainly focused on pure coal or rock samples. Fatemeh and
Mark [37] carried out the creep experiments on clay- and carbonate-rich shale samples
with short-term (4 h) and long-term (4 weeks) periods, respectively, the results showed
that the shale samples follow the same creep trend through time, regardless of the loading
history. Cao et al. [38] proposed a nonlinear damage creep constitutive model describing
the creep deformation of soft rock. Maranini and Brignoli [39] investigated the creep be-
havior of a porous chalk, named Pietra Liccese, and proposed an elasto-viscoplastic model
describing the slow irreversible deformation in time of the rock surrounding underground
openings. Yang et al. [40] analyzed the influences of confining pressure and pore pressure
on short-term mechanical behavior of red sandstone samples, and the creep contribution to
rock deformation increased with the pore pressure, and the samples showed significant
time-dependent effect at higher deviatoric stresses. Yang et al. [41] studied the evolution
characteristics of deformation field for red sandstone during the creep loading using the
digital image correlation technique. Zong et al. [42] discussed the effects of the confining
pressure and damage on short-term mechanical behavior of fractured sandstone with differ-
ent degrees of damage. Yang et al. [43] and Cao et al. [44] analyzed the AE characteristics of
coal samples under creep loading, respectively. Chen et al. [45] and Wu et al. [46] proposed
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the creep model for coal samples and the nonlinear creep damage model for salt rock,
respectively. These above achievements are of great significance to understand the creep
behavior of engineering coal or rock mass

However, the creep investigations that focused on the rock–coal, coal–rock, and rock–
coal–rock composite samples have been scant. The creep tests can be classified as long-term
creep tests and short-term creep tests based on the stress level duration, but there are no
definite time requirements for this classification. Short-term creep tests typically have a
stress level duration of several hours or days, whereas long-term creep tests can have a
stress level duration of several weeks or even years. A large number of investigations
have shown that the creep parameters measured by the short-term creep tests can give
a reasonably understanding of the long-term behavior of the rock and help avoid time-
consuming [37,40,44–47]. In this investigation, we conducted the short-term uniaxial
multi-step loading creep tests with different stress-level durations on the sandstone-coal
composite samples, and the characteristics of creep strength, creep deformation, AE, and
creep failure of composite samples were studied, respectively.

2. Experimental Procedure
2.1. Sample Preparation

In this investigation, the rock in the composite sample was the sandstone. Sandstone
and coal blocks were taken from the Daizhuang Coal Mine in Jining City of China. The
sandstone was from the immediate roof. The heights of both the rock and coal layers were
50 mm in the composite samples with a diameter of 50 mm and a height of 100 mm. Firstly,
the sandstone and coal blocks were drilled into the cylindrical samples with a diameter
of 50 mm. Then, the cylindrical samples were cut into 50 mm height by a stone-sawing
machine. Then both ends of cylinder samples were flattened, and smoothed to meet
the experimental requirements, respectively, by a stone grinding machine. Finally, the
cylinder coal and sandstone samples with a diameter of 50 mm and a height of 50 mm were
bonded with superglue to make the 100 mm high sandstone-coal composite samples. Nine
composite samples were well prepared, three of which (Figure 2a) were used to test their
mechanical properties under uniaxial loading, and the other composite samples (Figure 2b)
were subjected to the short-term uniaxial creep tests.
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Figure 2. Sandstone-coal composite samples: (a) Sandstone-coal composite samples for creep tests;
(b) Sandstone-coal composite samples for uniaxial compression tests.

2.2. Test System

The testing system for short-term uniaxial creep with multi-step loading on sandstone-
coal composite samples is shown in Figure 3, including a loading system, an AE monitoring
system, and a digital video camera (DVC) (Sony, Tokyo, Japan). During each test, they were
synchronized to have the same time stamp in order to facilitate analyses of test results.

An AG-X250 servo-controlled testing system (Shimadzu, Kyoto, Japan) was used to
perform the short-term uniaxial creep tests on the composite samples [12–14,20]. The AE
event was selected to analyze the AE characteristics of composite samples during creep
loading, which was monitored using a PCI-2 AE system (MISTRAS, Princeton, NJ, USA)
by MISTRAS. The AE sensor was a R3α with a diameter of 19 mm and a height of 22 mm.
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Its resonant frequency was 29 kHz, and the range of frequency was 20–180 kHz. The main
amplifier gain, threshold, floating threshold, and sampling frequency of the AE monitoring
system were 40 dB, 45 dB, 6 dB, and 1 MHz, respectively. The Vaseline was applied between
the sample surface and AE sensor in order to improve the coupling conditions. One AE
sensor was fixed to the sandstone surface with the adhesive tape. Before the tests, the
AE sensor was subjected to a pencil-lead breaking test proposed by ASTM (American
Society for Testing and Materials) to ensure that the amplitude measured was above 90 dB.
A SONY portable DVC was used to capture the stage points in progressive failure processes
of composite samples during creep loading. Generally, the laboratory temperature affected
the creep characteristics of samples, and the creep deformation increased with the decrease
of the laboratory temperature. The laboratory temperature was set to 24 ◦C to reduce the
temperature effects during creep tests by running the air conditioning.
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Figure 3. Testing system for short-term uniaxial creep on sandstone-coal composite samples (revised
from Yin et al. [20]).

2.3. Test Scheme

Before the short-term uniaxial creep testing, uniaxial compressive tests were carried
out on three sandstone-coal composite samples (labeled as RC-1, RC-2 and RC-3) to obtain
their basic mechanical properties, using the AG-X250 servo-controlled testing system under
the displacement-controlled mode at a loading rate of 0.01 mm/s. Figure 4 shows uniaxial
stress-strain curves of composite samples; their uniaxial mechanical properties are listed in
Table 1.

Table 1. Mechanical properties of sandstone-coal composite samples under uniaxial loading.

Sample Type Sample No. Uniaxial Compressive
Strength (UCS)/MPa Peak Strain Elastic Modulus/GPa

(at 40–60% of Peak Stress)

Sandstone-coal
composite sample

RC-1 14.36 0.00985 2.11
RC-2 14.08 0.00775 2.52
RC-3 13.99 0.00853 2.44

Average 14.14 0.00871 2.36
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Figure 4. Uniaxial stress-strain curves of sandstone-coal composite samples.

In Table 1, the average UCS, peak strain and elastic modulus of sandstone-coal com-
posite samples were 14.14 MPa, 0.00871, and 2.36 GPa, respectively. Generally, the creep
tests were carried out by methods of single-stage loading, multi-stage loading, and multi-
stage loading and unloading in previous investigations on the creep characteristics of pure
coal or rock samples [37–46]. In this investigation, the short-term uniaxial creep tests with
multi-stage loading were conducted on sandstone-coal composite samples. According to
the results of uniaxial compression tests, the axial stresses of 50%, 60%, 70%, 80%, 85%,
90%, 95%, . . . . . . of the average UCS (σ) were gradually applied on composite samples
until they underwent the failure, as shown in Figure 5. The corresponding axial stresses
were 7.07 MPa, 8.48 MPa, 9.90 MPa, 11.31 MPa, 12.02 MPa, 12.73 MPa, 13.44 MPa, . . . . . . ,
respectively. The stress level durations (S) were set to 2 h and 6 h, respectively. The axial
stress was firstly applied on the composite samples from 0 kN to the 13.88 kN (the first
stress level) at a loading rate of 0.005 kN/s, and the loading rate between two adjacent
stress levels was also set to 0.005 kN/s. The test data acquisition interval between two
adjacent stress level was set to 0.5 s, and the data acquisition interval during each stress
level was set to 1 s.
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3. Creep Strength Characteristics of Composite Samples
3.1. Creep Strengths of Composite Samples

The creep strength σrc of the composite sample was given in Equation (1),

σrc = σn−1 + (σn − σn−1)
t
S

(1)

where, σn was the stress level leading to failure; σn−1 was the stress level before σn, t was
the loading duration at the stress level of σn; S was the horizontal loading duration of each
level of stress.

Table 2 shows the values of σrc, σn, σn−1, t and creep coefficients (ratio of σrc and σ)
of composite samples. Among them, the stress level durations corresponding to Groups
A and B composite samples were 2 h and 6 h, respectively. The values of σrc and creep
coefficients for composite samples were compared in Figure 6a,b, respectively.

Table 2. σn, σn−1, t and creep coefficients of sandstone-coal composite samples.

Sample Type Sample No. S/h σn/MPa σn−1/MPa t/s σrc/MPa Creep Coefficient

Sandstone-coal
composite sample

A-1

2

13.44 12.73 380 12.77 90.24%
A-2 14.14 13.44 782 13.52 95.47%
A-3 13.44 12.73 1035 12.83 90.88%

Average value — — — 13.05 92.20%
B-1

6

13.44 12.73 2700 12.82 90.66%
B-2 12.02 11.31 3435 11.42 80.76%
B-3 11.31 9.90 455 9.93 70.23%

Average value — — — 11.39 80.55%
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Figure 6. Comparisons of σrc and creep coefficients for composite samples: (a) σrc comparison of composite samples; (b)
Creep coefficient comparison of composite samples.

In Table 2 and Figure 6, σrc and creep coefficients of composite samples varied with
the stress level duration. The average σrc of Group A composite samples was 13.05 MPa
with an average creep coefficient of 92.20%; whereas the average σrc of Group B composite
samples was 11.39 MPa, and their average creep coefficient was 80.55%. These illustrated
that as S increased from 2 h to 6 h, σrc and creep coefficients of composite samples gradually
decreased, which were consistent with previous investigations on creep characteristics of
pure coal or rock samples. Compared with Group A composite samples, both average σrc
and creep coefficient of Group B composite samples decreased by 12.45%.
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3.2. Analyses on Creep Strength Characteristics of Composite Samples

The failure properties could well reflect the strength characteristics of the sample under
loading. After the short-term uniaxial creep loading, the failures of composite samples
mainly occurred within the coal, and no obvious failures were found in the sandstone
(in Section 6). These illustrated that the failure of coal determined the overall instability of
the composite sample, i.e., the creep strength of coal played a major in the creep strength
of the composite sample. In order to analyze the relationship between creep strengths
of pure coal samples and composite samples, the short-term uniaxial creep tests with
multi-stage loading were conducted on pure coal samples (labeled as PC-1 and PC-2) with
a diameter of 50 mm and a height of 50 mm using the AG-X250 servo-controlled testing
system (Figure 7). And the test scheme was same as that of composite samples.
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Figure 8a,b show the creep curves of PC-1 and PC-2 pure coal samples, respectively,
and the values of their creep strengths (σpc), σn, σn−1 and t are given in Table 3. In Table 3,
the values of σpc for PC-1 and PC-2 pure coal samples were 12.46 MPa and 11.39 MPa,
respectively, which were different from σrc of composite samples. σpc and σrc are compared
in Figure 9.

Table 3. σn, σn−1 and t and creep coefficients of pure coal samples.

Sample Type Sample No. σn/MPa σn−1/MPa t/s σpc/MPa T/h

Pure coal
sample

PC-1 12.73 12.02 4481 12.46 2
PC-2 12.02 11.31 2480 11.39 6
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Figure 8. Creep curves of pure coal samples: (a) Creep curve of PC-1 pure coal sample; (b) Creep curve of PC-2 pure
coal sample.
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For the pure coal sample, under the actions of gradual stress levels, it was incurred
creep deformations and damages. When the accumulative creep deformations (damages)
reached its creep deformations (damages) limit, pure coal sample would fail. However, the
sandstone-coal composite sample was a combined body, under the actions of gradual stress
levels, the rock and coal in the composite sample were both incurred creep deformations
and damages. The average UCS of sandstone (72.89 MPa) was 4.82 times larger than that of
coal (15.11 MPa). The coal in the composite sample would occur creep failure first, inducing
the overall instability and failure of the composite sample. While the sandstone was still
at the linear elastic stage due to its larger strength. Before the creep failure of coal, the
sandstone has had creep deformations occur, consuming some applied mechanical work as
strain energy in it. Therefore, under the certain external input energy, the creep deformation
and damage in coal of the composite sample was smaller than that in pure coal sample. The
creep deformation of sandstone limited the accumulations of creep deformation (damage)
in coal, and which would be destroyed at a higher input energy level compared with the
pure coal sample. Therefore, the creep strengths of composite samples were larger than
that of pure coal samples. In Figure 9a, compared with σpc of PC-1 pure coal sample, the
values of σrc for A-1, A-2, and A-3 composite samples increased by 2.49%, 8.51%, and 2.97%,
respectively. In Figure 9b, compared with the σpc of PC-2 pure coal sample, the values of
σrc for B-1, and B-2 composite samples increased by 2.49%, 8.51%, and 2.97%, respectively.
However, σrc of B-3 composite sample decreased by 12.82% compared with σpc of PC-2
pure coal sample. This was mainly because that the initial damages in coal were relatively
larger that of B-1, B-2 composite samples and PC-2 pure coal sample.

It is important to point out that the sandstone was at the linear elastic stage when
the coal occurred the creep failure. The creep failure of coal could cause the rebound
deformation of sandstone, and strain energy in it would release rapidly. Partial strain
energy was used to overcome the damping of sandstone to restore its the initial state. The
other strain energy exerted work on the coal to promote its further creep failure. This
process appeared before the occurrence of main creep fracture in coal.
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Figure 9. Comparisons of σpc and σrc for composite samples and pure coal samples: (a) Comparisons
of σpc and σrc of Group A composite samples and PC-1 pure coal sample; (b) Comparisons of σpc and
σrc of Group B composite samples and PC-2 pure coal sample.

4. Creep Deformation Characteristics of Composite Samples

Data acquisition interval in these creep tests was relatively small, and the amount
of data was large and dense, which were of great significances to the analysis of creep
deformation characteristics of composite samples. Figure 10a,b show creep curves of
A-1 and B-3 composite samples, respectively. The axial creep strains of Groups A and B
composite samples at different stress levels are compared in Figure 11a,b, respectively.
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Figure 10. Typical creep curves of sandstone-coal composite samples: (a) Creep curve of A-1 composite sample; (b) Creep
curve of B-3 composite sample.
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Figure 11. Axial creep strains of sandstone-coal composite samples at different stress levels: (a) Axial
creep strains of Group A composite samples; (b) Axial creep strains of Group B composite samples.

In Figure 10, at the beginning of each stress level, the composite sample occurred the
instantaneous elastic response, producing the instantaneous elastic deformation. After
the stress was stable, the composite sample entered the creep stage, and occurred the
creep deformation. The creep deformation rate decreased with the loading time at the
deceleration creeping stage, and it tended to be stable finally at the stable creeping stage.
At each stress level, the creep curves of composite samples all appeared the deceleration
creeping stage and stable creeping stage. Meanwhile, the creep curves of composite samples
occurred the unstable creeping stage, and the corresponding creep deformation sharply
increased at the last stress level. Then composite samples experienced the creep failure
and instability.

In Figure 11, as a whole, the axial creep strain increased with the stress level, and
under same stress level, the longer the loading time was, the higher the creep strain was.
However, the phenomena of a low stress level with a large axial creep strain, a high stress
level with a low axial strain, and a short stress level duration with a great axial creep strain
under same stress level, were also found in Figure 11. For example, under the stress level of
11.31 MPa, the axial strain of A-1 composite sample was larger than that of B-1 composite
sample. The main reason for these phenomena was that the creep process was a concurrent
process of hardening and softening for composite sample at each stress level, which was
the comprehensive embodiment of the competition between the hardening and softening.
When creep softening was dominant, the corresponding creep strain was relatively large,
while when creep hardening was dominant, the corresponding creep strain was relatively
small. Meanwhile, before the unstable creeping stage, the axial creep strain-time curve did
not increase steady, but occurred the slight or violent local increasing fluctuations, as shown
in Figure 12. These also induced the abnormal axial creep strain variation phenomena in
Figure 11.
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Figure 12. Axial creep strain fluctuations of sandstone-coal composite samples (the scale bar between
the sample size in the figure and that of the real sample is 1:4): (a) Axial creep strain fluctuation
of A-1 composite sample at the stress level of 11.31 MPa; (b) Axial creep strain fluctuation of B-3
composite sample at the stress level of 8.48 MPa.

In Figure 12a, the A-1 composite sample occurred the splitting ejection failure within
coal before a point, and this failure was caused by the loading from the stress level of
8.48 MPa to the stress level of 9.90 MPa, which was analyzed comprehensively in Section 5.
From a point to b point, the composite sample experienced the splitting ejection failure
within coal around the initial splitting ejection failure zone again, as shown in the green
elliptical area of Figure 12a. This process was accompanied with the macro-crack initiation
and propagation near the new formed splitting ejection failure zone. These failures induced
the linear sudden increase of axial creep strain, and the corresponding axial stress had a
sudden drop. The axial creep strain was 0.000050 from a point to b point, which accounted
for 32.26% of the whole axial creep strain at the stress level of 11.31 MPa. In Figure 12b,
the B-3 composite sample occurred the splitting failure within coal before c point, and an
obvious macro-tensile crack was found in coal. This failure was caused by the loading
from the initial loading point to the first stress level of 7.07 MPa, as shown in the red
line of Figure 12b, which was analyzed comprehensively in Section 5. From c point to d
point, the composite sample experienced the splitting failure within coal again, and a blue
macro-tensile crack was formed near initial red macro-tensile crack. These failures induced
the sudden increase of axial creep strain, and the corresponding axial stress had serious
fluctuations. The axial creep strain was 0.000021 from c point to d point, which accounted
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for 5.59% of the whole axial creep strain at the stress level of 8.48 MPa. The fluctuation
degree of creep axial strain caused by splitting ejection failure was stronger than that by
tensile failure.

5. AE Characteristics of Composite Samples

In this investigation, the AE event was selected to analyze AE characteristics of
composite samples under short-term uniaxial creep loading. Figures 13 and 14 give the
variety curves of AE event and axial strain for A-1 and B-3 composite samples at creep
stage for different stress levels, respectively. And a, b, c, d, e, f, g in Figure 13 refer
to the stress levels of 7.07 MPa, 8.48 MPa, 9.90 MPa, 11.31 MPa, 12.02 MPa, 12.73 MPa,
13.44 MPa, respectively. And a, b, c, d in Figure 14 refer to the stress levels of 7.07 MPa,
8.48 MPa, 9.90 MPa, 11.31 MPa, respectively. Among them, the a, b, c, and d points in
Figures 13 and 14 were same as those in Figure 12, respectively. The AE characteristics of
composite samples under short-term uniaxial creep loading were as follows:

(1) At each stress level, the creep strain rate decreased gradually in the deceleration
creeping stage, and the intensity and frequency of AE events were remarkably weakened.
AE events experienced large fluctuations with peak values at the beginning of this stage.
As the time increased, the composite sample entered the stable creeping stage with a
constant creep strain rate. The corresponding intensity and frequency of AE events were
relatively low and stable. Generally, the deceleration creeping stage and stable creeping
stage occurred at a relatively low stress level, and the unstable creeping stage arose at a
high stress level. As the composite sample entered the unstable creeping stage, the creep
strain rate increased gradually. The composite sample occurred failure and instability. The
intensity and frequency of AE events were strengthened again, which exhibited significant
fluctuations with more peak values. At the end of this stage, the axial creep strain-time
curve rose with a fast creep strain rate, and AE events displayed large fluctuations. The
intensity and frequency of AE activities can reflect the creep damage evolution process of
composite sample under short-term uniaxial creep loading. Therefore, under same stress
level, the creep damage degree at the unstable creeping stage was the most serious, larger
than that at the stages of deceleration creeping and stable creeping. The creep damage
degree at the stable creeping stage was the lowest.

(2) Under same stress level duration, with the increase of the stress level, the intensity
and frequency of AE events at the deceleration creeping stage and stable creeping stage
were enhanced. These illustrated that the creep damage degree of the composite sample
increased with the stress level. Until the occurrence of the unstable creeping stage at the
last stress level, the accumulated creep damage exceeded the damage limit of the composite
sample, and the composite sample experienced the failure and instability.

(3) Under same stress level, with the increase of the stress level duration, the AE
activities were strengthened. The intensity and frequency of AE events at different stages
were enhanced. These illustrated that creep damage degree of the composite sample
increased with the stress level duration under same stress level. These also can verify the
accuracy of experimental results, i.e., the creep strength at a large stress level duration was
smaller than that at a small stress level duration.

In order to better describe the creep damage evolution of the composite sample, the
creep damage coefficient δ was defined as

δ =
A
D

(2)

where, A was cumulative count of AE events at creep stage for a stress level; D was creep
time for a stress level. The values of δ of A-1 and B-3 composite samples under different
stress levels are compared in Figure 15.
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Figure 13. AE event variety curves of A-1 composite samples at creep stage for different stress levels: (a) AE event variety
curve at the stress level of 7.07 MPa; (b) AE event variety curve at the stress level of 8.48 MPa; (c) AE event variety curve at
the stress level of 9.90 MPa; (d) AE event variety curve at the stress level of 11.31 MPa; (e) AE event variety curve at the
stress level of 12.02 MPa; (f) AE event variety curve at the stress level of 12.73 MPa; (g) AE event variety curve at the stress
level of 13.44 MPa.
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Figure 14. AE event variety curves of B-3 composite samples at creep stage for different stress levels: (a) AE event variety
curve at the stress level of 7.07 MPa; (b) AE event variety curve at the stress level of 8.48 MPa; (c) AE event variety curve at
the stress level of 9.90 MPa; (d) AE event variety curve at the stress level of 11.31 MPa.

Minerals 2021, 11, x FOR PEER REVIEW 14 of 21 
 

 

accuracy of experimental results, i.e., the creep strength at a large stress level duration was 

smaller than that at a small stress level duration. 

In order to better describe the creep damage evolution of the composite sample, the 

creep damage coefficient   was defined as 

D

A
  (2) 

where, A was cumulative count of AE events at creep stage for a stress level; D was creep 

time for a stress level. The values of   of A-1 and B-3 composite samples under different 

stress levels are compared in Figure 15. 

 

Figure 15. Comparison of   values for A-1 and B-3 composite samples. 

In Figure 15, under same stress level duration,   increased with the stress level. 

These illustrated that the creep damage increased with the increase of the stress level. At 

the last stress level,   showed a sharp increase with the most serious creep damage for 

the composite sample. Under same stress level,   at a large stress level duration was 

greater than that at a small stress level duration. These illustrated that the creep damage 

of the composite sample at a large stress level duration was larger than that at a small 

stress level duration. 

If the composite sample occurred the local failure or fracture at a stress level, the AE 

event would experience the peak value. For instance, the ejection failure of A-1 composite 

sample caused the sudden increase of AE event at the stress level of 11.31 MPa, as shown 

in Figure 13d. And the AE event of B-3 composite sample experienced the relatively small 

peak value at the stress level of 8.48 MPa, as shown in Figure 14b. 

6. Failure Characteristics of Composite Samples 

6.1. Macro-Failure Patterns of Composite Samples 

Figure 16a–f shows the macro-failure images of A-1, A-2, A-3, B-1, B-2, and B-3 com-

posite samples under short-term uniaxial creep loading, respectively. In Figure 16, the 

failures of the composite samples mainly occurred within the coal, and no obvious failures 

were found in the sandstone. During creep loading, the coal experienced the ejection fail-

ure, ejecting small coal blocks. Further, the vertical tensile cracks were also found in the 

coal, as shown in red lines of Figure 16. Therefore, the coal mainly displayed the splitting 

ejection failure. With the increase of the stress level duration, the defects in the coal had 

sufficient time to propagate and coalesce, and the failure degrees of coal in Group B com-

posite sample were greater than that in Group A composite samples. 

6.0 7.5 9.0 10.5 12.0 13.5
0

60

120

180

240

300

360


/s

-1

Stress level/MPa

 A-1 composite sample

 B-3 composite sample

7.0 7.5 8.0 8.5 9.0 9.5 10.0

0.4

0.8

1.2

1.6

2.0


/s

-1

Stress level/MPa

Figure 15. Comparison of δ values for A-1 and B-3 composite samples.

In Figure 15, under same stress level duration, δ increased with the stress level. These
illustrated that the creep damage increased with the increase of the stress level. At the
last stress level, δ showed a sharp increase with the most serious creep damage for the
composite sample. Under same stress level, δ at a large stress level duration was greater
than that at a small stress level duration. These illustrated that the creep damage of the
composite sample at a large stress level duration was larger than that at a small stress
level duration.

If the composite sample occurred the local failure or fracture at a stress level, the AE
event would experience the peak value. For instance, the ejection failure of A-1 composite
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sample caused the sudden increase of AE event at the stress level of 11.31 MPa, as shown
in Figure 13d. And the AE event of B-3 composite sample experienced the relatively small
peak value at the stress level of 8.48 MPa, as shown in Figure 14b.

6. Failure Characteristics of Composite Samples
6.1. Macro-Failure Patterns of Composite Samples

Figure 16a–f shows the macro-failure images of A-1, A-2, A-3, B-1, B-2, and B-3
composite samples under short-term uniaxial creep loading, respectively. In Figure 16,
the failures of the composite samples mainly occurred within the coal, and no obvious
failures were found in the sandstone. During creep loading, the coal experienced the
ejection failure, ejecting small coal blocks. Further, the vertical tensile cracks were also
found in the coal, as shown in red lines of Figure 16. Therefore, the coal mainly displayed
the splitting ejection failure. With the increase of the stress level duration, the defects in
the coal had sufficient time to propagate and coalesce, and the failure degrees of coal in
Group B composite sample were greater than that in Group A composite samples.
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Figure 16. Macro-failure patterns of composite samples (the scale bar between the sample size in
the figure and that of the real sample is 1:2): (a) Macro-failure pattern of A-1 composite sample;
(b) Macro-failure pattern of A-2 composite sample; (c) Macro-failure pattern of A-3 composite sample;
(d) Macro-failure pattern of B-1 composite sample; (e) Macro-failure pattern of B-2 composite sample;
(f) Macro-failure pattern of B-3 composite sample.

6.2. Macro-Progressive Failure Characteristics

In the multi-step loading creep tests, the failure and instability of the composite sample
were jointly caused by the creep damage due to the constant stress at each stress level,
and by the loading damage between two adjacent stress levels as well as in the period
from the initial loading point to the first stress level. These were attributed to the loading
mechanism of our multi-step loading creep tests. The A-1 and B-3 composite samples were
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selected to analyze the macro-progressive failure characteristics under different stress level
durations, as shown in Figure 17I,II, respectively. Among them, the points of a~h represent
the progressive failure points of the A-1 composite sample, and the points of i~o represent
the progressive failure points of the B-3 composite sample.

In Figure 17I, there were two pre-existing vertical cracks on the surface of coal for
A-1 composite sample. From the initial loading point to the second stress level (8.38 MPa),
no obvious macro-failure was found on the surface of the composite sample, and the
macro-failure occurred the deceleration creeping stage of the second stress level. Now, a
small ejection failure (Blue ellipse in Figure 17I) occurred around the pre-existing vertical
crack in coal accompanying by the tensile fracture. During the loading process from the
second stress level to the third stress level (9.90 MPa), the composite sample experienced a
relatively large failure. A tensile crack was first formed on the surface of coal, and then
ejection failure occurred at the upper area of this crack, which was near the interface of
sandstone and coal. Finally, the ejection failure zone could induce the chain destruction
of the peripheral parts to form a large ejection failure zone along the tensile crack. At the
deceleration creeping stage of the fourth stress level (11.31 MPa), the lower area of the large
ejection failure zone experienced a small ejection failure again, and a small tensile fracture
occurred in this area. When the axial stress reached 12.02 MPa (Fifth stress level), many
macro-cracks were formed around the pre-existing vertical cracks and ejection failure zone,
which were accompanied by small ejection failures. At the stable creeping stage of the
stress level (12.73 MPa), more macro-cracks were generated on the surface of coal, and
the ejection failure zones began to connect as a whole. At the last stress level (13.44 MPa),
the propagation and coalescence of pre-existing vertical cracks and newborn macro-cracks
made the coal become more broken, and a large ejection failure zone was formed on the
surface of coal. Finally, these induced the failure of coal, and which further caused the
whole instability and failure of the composite sample. Meanwhile, during this process,
the rock rebound deformation enhanced the future failure of coal. Now, the composite
sample lost the bearing capacity, and the axial stress decreased sharply with the rapid of
axial strain.

In Figure 17II, the first macro-failure of B-3 composite sample occurred between the
initial loading point and the first stress level (8.38 MPa). And a macro-tensile crack was
formed on the surface of the coal. These indicated that the initial damage of coal was
relatively large, and thus the creep strength of B-3 composite sample was comparatively
small. There was no obvious macro-failure under the first stress level and between it and
the second stress level (9.90 MPa). While, at the stable creeping stage of the second stress
level, the coal displayed the tensile fracture, and a macro-tensile crack was found near the
left area of the first macro-tensile crack. Between the second stress level and third stress
level (11.31 MPa), more macro-tensile cracks were formed on the surface of the coal, and
the lower part of the coal experienced a small ejection failure. At the stable creeping stage
of the second stress level, the ejection failure zone induced the chain destruction of the
peripheral parts to form a relatively large ejection failure zone in the coal, accompanied by
the propagation and coalescence of macro-cracks. Then at the deceleration creeping stage
of the fourth stress level (12.02 MPa), the composite sample occurred a large ejection failure.
This caused the coal failure, and which then induced the whole instability and failure of
the composite sample. Due to the large stress level duration, the rock rebound deformation
was more serious, making the coal more broken than that of A-1 composite sample.

Meanwhile, when the composite experienced the macro-failure before final failure,
a stress drop occurred on the stress-time curve. The axial stress decreased first and then
increased, and this was the process from the failure to stability by adjusting the internal
structures of the composite sample. The corresponding axial strain displayed fluctuations,
and AE event occurred a peak value.

According to above analyses, the macro-failure of the composite sample occurred
with the coal. The propagation and coalescence of pre-existing cracks and new-born cracks
made the coal more broken, and the ejection failure zone induced the secondary ejection
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failure of the peripheral parts to form a large ejection failure zone in the coal. These caused
the final failure of coal, which resulted in the overall failure and instability of the composite
sample. The rebound deformation of rock aggravates the fracture and movement of coal,
promoting its failure degree, especially when the stress-level duration was large.
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Figure 17. Macro-progressive failure processes of composite samples (the scale bar between the sample size in the figure
and that of the real sample is 1:2.5): (I) Macro-progressive failure process of A-1 composite sample; (II) Macro-progressive
failure process of B-3 composite sample.
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7. Conclusions

In this paper, the uniaxial short-term multi-step loading creep tests with different
stress-level durations were conducted on sandstone-coal composite samples to investigate
their creep strengths, creep deformations, AE characteristics, and failure properties. The
main conclusions are summarized as follows:

(1) The creep strength and creep coefficient of composite sample decreased with
the stress-level duration. The average creep strength of Group A composite samples
(stress level duration of 2 h) was 13.01 MPa with the average creep coefficient of 92.02%,
and average creep strength of Group B composite samples (stress level duration of 6 h)
was 11.39 MPa with the average creep coefficient of 80.55%. Compared with Group A
composite samples, the average creep strength and creep coefficient of Group B composite
samples both dropped by 12.45%. The creep strength of composite sample was mainly
determined by the coal, which was influenced by the interactions with the sandstone. The
creep deformation and damage within the sandstone induced by the stress levels reduced
that within the coal, generally resulting in a higher creep strength for composite sample
compared to pure coal sample.

(2) With the increase of the stress level, the axial creep strain of composite sample
generally increased. Under same stress level, the larger the stress-level duration was, the
greater the axial creep strain was. However, the micro failure or fracture and local macro
failure or fracture within the composite sample caused the slight or sharp rise in axial creep
strain, respectively.

(3) The AE characteristics of composite samples were related to the creep strain rate,
stress level, stress level duration, and local failure or fracture within the composite sample,
etc. Under same stress level, the frequency and intensity of AE signals were the most
serious at the unstable creeping stage, and AE signals were the weakest at the stable
creeping stage. While the frequency and intensity of AE signals at stages of deceleration
creeping, stable creeping and unstable creeping increased with the increase of the stress
level or stress level duration under same stress level duration or stress level. The local
failure or fracture within the composite sample would enhance the AE activities, and the
AE signals occurred peak values.

(4) The failures of the composite sample occurred with the coal, and no obvious failure
was found in the sandstone. The propagation and coalescence of pre-existing cracks and
new-born cracks made the coal more broken, and the ejection failure zone induced the
secondary ejection failure of the peripheral parts to form a large ejection failure zone in the
coal. These caused the final failure of coal, leading to the overall failure and instability of
the composite sample. The rebound deformation of sandstone aggravates the fracture and
movement of coal, promoting its failure degree, especially when the stress-level duration
was large.
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