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Abstract: Mineral recognition is of importance in geological research. Traditional mineral recognition
methods need professional knowledge or special equipment, are susceptible to human experience,
and are inconvenient to carry in some conditions such as in the wild. The development of computer
vision provides a possibility for convenient, fast, and intelligent mineral recognition. Recently,
several mineral recognition methods based on images using a neural network have been proposed
for this aim. However, these methods do not exploit features extracted from the backbone network or
available information of the samples in the mineral dataset sufficiently, resulting in low recognition
accuracy. In this paper, a method based on feature fusion and online hard sample mining is proposed
to improve recognition accuracy by using only mineral photo images. This method first fuses multi-
resolution features extracted from ResNet-50 to obtain comprehensive information of mineral photos,
and then proposes the weighted top-k loss to emphasize the learning of hard samples. Based on
a dataset consisting of 14,986 images of 22 common minerals, the proposed method with 10-fold
cross-validation achieves a Top1 accuracy of 88.01% on the validation image set, surpassing those of
Inception-v3 and EfficientNet-B0 by a margin of 1.88% and 1.29%, respectively, which demonstrates
the good prospect of the proposed method for convenient and reliable mineral recognition using
mineral photos only.

Keywords: mineral recognition; feature fusion; online hard sample mining; deep learning;
image recognition

1. Introduction

Mineral recognition is a basic yet important aspect in geological surveys. It can
not only enrich the map of mineral resources on the earth, but also be used to estimate
the hidden mining volume and potential economics of minerals, providing geological
information for subsequent mineral exploration. Traditionally, mineral recognition is
professional work, which distinguishes minerals according to shape, optical properties,
and mechanical properties, requiring rich knowledge and experience or special equipment.
However, this process is susceptible to human experience, inefficient, and costly. Recently,
with the rapid development of artificial intelligence, a considerable number of methods
have been proposed to solve geological problems in a smarter and more convenient way
by using an artificial neural network (ANN) [1–8].

According to the difference in input images, the current research for mineral recog-
nition methods with ANN can be organized into three groups: Microscopic Image-Based
methods, Raman Spectra Image-Based methods, and Photo Image-Based methods.
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(1) Microscopic Images-Based Methods: Baykan and Yılmaz [9] employed the multi-
layer perceptron neural network (MLPNN) with one hidden layer for mineral classification,
which is based on the RGB data of plane-polarized and cross-polarized microscope images
and achieved 94.07% average accuracy for five minerals. An idea to use cluster algorithms
and morphological analysis to determinate colors and shapes for computing the composi-
tion of rocks from micrographs was proposed without providing the number of mineral
types and accuracy [10]. Izadi et al. [11] presented a two-level cascade neural network
classification approach, which first recognized the minerals based on color parameters
and then identified those minerals rejected from the first level based on texture features
of plane and cross-polarized light. Overall accuracy of 93.81% for the recognition of
23 test minerals was obtained. Maitre et al. [12] proposed an approach to automate mineral
grain recognition using an optical microscope image, which relied on data processing
such as superpixel generation, feature extraction and data cleaning, and machine-learning
algorithms that classify vectors of mineral features, identifying eight kinds of mineral parti-
cles with an accuracy of approximately 90%. A complex ensemble model was proposed
in [13], which used Inception-v3 [14] to extract features of the microscopic images, selected
logistic regression (LR), support vector machine (SVM), and multilayer perceptron (MLP)
as the basic models, and chose the LR model as the final prediction meta classifier. The
composed model recognized four minerals with an accuracy of 90.9%. The work of [15]
used five machine-learning algorithms to classify the scanning electron microscope images
of 12 minerals, and reached accuracies of 86–92%. Among all the above methods, the
acquisition of microscopic images is equipment dependent and inconvenient. Additionally,
the types of recognized minerals are few due to the limited samples [9,11–13,15].

(2) Raman Spectra Image-Based methods: Raman spectroscopy has been widely used
as a mature auxiliary tool for mineral recognition. An artificial neural network was trained
using Raman spectra of minerals to distinguish six minerals in igneous rocks, achieving 83%
accuracy [16]. The work of [17] proposed full-spectrum matching algorithms realizing 96.5%
average accuracy of six minerals without model training. Due to the lack of a large-scale
Raman spectrum image set, it is difficult for learning-based methods to train the network,
and it is also tough for testing to obtain the Raman spectrum of the sample in the wild. So,
mineral recognition based on Raman spectra has difficulty in extensive applications.

(3) Photo Image-Based methods: Compared to the above two groups, mineral photo
images can be obtained conveniently due to the popularity of digital cameras and smart-
phones. Therefore, mineral recognition based on mineral photo images has attracted
increasing attention. Recently, Zeng et al. [18] employed mineral photos combined with
Mohs hardness to achieve a Top1 accuracy rate of 90.6% for 36 common minerals using
a deep neural network, which input the Mohs hardness of the corresponding mineral
into the model manually to assist the image recognition. Without the Mohs information,
the Top1 accuracy of model dropped drastically to 78.3%. Although useful, the use of
Mohs hardness reduces the adaptability and universality of the algorithm. Liu et al. [19]
extracted the texture features of images using the Inception-v3 model [14] and established
a color model by the K-means algorithm, and then combined the two models to obtain a
comprehensive recognition model, which achieves a Top1 accuracy of 74.2% of 12 minerals.
Peng et al. [20] also used the Inception-v3 model but combined the softmax loss with the
center loss to identify 19 minerals. This method obtained a Top1 accuracy of 86%, 5 percent-
age points higher than that of the softmax loss alone. Although the center loss improves
the recognition accuracy by reducing the intra-class distance, it slows the convergence of
the model greatly and the model training becomes more difficult.

To solve the above issues for mineral photo image recognition, such as the use of
additional geological information [18], incomplete feature extraction [19], and loss function
improvement [20], a deep learning model based on feature fusion and online hard sample
mining using mineral photos only is proposed in this paper. Here, ResNet-50 is used to
extract features of the mineral images, and then, the low-level features are merged with the
high-level features to improve the model performance due to the fact that the low-level
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features, such as color and texture, are important for mineral recognition. Meanwhile, a
weighted top-k loss is also proposed to exploit the available information of hard and easy
samples, improving the recognition accuracy further.

The remainder of this paper is constructed as follows. Section 2 introduces a detailed
presentation of the proposed method. Section 3 provides the mineral dataset and experi-
mental results, followed by the experimental analysis in Section 4. Finally, we conclude in
Section 5.

2. Method

In this section, a mineral photo-recognition model based on the deep residual network
ResNet-50, combining multi-resolution feature fusion and online hard sample mining
weighted top-k loss, is designed.

2.1. Backbone Network ResNet-50

In the past years, many excellent backbone networks have been proposed, for example
LeNet [21], ALexNet [22], VGGNet [23], Inception [14,24], ResNet [25], EfficientNet [26],
and so on. By introducing a residual structure, ResNet can improve the network perfor-
mance by increasing the network layers while avoiding gradient explosion/disappearance.
It has become one of the most widely used convolutional neural network (CNN) back-
bones for feature extraction. The structure of ResNet-50 is shown in Table 1. The input
image is resized to 224 × 224, then it goes through a convolution layer (conv1) and a max
pooling process with a stride size of 2. Features are subsequently extracted through four
residual layers (Layer1, Layer2, Layer3, and Layer4). Next, a global average pooling (GAP)
operation is conducted to obtain a 1 × 1 × 2048 feature, which is then flattened and input
into a full convolutional (FC) layer and the probabilities of mineral types are the output.

Table 1. Network structure of ResNet-50.

Layer Process Output Size

conv1 7× 7, 64, stride = 2 112× 112× 64
- max pooling, 3× 3, stride = 2 56× 56× 64

Layer1
 1× 1, 64

3× 3, 64
1× 1, 256

× 3
56× 56× 256

Layer2
 1× 1, 128

3× 3, 128
1× 1, 512

× 4
28× 28× 512

Layer3
 1× 1, 256

3× 3, 256
1× 1, 1024

× 6
14× 14× 1024

Layer4
 1× 1, 512

3× 3, 512
1× 1, 2048

× 3
7× 7× 2048

- global average pooling 1× 1× 2048
FC FC + softmax Num_classes

2.2. Feature Fusion

The convolution operation and design of convolution neural networks mean the
extracted features in the network are of a hierarchical nature. That is to say, the low layers
respond to basic features, such as the color and edges. With the increase in the number of
layers, the complexity of features increases, and more class-specific features are extracted.
Generally, high-level features are used for the classification of different kinds of objects,
such as objects given in the ImageNet dataset. However, due to the differences in chemical
composition, crystallization, and chemical properties, minerals present a variety of colors,
crystal forms, hardness, and luster, which are shown intuitively in different colors, shapes,
transparencies, and textures of mineral photo images. So, for mineral recognition, low-level
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features such as colors, shapes, and textures are still important for mineral recognition,
which are ignored by existing methods.

In this paper, a mineral recognition method fusing low-level features and high-level
features is proposed to improve the performance of high-level features and produce an
increase in recognition accuracy. In detail, mineral photo images are input into the ResNet-
50, which is pretrained by the ImageNet dataset to obtain the features of four layers.Layer3
and Layer4 output the high-level features, and the features of Layer4 are usually used
as the most discriminative features to classify the objects since they include the largest
receptive field and the richest semantic information. The features from Layer1 and Layer2
are often considered low-level features. Since features from different layers have different
feature sizes and numbers of channels, before feature fusion, GAP is performed to resize
the features to a uniform height and width (1× 1). Then, the low-level features, denoted
as FL, and the high-level features, denoted as FH , are merged via concatenation to obtain
fused features Ff used = [FH , FL]. The fused features thus contain not only rich high-level
semantic information, but also much low-level details information. Finally, the model
output is obtained by passing the fusion features through the full connection (FC) layer.
Figure 1 displays the example model when the features from Layer2 and Layer4 are fused.

Minerals 2021, 11, x 4 of 17 
 

 

respond to basic features, such as the color and edges. With the increase in the number of 
layers, the complexity of features increases, and more class-specific features are extracted. 
Generally, high-level features are used for the classification of different kinds of objects, 
such as objects given in the ImageNet dataset. However, due to the differences in chemical 
composition, crystallization, and chemical properties, minerals present a variety of colors, 
crystal forms, hardness, and luster, which are shown intuitively in different colors, shapes, 
transparencies, and textures of mineral photo images. So, for mineral recognition, low-
level features such as colors, shapes, and textures are still important for mineral recogni-
tion, which are ignored by existing methods. 

In this paper, a mineral recognition method fusing low-level features and high-level 
features is proposed to improve the performance of high-level features and produce an 
increase in recognition accuracy. In detail, mineral photo images are input into the Res-
Net-50, which is pretrained by the ImageNet dataset to obtain the features of four lay-
ers.Layer3 and Layer4 output the high-level features, and the features of Layer4 are usu-
ally used as the most discriminative features to classify the objects since they include the 
largest receptive field and the richest semantic information. The features from Layer1 and 
Layer2 are often considered low-level features. Since features from different layers have 
different feature sizes and numbers of channels, before feature fusion, GAP is performed 
to resize the features to a uniform height and width (1 1× ). Then, the low-level features, 
denoted as LF , and the high-level features, denoted as HF , are merged via concatenation 
to obtain fused features [ ],fused H LF F F= . The fused features thus contain not only rich 
high-level semantic information, but also much low-level details information. Finally, the 
model output is obtained by passing the fusion features through the full connection (FC) 
layer. Figure 1 displays the example model when the features from Layer2 and Layer4 are 
fused. 

 
Figure 1. Mineral photos recognition based on feature fusion and weighted Top-k flow chart. 

2.3. Loss Function 

The loss function assigns the goal of network learning. Usually, the proportion of 
simple samples, which display the clear features of the minerals, is much larger than that 
of hard ones, the features of which are shown in a confusing way due to inappropriate 
imaging or unapparent characteristics of the mineral itself. So, in the training process, the 
network can easily learn the obvious features from the simple samples, while further min-
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2.3. Loss Function

The loss function assigns the goal of network learning. Usually, the proportion of
simple samples, which display the clear features of the minerals, is much larger than that of
hard ones, the features of which are shown in a confusing way due to inappropriate imaging
or unapparent characteristics of the mineral itself. So, in the training process, the network
can easily learn the obvious features from the simple samples, while further mining of the
features from hard samples is ignored because the small number of hard samples brings
low weights in the total loss. So, when network learning reaches a certain level, the existing
loss functions cannot impose the network to learn the implicit information contained in the
hard samples further, restricting the improvement of the network performance.

For mineral recognition, due to some subtle differences, certain minerals visually
display large intra-class differences and small inter-class differences resulting in misrecog-
nition. So, paying more attention to these hard samples can help the model achieve higher
accuracy. Top-k loss [27] is proposed by Zhang to solve online hard sample mining (OHSM)
for face detection. The core of the OHEM algorithm is to select hard samples with large
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loss values as training samples to learn the network parameters. Here, we try to consider
top-k loss, denoted as Losstop-k, in our study for mineral photo recognition. Li denotes the
softmax loss value of the ith sample in a batch, which can be described as (1), where ai
represents the ith sample’s output from the model, which is a num_calsses× 1 vector. The
softmax loss of a batch is the average of all losses in the batch, shown as (2), where N is
the batch size. Denote L′i as Li in descending order like (3). The Losstop-k is defined as the
average of the top k× N loss values, as shown in Equation (4), where k is a percentage.

Li = − log(
eai

∑num_classes
j=1 eaj

) (1)

Losssoftmax =
1
N

N

∑
i=1

Li (2)

sort(Li) =
{

L′1, · · · , L′i, L′i+1, · · · , L′N
}

, L′i ≥ L′i+1, i ∈ (1, · · · , N − 1) (3)

Losstop-k =
1

k× N

k×N

∑
i=1

L′i (4)

In the top-k loss, only the loss values of the top k× N samples, considered as hard
samples, are selected for learning parameters in each training batch. Then the gradients are
computed from these hard samples in backward propagation, which can ensure the network
pays more attention to hard samples and effectively excavates more implicit information,
improving the performance of the network. Although top-k loss shows good effectiveness
in face detection, a task paying more attention to semantic information, mineral recognition
is a task that pays close attention to low-level features, clearly presented in the simple
samples. In order to effectively utilize all samples and balance the roles of hard and simple
samples, a weighted top-k loss is proposed in this paper, which ensures the network pays
attention to the hard samples while taking simple samples into account, improving the
performance of the network. The weighted top-k loss function is shown in Equation (5),
where the top k×N loss values are hard samples and the latter N− k×N are easy samples.
In (5), α(α ∈ [0, 1]) is the weight coefficient. When α = 0, the weighted top-k loss is the
top-k loss, and when α = 1, the weighted top-k loss is the softmax loss.

Lossweighted top-k =
1

k× N

k×N

∑
i=1

L′i + α× 1
(1− k)× N

N

∑
i=k×N+1

L′i (5)

3. Experiments
3.1. Data

In total, 14,986 images of 22 common minerals collected from the National Mineral
Rock and Fossil Specimens Resource Center of China [28] and Mindat.org [29] were used in
our experiments. The names and numbers of the minerals are shown in Table 2. The biotite
and phlogopite is a mixture of biotite and phlogopite. To recognize minerals correctly,
most of the minerals are single minerals, and some minerals contain surrounding rocks or
symbiotic minerals. Some examples of images are shown in Figure 2, where (c), (e)–(i) are
single minerals, (a) and (b) contain surrounding rocks, (d) contains symbiotic minerals,
and (j) includes a base. It can be seen from the images that the typical mineral photo has a
large object and clear features such as color, shape, and texture.
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Table 2. Names and quantities of minerals in the dataset.

Name Number Name Number

1 pyrite 959 12 muscovite 227

2 realgar 319 13 biotite and
phlogopite 150

3 orpiment 217 14 feldspar 701

4 stibnite 669 15 calcite 1045

5 galena 860 16 barite 1210

6 quartz 1315 17 turquoise 346

7 spinel 622 18 tourmaline 874

8 corundum 726 19 malachite 918

9 garnet 279 20 azurite 783

10 olivine 215 21 rhodochrosite 859

11 beryl 791 22 fluorite 901

Total 14,986
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Figure 2. Mineral image samples. (a) Pyrite, (b) Realgar, (c) Quartz, (d) Spinel, (e) Barite, (f) Muscovite, (g) Olivine,
(h) Calcite, (i) Fluorite, (j) Malachite. (c,e–i) are single minerals, (a,b) contain surrounding rocks, (d) contains symbiotic
minerals, and (j) includes a base.

3.2. Evaluation

The Top1 accuracy and mean average precision (mAP) are employed to evaluate
the performance of the proposed method in the experiments. The ratio of the number of
times the maximum value of the output probability vector matches the correct label to the
number of the validation set is called the Top1 accuracy of the dataset, and it is the same
for a certain mineral category. Top1 accuracy indicates the recognition accuracy of the
algorithm for the overall dataset and a certain mineral category. The mAP is the mean of all
mineral categories’ Top1 accuracies, which pays attention to the accuracy of the categories
with small sample size, showing the performance of the algorithm in each category.

Cross-validation is an important method of evaluating models and parameters, and
k-fold cross-validation is usually used. k-fold cross-validation means that all data are
randomly divided into k groups, where k − 1 groups are used as the training set, and the
one remaining group is used as the validation set. The accuracy results are obtained by
averaging the results of k validation sets. The experimental results in this paper are the
results of 10-fold cross-validation, that is, the mineral dataset is divided into the training
set and validation set according to 9:1, and the result is the average of ten validation sets.
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3.3. Experiments Results
3.3.1. Network Setting

In experiments, the 64-bit Ubuntu 18.04 operating system and 11G GeForce RTX
2080ti are used. We use version 1.4.0 of the torch deep-learning library and ResNet-50 as
the backbone network. We calculate the mean and variance of the RGB channels of all
photo images in the training and validation sets. Data augmentation is employed with
random resizing and cropping, random rotation, and random horizontal flipping. Mineral
photo images are preprocessed by data augmentation, cutting the center of the images to
224 × 224 and normalizing them with the computed mean and variance.

The initial learning rate is set as 1.0 × 10−3 and reduced to 0.5 times the current
learning rate when the highest validation set accuracy remains unchanged for five epochs.
The training batch size is set to 50, the optimizer is SGD, and the training epoch is 100. The
fully connected layer in the network consists of one layer of the linear network.

3.3.2. Backbone Selection

Vgg16 employs the fixed convolution kernel 3 × 3 and increases the channels of
features gradually, which has proved that the network depth is critical in image recognition.
ResNet adds a residual structure on the network, such as Vgg, which ensures the train-
ing and performance of deeper networks are excellent. Inception broadens the network
structure. EfficientNet considers the depth, width, and resolution of the network simulta-
neously. These networks play important roles in the development of image recognition and
are considered classic backbones. The mineral recognition results based on these classic
networks are listed in Table 3. As we can see, ResNet-50 is more suitable for our task. Both
the Top1 (87.15%) and mAP (86.54%) of ResNet-50 surpass those of Vgg16 and Inception-v3
used in [19,20] by a large margin, and are also higher than that of Efficient-Net-B0, which
is an excellent deep-learning network model proposed recently. So, the following work is
conducted on the ResNet-50 network.

Table 3. Mineral recognition results based on classical deep-learning backbone networks (%).

Networks Top1 mAP

Vgg16 [23] 83.17 82.23
Inception-v3 [14] 86.07 85.35

EfficientNet-B0 [26] 86.72 86.27
ResNet-50 [25] 87.15 86.54

3.3.3. Feature Fusion

For convenience, F1, F2, F3, F4 denotes features obtained by Layer1, Layer2, Layer3,
and Layer4 passing through the GAP. As F4 has the largest receptive field and the best
semantic information of the objects in the mineral photos, it is naturally used to distinguish
mineral categories as the most discriminative feature. We take the low-level features to
merge with F4 and the Top1 and mAP results are shown in Table 4. It can be observed that,
when the feature from the lowest layer, F1, is fused with that from the highest layer, F4,
such as the combinations of F1 + F4 and F1 + F2 + F3 + F4, the performance of the model
decreases. This may be due to the redundant and more detailed feature of F1 damaging
the semantic feature structure of high-level. As a comparison, fusion with the features
from the lower level, F2, make obvious improvements. The combination F2 + F4 reaches
the highest Top1 accuracy of 87.6%, which is 0.45% higher than the result of not using the
fused feature (87.15%), and the mAP improved by a margin of 0.38%. Moreover, since F3 is
located in a higher layer, it includes fewer details compared to F2 as well as incomplete
semantics compared to F4, so its limited role brings a limited performance improvement.
Consequently, the following work is based on F2 + F4 fusion.
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Table 4. Mineral recognition results using different features (%).

Features Top1 mAP

F4 87.15 86.54
F1 + F4 87.13 86.36
F2 + F4 87.6 86.92
F3 + F4 87.29 86.45

F2 + F3 + F4 87.47 86.63
F1 + F2 + F3 + F4 87.05 86.36

To illustratee the Grad-CAM (Gradient-weighted Class Activation Mapping) [30]
and confusion matrix in the following section conveniently, and with the accuracies of
dataset-1 in the 10-fold cross-validation dataset being closest to the accuracies of the 10-fold
cross-validation dataset, we take dataset-1 instead of the 10-fold cross-validation dataset
in some experiments. The recognition accuracies of 22 minerals employing F4 feature and
F2 + F4 fused features of dataset-1 are listed in the left two columns of Table 5, both of
which use the softmax loss as the goal of learning. Benefitting from the feature fusion, the
accuracies of 9 minerals from 22 minerals are increased, and the accuracies of the other
9 minerals are retained. In addition, four minerals were sensibly declined. Muscovite
achieves the largest increase (8.70%) for the fused features complementing the insufficient
features extracted from the small sample size. Nevertheless, the accuracy of biotite and
phlogopite is significantly reduced (6.66%) and it may be that the number of samples is too
small to extract informative features with both low-level and high-level data, resulting in
poor fused features.

Table 5. The Top1 accuracies of minerals obtained by three methods (%).

Name F4 F2 + F4 F2 + F4 + Weighted Top-k

Pyrite 89.58 87.50 94.79
Realgar 96.88 100 100

Orpiment 72.73 77.27 86.36
Stibnite 98.51 100 100
Galena 94.19 94.19 91.86
Quartz 80.3 81.06 84.85
Spinel 80.95 84.13 82.54

Corundum 84.93 91.78 91.78
Garnet 71.43 71.43 78.57
Olivine 90.91 90.91 90.91
Beryl 87.50 82.50 85.00

Muscovite 78.26 86.96 69.57
Biotite & Phlogopite 73.33 66.67 86.67

Feldspar 87.32 87.32 90.14
Calcite 75.24 76.19 76.19
Barite 83.47 83.47 85.95

Turquoise 97.14 97.14 97.14
Tourmaline 87.50 88.64 89.77
Malachite 98.91 98.91 98.91
Azurite 98.73 98.73 98.73

Rhodochrosite 93.02 91.86 94.19
Fluorite 80.22 80.22 79.12

Top1 87.13 87.59 88.98
mAP 86.41 87.13 88.77

Grad-CAM is an algorithm that provides a visual interpretation of the areas that CNN
focuses on when making predictions. In back propagation of the CNN networks, the gradi-
ents are computed to obtain the weights, which capture the “importance” of a feature map
for a target class. The Grad-CAM is now widely used to visualize network performance.
We illustrate some activation maps of samples with the gradients of F4 and fused features
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F2 + F4 based on dataset-1 using the Grad-CAM algorithm in Figure 3. The images in rows
represent the original mineral photos, the Grad-CAM results of F4 (wrongly recognized),
and the Grad-CAM results of fused feature F2 + F4 (correctly recognized), respectively.
Images (a)–(f) are realgar, orpiment, spinel, corundum, muscovite, and muscovite, respec-
tively. In the second row, by using F4, (a)–(f) are misrecognized as rhodochrosite, realgar,
tourmaline, tourmaline, spinel, and calcite, respectively. As we can see, by exploiting
F4 only, the model ignores many details, which leads to misrecognition. Fused features
F2 + F4 allow the model to utilize more information from the images, especially details that
accurately reflect the essential characteristics of minerals. For example, in Figure 3a, F4
mainly focuses on the surrounding rocks, but F2 + F4 pays closer attention to the mineral
itself. In addition, the corundum in Figure 3d has fewer features extracted from the model
with F4, which is similar to tourmaline. However, fused features (F2 + F4) extract more
details from the color, shape, and texture, and obtain the correct decision.
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Figure 3. Grad-cam results using F4 and fused features F2 + F4 based on ResNet-50. (a) Realgar; (b) Orpiment; (c) Spinel;
(d) Corundum; (e) Muscovite; (f) Muscovite; the first row are original images, the second and third rows are Grad-cam
results of F4 and F2 + F4 recognition, respectively. In the second row, using F4, (a–f) are misrecognized as rhodochrosite,
realgar, tourmaline, tourmaline, spinel, and calcite, respectively.

3.3.4. Weighted Top-k Loss
Weighted Top-k Loss

We conducted experiments based on fused features and top-k loss firstly, and the
results of different k are shown in Table 6. The number of loss values for backpropagation
changes with the k values of the top-k loss, that is the smaller the k value, the fewer losses
are included, where more attention is paid to samples with large loss values; the larger
the k value, the more losses included, where the attention paid to difficult samples is
reduced, resulting in important information being ignored. It can be observed from the
cross-validation result that Top1 is 87.69% when k = 0.5, which exceeds the result of the
softmax loss (Top1 = 87.60% when k = 1), indicating the top-k loss can obtain a higher
accuracy rate when the appropriate ratio of hard samples is selected. However, mAP of the
top-k loss is reduced by 0.36%, showing that although top-k loss mines the information of
hard samples, these hard samples may come from the same category and do not help to
improve mAP.
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Table 6. Mineral recognition results based on fused features and top-k loss (%).

k Top1 mAP

0.1 86.93 85.63
0.2 87.48 86.21
0.3 87.53 86.77
0.4 87.57 86.75
0.5 87.69 86.56
0.6 87.30 86.43
0.7 87.45 86.80
0.8 87.23 86.53
0.9 87.20 86.36
1.0 87.60 86.92

Further, we conducted experiments based on fused features and the weighted top-k
loss defined by equation (3) when k is fixed to 0.5, and the comparison results of different α
are shown in Table 7. As can be seen from Table 7, when α = 0.2, the weighted top-k loss
ensures the proposed model utilizes the information of both the hard and easy samples
simultaneously, reaching the highest Top1 accuracy 88.01% and mAP 87.15%.

Table 7. Mineral recognition results based on fused features and weighted top-k loss when k = 0.5 (%).

α Top1 mAP

0.1 87.41 86.49
0.2 88.01 87.15
0.3 87.53 86.76
0.4 87.74 86.91
0.5 87.32 86.36
0.6 87.17 86.46
0.7 87.45 86.28
0.8 87.53 86.84
0.9 87.34 86.61
1.0 87.60 86.92

Comparison with Other Loss Functions

To illustrate the superiority of the weighted top-k loss, we compared it with other loss
functions used in mineral recognition. The experiments are all based on fused features, and
the comparison results are listed in Table 8. It can be observed that the weighted top-k loss
proposed in this paper achieves optimal Top1 and mAP accuracies, surpassing the results
of the softmax loss and top-k loss by a considerable margin. As a comparison, training with
the combination of the softmax loss and center loss used in [20] and testing in validation
obtained a Top1 accuracy of 87.00% and mAP of 85.75%, which are much lower than the
result of the weighted top-k loss, with a large gap of 1.01% in Top1 and 1.40% in mAP
accuracy, indicating that the weighted top-k loss had an excellent performance in mining
information and the center loss does not work in our model based on feature fusion.

Table 8. Mineral recognition results using different loss functions based on fused features.

Loss Function Top1 (%) mAP(%) Parameter

softmax loss 87.60 86.92 -
top-k loss 87.69 86.56 k = 0.5

softmax loss + center Loss 87.00 85.75 same as [19]
weighted top-k loss(we proposed) 88.01 87.15 k = 0.5, α = 0.2
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The recognition results of 22 minerals by fused features F2 + F4 with the softmax loss
and weighted top-k loss are shown in the last two columns of Table 5. As we can observe,
paying more attention to hard samples and taking easy ones into account simultaneously
causes both Top1 and mAP to obviously improve. The accuracies of 10 minerals from
22 minerals are greatly increased and those of 8 minerals are maintained. Surprisingly, the
Top1 accuracy of biotite and phlogopite is improved by the largest margin, at 20%, the
reason for which is the large loss values resulting from the poorly fused features meaning
the biotite and phlogopite samples are more emphasized as hard samples. It is worth
noting that the accuracies of 4 minerals from 22 minerals decreased. The muscovite had
the largest drop, and there are two reasons for this. The first is the number of muscovite
is less than those of most other minerals, producing a smaller effect on the loss values in
each batch. Additionally, the loss values of muscovite weighted by α contribute little to the
total loss because the loss values are not large enough to be considered as hard samples,
and this is the same reason for the Top1 decrease of galena, spinel, and fluorite. Both of
these mean the model cannot be trained enough for muscovite, and a large sample size
with samples possessing discriminative features can ensure the muscovite recognition
accuracy improves.

3.3.5. Comparison with the Previous Methods

Zeng et al. [18] employed mineral Mohs hardness for recognition, which is inconve-
nient for users without the corresponding knowledge. Liu et al. [19] employed manual
extraction features and the recognition categories were few (12 categories) while the Top1
accuracy was also low (74.2%). Peng et al. [20] employed Inception-v3 and softmax loss
combined with center loss, obtaining 86% Top1 accuracy on 19 minerals. We compare our
method with [20] in this section. Table 9 shows the results using the same settings as that
in [20] and those of our method. We can observe that both Top1 and mAP of our method
are higher than those of [20] by a large margin. Our method uses a backbone network more
suitable for classification, then makes full use of the features extracted from the network,
and modifies the loss function by considering the weight of hard and easy samples, so
that it can outperform other mineral photo-recognition methods and achieve a promising
mineral recognition performance.

Table 9. Recognition result of our method and the method proposed by [20] (%).

Method Top1 mAP

Inception-v3 + softmax loss + center loss [20] 85.99 84.52
ResNet-50 + fused features + weighted top-k loss (our method) 88.01 87.15

4. Experimental Analysis
4.1. Confusion Matrix Analysis

Table 10 shows the confusion matrix of the validation set of dataset-1 based on the
method we propose. Here, the abbreviations of the minerals are provided except for
turquoise and tourmaline, whose abbreviations are the same. In Table 10, the values in
rows represent the probability of one mineral being judged as other minerals and the
diagonal values denote the Top1 accuracies of the minerals. It can be seen that almost
all minerals with obvious characteristics can be accurately recognized, such as minerals
with specific colors (Top1 accuracies reach 100%). For example, realgar is orange-red,
turquoise is green-blue, malachite looks green like malachite, and azurite presents as dark
blue. The recognition accuracies of minerals with special shapes are also satisfactory. For
example, pyrite (95%) is cubic and octahedron, and antimonite (100%) usually shows
emission. Minerals with obvious texture have also been accurately identified, for example
rhodochrosite (94%) has a special ring.
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Table 10. The confusion matrix of 22 minerals in validation set of the dataset-1 (%).

Names Py Rel Opm Stb Gn Qtz Spl Crn Grt Ol Brl Ms Bt&Phl Fsp Ct Brt Turquoise Tourmaline Mi Azr Rds Fl

Py 94.79 0 0 0 1.04 0 0 0 1.04 0 0 0 0 0 0 1.04 0 0 0 0 0 2.08

Rel 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Opm 0 9.09 86.36 0 0 0 0 0 0 4.55 0 0 0 0 0 0 0 0 0 0 0 0

Stb 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Gn 3.49 0 0 0 91.86 0 2.33 0 0 0 0 1.16 0 0 0 0 0 0 0 1.16 0 0

Qtz 0 0 0 0 0.76 84.85 0 1.52 0.76 0 2.27 0.76 0 1.52 3.79 1.52 0 0 0 0 0 2.27

Spl 1.59 0 0 0 0 1.59 82.54 4.76 3.17 0 0 0 1.59 1.59 0 0 0 0 0 0 3.17 0

Crn 0 0 0 0 1.37 0 0 91.78 0 0 1.37 0 1.37 0 1.37 1.37 0 0 0 0 1.37 0

Grt 0 0 0 0 3.57 3.57 3.57 3.57 78.57 3.57 0 0 0 0 3.57 0 0 0 0 0 0 0

Ol 4.55 0 0 0 0 0 0 0 0 90.91 0 0 0 0 0 0 0 0 4.55 0 0 0

Brl 0 0 0 1.25 0 0 0 1.25 0 2.5 85 0 0 1.25 1.25 3.75 0 2.5 1.25 0 0 0

Ms 0 0 0 0 0 4.35 4.35 0 0 0 0 69.57 8.7 0 4.35 8.7 0 0 0 0 0 0

Bt&Phl 6.67 0 0 0 0 0 0 0 6.67 0 0 0 86.67 0 0 0 0 0 0 0 0 0

Fsp 1.41 0 0 0 1.41 1.41 4.23 0 0 0 0 0 0 90.14 1.41 0 0 0 0 0 0 0

Ct 0.95 0 0 0 0 8.57 0 0 0 0 0 0 0 0 76.19 7.62 0 0 0 0 3.81 2.86

Brt 0 0 0 0 0 5.79 0 0 0 0 0.83 0.83 0 0.83 4.96 85.95 0 0 0.83 0 0 0

Turquoise 0 0 2.86 0 0 0 0 0 0 0 0 0 0 0 0 0 97.14 0 0 0 0 0

Tourmaline 0 0 0 1.14 2.27 0 1.14 1.14 1.14 1.14 1.14 0 0 0 0 0 0 89.77 0 0 1.14 0

Mi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98.91 0 0 1.09

Azr 0 0 0 0 1.27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98.73 0 0

Rds 1.16 0 1.16 0 0 0 1.16 0 1.16 0 0 0 0 0 0 1.16 0 0 0 0 94.19 0

Fl 0 0 0 0 0 6.59 0 2.2 0 1.1 0 0 0 0 5.49 3.3 0 0 2.2 0 0 79.12
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Obviously, minerals with wide color coverage, large shape differences, and no clear
characteristics are easily confused with others. The model cannot determine a clear clas-
sification boundary between these minerals, resulting in a low accuracy. For example,
quartz, calcite, and barite can be transparent, white, yellow, pink, and other colors, and
have many crystal shapes, which are prone to being confused with each other (8.57% of
calcite is misjudged as quartz and 7.62% is misjudged as barite).

4.2. Feature Extraction Performance Analysis

t-Distributed Stochastic Neighbor Embedding (t-SNE) [31] is a technique for dimen-
sionality reduction. It has been widely used to visualize the effectiveness of the algorithm
by mapping the high-dimensional features to 2-d or 3-d vectors, and those can be displayed
conveniently. For each type of the 22 minerals, we selected five images with typical charac-
teristics (some samples are shown in Figure 4). Next, the images were input into the trained
network to extract their feature vectors v ∈ RC and v that uniquely represents the image,
where C is 2560 due to feature fusion. Then, the feature vectors of the 110 images were
reduced to two dimensions with t-SNE and displayed subsequently in Figure 5a, where
each image is marked with the serial number of the mineral, as given in Table 2. In order to
illustrate the misrecognition, we choose two images with indistinct characteristics, one of
which is quartz and the other is calcite. The misrecognized images are marked with red
cycles in Figure 5a.
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Figure 4. Samples of minerals with typical features. The first and the second row are malachite and quartz, respectively.

On the whole, the features from the same kind are well aggregated and those from dif-
ferent kinds are distinguished obviously. More specifically, for minerals with discriminative
characteristics, such as stibnite (No. 4), turquoise (No. 17), malachite (No. 19), and azurite
(No. 20), the intra-class distances are small and the inter-class distances are obviously
large. However, for minerals with similar appearances, such as quartz (No. 6) and calcite
(No. 15), the inter-class margin is small. In Figure 5a, a calcite image is misrecognized as
quartz and a quartz image is misrecognized as calcite. Similarly, for muscovite (No. 12)
and biotite and phlogopite (No. 13), although they can be divided into two clusters, the
inter-class distance is small and the intra-class distance is large.

As a comparison, we use ResNet-50 combined with the softmax loss to obtain features
and map them to two-dimensional vectors with t-SNE, as shown in Figure 5b. It can
be seen that the features extracted by our model have better aggregation and accuracy
than ResNet-50.
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ResNet-50 with softmax loss, respectively.

4.3. Misrecognized Images Analysis

Quartz is often in the shape of a long prism with a sharp tapered tip and there are
stripes vertical to the direction of crystal extension. Figure 6 shows misrecognized quartz
samples of the dataset-1 validation set, in which (a)–(d) was misidentified as muscovite,
garnet, beryl, and calcite, respectively. The misrecognition of images can be attributed
to the extracted features from the quartz images being more similar to other categories.
For example, Figure 6a is similar to the characteristics of mica, the color of (b) and (c) are
more close to that of garnet and beryl, and the shape of (d) is more similar to calcite. In the
misrecognized photos, most of them do not show the characteristics of the mineral due to
the inappropriate shooting angle, clarity, and lighting conditions, etc., so it is also difficult
for geologists to distinguish them from the photos alone. More mineral photos showing
the correct characteristics can clearly guide the neural network to learn the discriminative
features of minerals well and improve recognition accuracy.

Minerals 2021, 11, x 15 of 17 
 

 

calcite (No. 15), the inter-class margin is small. In Figure 5a, a calcite image is misrecog-
nized as quartz and a quartz image is misrecognized as calcite. Similarly, for muscovite 
(No. 12) and biotite and phlogopite (No. 13), although they can be divided into two clus-
ters, the inter-class distance is small and the intra-class distance is large. 

As a comparison, we use ResNet-50 combined with the softmax loss to obtain fea-
tures and map them to two-dimensional vectors with t-SNE, as shown in Figure 5b. It can 
be seen that the features extracted by our model have better aggregation and accuracy 
than ResNet-50. 

4.3. Misrecognized Images Analysis 
Quartz is often in the shape of a long prism with a sharp tapered tip and there are 

stripes vertical to the direction of crystal extension. Figure 6 shows misrecognized quartz 
samples of the dataset-1 validation set, in which (a)–(d) was misidentified as muscovite, 
garnet, beryl, and calcite, respectively. The misrecognition of images can be attributed to 
the extracted features from the quartz images being more similar to other categories. For 
example, Figure 6a is similar to the characteristics of mica, the color of (b) and (c) are more 
close to that of garnet and beryl, and the shape of (d) is more similar to calcite. In the 
misrecognized photos, most of them do not show the characteristics of the mineral due to 
the inappropriate shooting angle, clarity, and lighting conditions, etc., so it is also difficult 
for geologists to distinguish them from the photos alone. More mineral photos showing 
the correct characteristics can clearly guide the neural network to learn the discriminative 
features of minerals well and improve recognition accuracy. 

    

(a) (b) (c) (d) 

Figure 6. Misrecognized examples of quartz photo images in dataset-1. (a)–(d) are misrecognized as muscovite, garnet, 
beryl, and calcite respectively. 

5. Conclusions 
This paper proposes a common mineral recognition method using only mineral pho-

tos. In this method, we merge the multi-resolution features extracted from ResNet-50 and 
propose a weighted top-k loss function to balance the importance of hard and easy sam-
ples. Since the low-level features, such as color, shape, and so on, are important for min-
eral recognition, the fused features can supplement the high-level information that suffers 
from missing details, and the weighted top-k loss function better balances the roles of hard 
and easy samples for network learning. They effectively improve the accuracy of mineral 
photo recognition. Of the 14,986 image datasets of 22 common minerals, the experimental 
results show that the proposed method achieves a Top1 accuracy of 88.01% and mAP of 
87.15%, which surpasses the Top1 accuracy of Inception-v3, EfficientNet-B0, and ResNet-
50 with softmax loss by a margin 1.88%, 1.29%, and 0.86%, respectively, achieving a prom-
ising mineral recognition performance. Experimental analysis illustrates the excellent fea-
ture extraction performance of the method we proposed and we know that aside from 
improving the performance of the algorithm, collecting more diverse samples with clear 
and discriminative characteristics is a feasible and effective way to increase recognition 
accuracy. 

Figure 6. Misrecognized examples of quartz photo images in dataset-1. (a–d) are misrecognized as muscovite, garnet, beryl,
and calcite respectively.

5. Conclusions

This paper proposes a common mineral recognition method using only mineral
photos. In this method, we merge the multi-resolution features extracted from ResNet-50
and propose a weighted top-k loss function to balance the importance of hard and easy
samples. Since the low-level features, such as color, shape, and so on, are important for
mineral recognition, the fused features can supplement the high-level information that
suffers from missing details, and the weighted top-k loss function better balances the roles
of hard and easy samples for network learning. They effectively improve the accuracy
of mineral photo recognition. Of the 14,986 image datasets of 22 common minerals, the
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experimental results show that the proposed method achieves a Top1 accuracy of 88.01%
and mAP of 87.15%, which surpasses the Top1 accuracy of Inception-v3, EfficientNet-
B0, and ResNet-50 with softmax loss by a margin 1.88%, 1.29%, and 0.86%, respectively,
achieving a promising mineral recognition performance. Experimental analysis illustrates
the excellent feature extraction performance of the method we proposed and we know that
aside from improving the performance of the algorithm, collecting more diverse samples
with clear and discriminative characteristics is a feasible and effective way to increase
recognition accuracy.
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