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Abstract: The break-up of the supercontinent Rodinia in the late Neoproterozoic led to the formation
of the Nanhua rift basin within the South China Block. The Datangpo-type manganese deposit,
which developed in the Nanhua rift basin, is one of the most important types of manganese deposits
in South China. Although it is widely accepted that deep sedimentary structures significantly affect
the manganese ore system, the relationship between the manganese deposits in South China and the
Nanhua rifting process is still unclear. The origin of the manganese ore layer remains controversial.
In this paper, we integrated the audio-frequency magnetotelluric (AMT) data, gravity data, and
comprehensive geological and borehole data analysis to characterize the structure of the Datangpo-
type manganese deposit in Songtao, Guizhou Province. The resistivity and density models produced
an inclined layered structure, which correlated well with the coeval sediment strata of the Nanhua rift
basin. A high-resistivity cap was observed from the surface to a depth of 800 m, corresponding to the
Cambrian Loushanguan (ε3−4ls) and Palang dolomite formation (ε2p), which has helped the storage
of the manganese ore. The most significant low-resistivity anomaly (25–40 Ω·m) resides at a depth of
1400 m in the Nantuo (Nh3n) gravel sandstone and Datangpo (Nh2d) silty and carbonaceous shale,
corresponding to the ore-forming layer. This distinct low-resistivity layer was possibly produced
by aqueous fluids and pyrite in the syn-sedimentary fault and alteration zone. The accumulations
of sulfide minerals in the rock samples suggest a possible anoxic-euxinic deposition environment
during the manganese mineralization and precipitation. The fault revealed in the resistivity models is
perhaps a previous fault zone produced by extension in the Nanhua rifting process, which provided
migration and upwelling channels for ore-forming minerals. Based on our resistivity models, density
models, and geological survey, the manganese ore-forming model was derived, which can help to
provide geophysical evidence for the origin of the Datangpo-type manganese deposit.

Keywords: manganese ore deposit; audio-frequency magnetotellurics; gravity; mineral exploration

1. Introduction

The break-up of Rodinia began around 750 Ma and led to rift systems on the margins
of Laurentia, Australia, and the Yangtze Block [1]. Two of the best-documented rift basins
are the north–south trending failed rift in western Sichuan (the Kangdian rift), and the basin
between the southeastern Yangtze Block and northwestern Cathaysia Block (the Nanhua
rift) [2]. Manganese deposits in the lower Sinian (664–653 Ma) Datangpo formation (Nh2d)
of the Nanhua rift are known as “Datangpo-type”. The Songtao area in Guizhou (Figure 1a)
hosts the most important Datangpo-type manganese deposits, the greatest manganese
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resource potential in China [3]. Additionally, in these deposits, the Gaodi deposit (Figure 1b)
has the highest manganese grade of 160,906,000 tons and reaches the grade of super-large
deposits [4]. The Datangpo manganese ore layer, located at depths below 1000 m, primarily
consists of manganese carbonates (rhodochrosite) and manganese-bearing aluminosilicates.
Manganese mineralization mainly occurs along syn-sedimentary faults, which developed
in an extensional tectonic setting in the Nanhua rift during the break-up of Rodinia. In
the late Neoproterozoic, the syn-sedimentary faults and secondary rift basins might have
facilitated mineral transportation. Therefore, the subsurface structure of the mineralization
system needs to be resolved.

The exploration of the manganese deposit in the Songtao area started in the 1980s and
included a number of studies of paleogeography, lithology, geochemistry, and sedimentary
environment analysis. Despite the long mining history of subaerial manganese ore in this
area, the origin of the manganese ore layer remains controversial. There are two opposing
models. On the one hand, the hydrothermal genetic model suggested by Xu et al. [5]
indicated that the manganese deposit originated from hydrothermal activity based on
the concentrically layered modular structure and coliform texture of the ore. The large-
scale submarine volcanic and hydrothermal activity might have been triggered due to
strong crustal extension and rifting processes during the break-up of Rodinia. Thus, the
manganese and products during volcanic eruption rapidly accumulated into manganese-
containing tuffaceous sediments [6]. The volcanic-derived gas–liquid and heated seawater
further dissolved and filtered these loose sediments, which led to the enrichment and
deposition of manganese in the aulacogens. On the other hand, a shallow-water genetic
model was inferred instead, considering that the REE patterns in the manganese deposit
are not characteristic of hydrothermal influence [7]. Zhao [8] proposed that the “Datangpo-
type” rhodochrosites consist of debris and carbon argillaceous composition. Additionally,
the “Datangpo-type” deposits form in a shallow-water sedimentary environment and
flow into deep water along the basin slope. The manganese ore has graded bedding and
turbidite sedimentary characteristics due to this sedimentary process. The shallow-water
genetic model was supported by low contents of Si, Ba, Fe, and Sr, and high values of Ti
and Al in the manganese ore [9]. Yang et al. [10] studied the carbon and sulfur isotopes
of Songtao manganese deposits and found that the deep faults and fluids in this area
have provided a large amount of Mn2+, whereas the CO2 that helped to produce MnCO3
originated from the high volume of CO2 in the atmosphere after the global Sturtian ice age
in 700–695 Ma. In addition, Zhou et al. [11] discovered a large number of ancient leakage
structures of natural gas, with low carbon and extremely high contents of sulfur in the
rhodochrosites, and a new model incorporating Neoproterozoic rifting and natural gas
leakage was suggested [11–13]. However, this model has not yet been testified with any
geophysical data.

To discriminate the metallogenic model of the Datangpo-type manganese ore, it
is necessary to further study the deep structure of the mineralization system and the
sedimentary setting. In this study, we utilized resistivity models derived from audio-
frequency magnetotelluric (AMT) data (blue dots in Figure 1c) and a density model derived
from gravity data (gray dotted line in Figure 1c) to reveal the regional tectonic structure
and ore deposition settings in the Songtao manganese deposit, and by reference to study
the manganese metallogenic model in South China. The geoelectrical model may provide
information to understand the distribution of conducting phases, because magnetotelluric
data are relatively sensitive to electrical conductors such as the sulfides and oxides of
some minerals and coal/graphitized rocks (gneisses, schists, silts, and sandstones). The
interpretation of resistivity and density models is constrained by borehole and geological
data. The regional subsurface structure to a depth of 2800 m is delineated, potentially being
beneficial for the further prospecting of other manganese deposits.
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Figure 1. (a) Location and simplified geology map of the study area (redraw after [2]). The black 
boxes indicate the study area. (b) Subdivision of the Nanhua rift (modified after [13]). (c) Distribu-
tion map of the AMT stations and gravity stations. The black arrows point to the location of the 
boreholes.  

Figure 1. (a) Location and simplified geology map of the study area (redraw after [2]). The black
boxes indicate the study area. (b) Subdivision of the Nanhua rift (modified after [13]). (c) Distribution
map of the AMT stations and gravity stations. The black arrows point to the location of the boreholes.

2. Geological Background

The Songtao manganese deposit is located on the southeastern margin of the Yangtze
Block. The break-up of the Rodinia supercontinent in 825–750 Ma led to the Nanhua rift
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system in the South China Block [14,15]. The break-up process mainly occurred along
the suture zone between the Yangtze and Cathaysia Blocks, and a series of secondary
rift basins developed along the deep fault zones. Many world-class manganese deposits
formed in this period [16–19]. The west section of the Nanhua rift basin comprises three
tectonic units: the Wuling sub-rift basin in the north, Xuefeng sub-rift basin in the south,
and the Tianzhuan–Huaihua uplift area in the middle. The Songtao manganese ore is
located in the rifting center of the Wuling sub-rift basin [13]. Neoproterozoic and Paleo-
zoic successions are divided into the Qingbaikou system, the Liangjiehe formation (Nh1l),
Tiesiao formation (Nh2t), Datangpo formation (Nh2d), and Nantuo formation (Nh3n) of
the Nanhua System, the Doushantuo formation (Z1d), and Liuchapo formation (Z1l) of the
Sinian System, Jiumenchong formation (ε2jm), Bianmachong formation (ε2b) and Palang
formation (ε2p) of the Cambrian System, in ascending order. The Tiesiao formation (Nh2t)
and Nantuo formation (Nh3n) are equivalent to the Sturtian and Marinoan glaciations,
respectively [20–22]. The Datangpo formation (Nh2d) can be subdivided into two strata.
The lower stratum mainly consists of 0–20 m thickness of black carbonaceous shales, a
carbonaceous rhodochrosite lens and lenticular dolomites. The upper stratum is 30–320 m
thick and is mainly composed of gray to dark gray silty mudstones and siltstones. Sedimen-
tary manganese mineralization in the late Neoproterozoic is the primary mineralization in
this area, primarily occurring in rhodochrosite at the bottom of the black shale of the lower
stratum of the Datangpo formation (Nh2d). The ages of mineral deposition can be prelimi-
narily determined from the U-Pb zircon ages of volcanic tuff samples at the bottom and top
of Datangpo formation (Nh2d) at 662.9 ± 4 Ma and 654.5 ± 3.8 Ma, respectively [20,23,24].
Notably, most of the manganese deposits in eastern Guizhou reside along syn-sedimentary
faults that widely developed in the late Neoproterozoic. In South China, these faults
accompanying the Rodinia break-up might have controlled the formation of secondary
rift basins, and served as channels for the spillage of deep fluid and manganese material.
Thus, the identification of syn-sedimentary faults may link the manganese formation and
the Nanhua rifting processes.

3. Data
3.1. AMT Data Acquisition and Analysis

An NWW-trending profile with 51 broadband MT (with the frequency range from
10,400 Hz to 1 Hz) sites was deployed perpendicular to the geological strike direction
(Figure 2), with a site spacing of 100–200 m using Phoenix V5-2000 instruments (Phoenix
Geophysics Limited, Toronto, ON, Canada). Two orthogonal horizontal electric field
components (Ex and Ey) and three orthogonal magnetic field components (Hx, Hy, Hz)
were recorded at each site.

The time series data were processed with Phoenix SSMT2000 software (version 0.6.0.69,
Phoenix Geophysics Limited, Toronto, ON, Canada). The AMT impedance tensor data were
obtained after fast Fourier-transform and robust impedance tensor estimation processing.
Data with frequencies lower than 1 Hz were eliminated to diminish electromagnetic noise.
Some of the low-frequency data from the measurement points were even removed below
10 Hz. The power spectra corresponding to different frequencies of each site were evaluated.
The depth of exploration depends on skin depth, which increases with the increase in the
period. For this dataset, the longest period was 1 s, and it produces a skin depth of 2–3 km,
assuming an average resistivity value of 100 Ω·m.

Before inversion, Bahr skewness (S) values of the AMT impedance data were calcu-
lated to determine the dimensionality [25]. This method can effectively avoid the effect
of local distortion and obtain the dimensionality of the regional structure (Figure 2). The
geoelectric strike direction was estimated for all sites at all frequencies. S = 0 indicates an
ideal two-dimensional (2D) structure. In general, small S values indicate that the subsur-
face structure is more likely to be a two-dimensional structure. As shown in Figure 2a,
at frequencies above 100 Hz, the Bahr skewness at most stations was less than 0.3. Thus,
the electrical structure along the whole section was approximately two-dimensional in the
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shallow part. However, larger skewness was observed at frequencies lower than 100 Hz,
especially at stations in the western region, which may indicate a three-dimensional (3D)
structure and require 3D inversion to recover the deep structure below these stations.
Therefore, we used both 2D and 3D inversion techniques to obtain the resistivity structure
along with the AMT profile.
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Figure 2. (a) Bahr skewness map, showing the deviation from 2D structure. (b) Rose diagrams drawn
using multisite–multifrequency tensor decomposition method, which show the geoelectric strike
direction at different frequency ranges.

The geoelectric strike direction should be determined before 2D inversion. Then, the
AMT data need to be rotated to the geoelectric strike direction. The method of multi-site
multi-frequency impedance decomposition was used [26–28]. According to the statistical
results of the geoelectric directions in the rose diagrams (Figure 2b), the geoelectric strike
direction of the middle and shallow depths (at 100–10,000 Hz) is about N40◦ E. The geo-
electric strike direction in the deeper part (at frequencies of 1–100 Hz) changes significantly,
suggesting that the dimensionality of the deeper structure tends to be 3D. Local variations
of strike direction are all within a minimal range, consistent with the regional geological
strike direction. Therefore, the electrical strike direction along this profile was determined
to be N40◦ E.
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3.2. Gravity Data Acquisition and Analysis

High-precision gravity measurements were implemented at the same profile of the
AMT survey (Figure 1c). The gravity profile consisted of 259 survey points with an average
point spacing of 40 m, and the length of the profile reached 10.52 km in total. A CG-5
(Scintrex, Concord, ON, Canada) gravimeter was used for the gravity measurements, and
the observed precision of gravity data reached 0.016 mGal. For obtaining the Bouguer
gravity anomaly, the gravity data observed need a series of corrections, including Earth tide
correction, zero drift correction, free-air correction, stone slab correction, and topographic
correction. Here, an average density of the stone slab, 2.67 g/cm3, was given for the
Bouguer correction.

To remove the shallow and local field anomaly, we have implemented the separation
of regional and local field data for the Bouguer gravity anomaly by using the moving
window average method. Additionally, the window size was equal to 40 observation
points (i.e., 1.6 km). Finally, the regional Bouguer gravity anomaly is shown in Section 4.3.
The gravity anomaly value varied from 2 to 15 mGal. The gravity anomaly increased
from northwest to the southeast with two regional high-amplitude gravity anomalies. The
gravity anomaly was inverted to determine the density structure of the subsurface and
interpreted with the geoelectrical model.

4. Geophysical Data Inversion and Interpretation
4.1. AMT Inversion

After rotating the AMT impedance data to the geoelectrical principal axis, 2D inversion
was performed using the non-linear conjugate gradient method (NLCG) [29]. Previous
studies have shown that Transverse Electric (TE) mode data are more sensitive to vertical
variation in the resistivity structure, whereas the Transverse Magnetic (TM) mode is more
sensitive to lateral changes [30]. To obtain the most reasonable 2D electrical structure,
TE and TM joint mode inversion were conducted. After comparing different inversion
parameters, the final inversion parameters were set using a 100 Ω·m uniform half-space
as the initial model. The trade-off parameter between model roughness and data fit was
determined using an “L-curve” (Figure 3), which exhibited a gradient change when the
regularization parameter was 7. Therefore, the optimal value of regularization was 7. After
100 iterations, the overall root mean square (RMS) value was 2.13, indicating that the
inversion had already converged. The final 2D inversion model is shown in Figure 4a. The
observed and model response curves of apparent resistivity and phase data for the 2D
inversion of some stations are shown in Figure A1.
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Three-dimensional inversion was applied to the AMT data at 51 stations. We used the
Modular system for Electromagnetic Inversion (ModEM) for the 3D inversion [31,32]. This
non-linear conjugate gradient inversion algorithm was run in parallel mode on a cluster
with 67 processors. For each station, 20 frequencies in the range of 1–10,000 Hz were used.
The model area was discretized with a grid that had 100 m horizontal spacing in the center,
padded with eight cells on all edges, with width increasing by a factor of 1.3 outward to
the boundary. In the vertical direction, 40 layers were used, starting with a thickness of
10 m and increasing geometrically with a factor of 1.3. This discretization resulted in a
58 × 78 × 47 grid in the x, y, and z directions, respectively. The prior model was set to a
100 Ω·m half-space. We started from a 100 Ω·m half-space with topography and obtained
the 3D resistivity model by inverting the full impedance tensor. A moderate error floor
of 10% of

∣∣ZxyZyx
∣∣1/2 was assigned to all four components of the impedance tensor. The

resistivity models obtained after 138 iterations were used as the final 3D model (Figure 4b),
which fitted the measured AMT data with a normalized RMS misfit of 1.64. The observed
and model response curves of impedance tensor for the 2D inversion of some stations are
shown in Figure A2.

4.2. Electrical Resistivity Structure

A comparison of the preferred 2D and 3D inversion models is shown in Figure 4,
exhibiting similar resistivity features. It indicates that the resistivity features in the 2D and
3D models were very robust. The high-resistivity formations of over 2000 Ω·m (R1) at
depths less than 800 m correspond to the Cambrian Loushanguan formation (ε3−4ls) and
the Cambrian Palang formation (ε2p), as determined from the borehole (Figure 5), which
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comprised dolomite and calcareous sandstone. Below the high-resistivity feature R1, a
continuous layer of moderate resistivity (300–1000 Ω·m) was revealed at the Cambrian
Bianmachong formation (ε2b) and Doushantuo formation (Z1d). This layer comprised cal-
careous sandstone and siltstone, with thin sheets of siliceous rocks and dolomite (Table 1).
The high-resistivity body R2 in the east could have been caused by basement uplift.
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Table 1. Resistivity of rock samples in the study area (the rock samples were collected from the borehole rocks in Figure A3).

Rock Type Lithology Sample Number Average Resistivity (Ω·m) Average Density (g/cm3)

dolomite ε3−4ls, ε2q3+4 30 2508.71 2.79

limestone ε2q1+2 38 4579.28 2.91

siliceous rock Z2l 33 4050.97 2.48

calcareous sandstone
and siltstone ε2p, ε2b, Z1d 29 1614.33 2.55

gravel sandstone and
moraine conglomerate Nh3n, Nh2t 16 1732.58 2.84

carbonaceous shale Nh2d2 36 26.22 2.58

silty shale Nh2d2 22 551.35 2.62

Several small groups of low resistivity were resolved at the subsurface in the eastern
portion of the profile (C1), which could be attributed to clay minerals. The most significant
resistivity anomaly (C2) appeared at the northwest end of the profile at a depth of 1200 m
and extended eastwards before it reached another resistive body, R2, at the southeastern
end of the profile. The conductor C2 exhibits folded characteristic and rises gradually
in the southeast, indicative of a sedimentary feature at the basin margin. Considering
the lithology distribution revealed by the four boreholes (Figure 5), the underlying low-
resistivity layer C2 could be inferred to be the Tiesiao formation (Nh2t) and Datangpo
formation (Nh2d), the main components of which are gravel sandstone, silty shale, and
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carbonaceous shale. According to the information from the four boreholes (Figure 5), there
is a fault (F0 in Figure 4) within the low-resistivity zone C2, and the fracture zone of the
fault is more than 10 m wide. The west and east sections of the profile have very different
electrical structural characteristics. The depth of the bottom interface of the low-resistivity
layer changed suddenly, perhaps reflecting the locations of the graben and horst. A set
of pebbly sandstone and shale was revealed at depths of 1100–1950 m beneath stations
L30308 to L30360, and it can be inferred that the low-resistivity layer was widely developed
in the western portion of the study area. Notably, in the southeast of the profile, a set of
high-resistivity layers with stepped distribution had developed under the intermediate
resistivity layer. As noted above (Figure 1), the Lower Nanhua System is exposed in
the southeast region of the study area, and large-scale overburden formation to the west
of the survey line is exposed on the surface to the east of the survey line. In general,
the Cambrian Loushanguan formation (ε3−4ls) to the Lower Cambrian Palang formation
(ε2p) is of relatively high resistivity; the Cambrian Bianmachong formation (ε2b) to Sinian
Doushantuo formation (Z1d) are of relatively medium, and high resistivity; the Nantuo
formation (Nh3n) and Datangpo formation (Nh2d) are of low resistivity; and the underlying
basement is of relatively high resistivity. Therefore, the Songtao deposit demonstrates a
three-layer resistivity structure, corresponding to the sedimentary setting in the Nanhua
rift system.

4.3. Gravity Data Inversion

We use the 2D interactive inversion method [33] to invert the gravity anomaly in
Figure 6a. In interactive inversion, the densities and shapes of the stratum are repeatedly
revised to fit the gravity data. Thus, the advantages of interactive inversion are that we can
use some prior information. In this study, we built the density model based on the borehole
information of ZK2719, ZK009, ZK2715, and ZK005 and density measurement results in
Table 1. The gravity anomaly inversion results are shown in Figure 6b. The data predicted
by the density model accurately fitted the observed data with a fitting error of 6.6%.
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The density structure shows that the stratum from shallow to deep can be divided
into five layers, consistent with the borehole information and density measurement re-
sults in Table 1. The first layer contained high-density dolomite, with an average density
of 2.77 g/cm3 (the average density from samples equaled 2.79 g/cm3, Table 1). The un-
derlying second and third layers were relatively low-density, with average densities of
2.66 g/cm3 and 2.56 g/cm3, respectively. The primary lithologies consisted of sandstone
and siltstone and slowly rose in the southeast direction, which was the main reason for
the low-gravity anomaly data in the northwest. The measurements for the calcareous
sandstone and siltstone samples also exhibited a lower density of 2.55 g/cm3 (Table 1).
These two low-density layers had good correlation with the C2 conductor in our AMT
resistivity models, indicating that the manganese ore layer has low resistivity and density.
The fourth stratum was relatively thin, with an average density of 2.89 g/cm3, mainly
gravel sandstone and gravel siltstone (2.84 g/cm3 from density measurements in Table 1).
The fifth stratum had an average density of 2.55 g/cm3, composed of silty shale and car-
bonaceous shale (2.58–2.62 g/cm3 from density measurements in Table 1). The stratum
thickness in the middle was relatively narrow due to the uplift in the lower stratum, and
the whole stratum extended upwards to the southeast. The bottom layer was the basement,
with a density of 2.86 g/cm3 and an apparent upward protrusion in the middle, responsible
for the high value in the middle part of the gravity anomaly curve. At the SE part of the
profile, the trend in anomalies is attributed to the uplift of the basement because, as shown
in the NW and central parts of profile, the shape of the basement plays an important role
in the gravity anomaly. In addition, the resistivity model also showed an uplift basement
feature. According to the stratigraphic features identified by the borehole logs, electrical
resistivity structure, and density structure, we devised a joint geological profile, shown in
Figure 7.
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5. Discussion

The Cryogenian of the Nanhua Basin consists of a continuous succession of glacial
and postglacial deposits from the Sturtian Glaciation, including diamictite of the Tiesiao
formation (Nh2t), manganese carbonate, and black shale of the overlying lower Datangpo
formation (Nh2d) [34]. The study shows that the sedimentary facies of the Datangpo
Period were inherited and developed on the basis of the Liangjiehe Period and the Tiesiao
Period. During this period, large-scale manganese mineralization took place in a series
of secondary rift (graben) basins in the early Datangpo Period, forming rhodochrosite
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deposits. In the Datangpo Period of the Wuling secondary rift basin, there were mainly
two types of sedimentary facies: secondary rift (graben) basin facies and secondary uplift
(horst) facies. In the grade basin, Liangjiehe formations (Nh1l) are distributed, whereas in
the underlying strata outside the grade basin, Liangjiehe formations (Nh1l) are absent, and
the underlying Tiesiao formation (Nh2t) is in direct contact with the basement [13]. In the
Gaodi area, the manganese deposit is located at a depth below 1500 m, verified by four
boreholes on the west side of the survey line, and the Cambrian strata are widely exposed
in the northwest of the depression. There were discrepancies in some thin formations in the
borehole logs, perhaps as a result of tectonic evolution. In the borehole samples, there were
obvious fracture and thickness changes in some strata samples, which are presumed to
have been caused by faults (Figure 5). In the electrical profiles, a laterally continuous low-
resistivity layer (C2) developed in the Nantuo formation (Nh3n) and Datangpo formation
(Nh2d), whose burial depth gradually decreases in the eastern part of the section. The
density model also showed clear stratification and the same trend. The regional geological
survey showed that the Gaodi–Daotuo graben basin is long and narrow. The central strike
of the graben basin is approximately in an NE–SW direction and the Gaodi super-large
manganese deposit is located in the central part of the graben basin. As already stated, the
southeastern portion of the profile is characterized by high resistivity (R2). On the east side
of the density structure, the basement also shows obvious uplift. If R2 is considered as an
uplift area from east to west, and the inversion models fit the measured geological data,
possibly indicating that the syncline structure of graben and uplift of horst in the study area
were formed under the compression stress from east to west. The density structure model
reveals that the bedrock in the middle of the survey line shows a feature of uplift, and the
strata ascending from the central basement uplift shows a change in thickness from NW to
SE. The lithology of manganese-bearing rock series in the study area is a relatively weak
zone, which plays a role in slippage adjustment in the process of structural deformation,
adjusts folds formed by overlying strata, and controls the formation of the syncline.

The manganese-bearing rock series may have acted as a weak detachment layer,
slipped and accumulated toward the core of the syncline, enriching it at the core of the
syncline [35]. We synthesized resistivity and density models, and the study area shows a
tectonic framework in which a depression is compressed by an uplift (Figures 4 and 6). At
the bottom of the low-resistivity layer (C2), the resistivity of the manganese-bearing strata
was between 25 Ω·m and 40 Ω·m. This layer is bounded by a high-resistivity cap (R1) in
the shallow part, which helps the storage of the manganese ore. Syn-sedimentary faults
were well-developed in the early Nanhua Period in the study area, controlling and forming
secondary rift basins of different orders in the early Nanhua Period. The low-resistivity
layer (C2) exhibited a dipping feature at the margin of the basin, which was presumed
to indicate the existence of an ancient syn-sedimentary fault (F0 in Figure 4). This syn-
sedimentary fault could have directly influenced the formation of ore deposits, controlling
the shape, distribution, and accumulation of manganese, and providing the migration and
upwelling channels of ore-forming minerals.

According to the borehole data and geological survey, the main composition of the
manganese ore-forming body was rhodochrosite (manganese carbonate) with a dolomite
lens. Dolomite mounds are scattered in clastic rocks and are considered as one of the typical
signs of ancient methane leakage structures [36,37]. Cap carbonates are widely associated
with manganese-rich deposits [38,39]. Some scholars believe that the manganese-rich
carbonate layer at the bottom of the Datangpo formation (Nh2d) is equivalent to the car-
bonate cap layer [20,40,41]. Sturtian cap carbonates in the Nanhua Basin were deposited
in shallow horsts, coeval with the manganese ore-forming basin (graben) [38,42]. In our
resistivity models, the cap carbonates were most likely located above the low-resistivity
layer, C2, whereas C2 was possibly produced by aqueous fluids and pyrite minerals in
F0, as suggested by the low density revealed by our gravity data and high sulfur content
in the rock samples. The accumulations of sulfide minerals in the samples also suggest a
possible anoxic–euxinic deposition environment during manganese mineralization and
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precipitation. The cap carbonate formation model proposed that a large amount of methane
had been released globally, leading to the end of the snowball earth ice age [43–46]. The
release of natural gas from the ancient syn-sedimentary fault F0 could explain the pores
filled with asphalt in the rhodochrosite ore body of the Datangpo formation (Nh2d) [11].
Therefore, the formation of manganese ore has a close relationship with natural gas leakage
in the Datangpo formation (Nh2d) at the end of the snowball earth ice age [11]. With
the arrival of the interglacial period, the temperature gradually warmed up, the origi-
nal natural gas hydrate gasified and leaked upward, and organic matter accumulated
in Datangpo formation (Nh2d). At the same time, microorganisms using methane as an
energy source develop and can form microbial mats and microbial mounds. Therefore,
the dark shale of Datangpo formation (Nh2d) is also a potential high-quality hydrocarbon
source rock. The density model revealed by gravity data can also prove that the strati-
graphic environment provided good manganese deposition and enrichment conditions.
Mineralogical characteristics, geochemical environment, and the influence of microbial
hydrocarbon source rocks suggest that the vertical development of syn-sedimentary fault
(F0) has formed manganese ore-forming channels. The low-resistivity body at the bottom of
the manganese-forming basin in the study area is the spout where the manganese-rich fluid
overflows and the place where manganese ore deposits. Based on the above deductions, a
genetic ore-forming model is derived in Figure 8. The element characteristics of Datangpo
formation (Nh2d) reflect that the source of manganese carbonate is mainly a hydrothermal
source [38]. The fault zones produced by the extension in the Nanhua rifting process acted
as the primary transportation system of hydrothermal fluids. The manganese carbonate
deposition resulted from reactions between aqueous manganese and sedimentary organic
matter during early diagenesis. Additionally, it led to elevated Mn2+ concentrations and
alkalinity in sediment porewaters, as suggested by geochemical analysis [38]. These faults
may also have been activated by later tectonic activities. A series of uplifts and depressions
in Nanhua Rift Basin all indicate that the migration channel of Datangpo ore-forming
minerals is related to previous deep faults.
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6. Conclusions

Based on the geological and geophysical models, the genetic model was derived to
explain the formation of the “Datangpo-type” manganese ore. Our resistivity models



Minerals 2021, 11, 1273 13 of 18

discovered a low-resistivity anomaly (25–40 Ω·m) that resided at a depth of 1200 m in
the Nantuo formation (Nh3n) and Datangpo formation (Nh2d), corresponding to the
manganese-ore-forming layer. The manganese-ore-forming layer was near the interface
between low-density layer and basement in the density model. This distinct low-resistivity
layer was possibly produced by aqueous fluids and pyrite minerals in F0. The low-
resistivity layer and the stratification of our density model showed a dipping feature at the
margin of the basin, which is presumed to facilitate the accumulation of manganese. The
enriched accumulation of sulfide minerals in the rock samples suggests a possible anoxic–
euxinic deposition environment during the manganese mineralization and precipitation.
The F0 fault zone revealed in our resistivity models is perhaps a previous fault zone
produced by the extension in the Nanhua rifting process, which has directly influenced
the formation of ore deposits, controlled the shape, distribution and accumulation of
manganese, and provided the migration and upwelling channels for ore-forming minerals.
Finally, our study supports a hydrothermal genetic model. The fracture fault zones acted
as the primary transportation system of hydrothermal fluids. The manganese carbonate
deposition was the result of reactions between aqueous manganese and sedimentary
organic matter during early diagenesis that led to elevated Mn2+ concentrations. A high-
resistivity cap bound the ore-forming layer at the subsurface, which helps the storage of
the manganese ore.
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