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Abstract: This paper reports the calibration and validation of a cone crusher model using industrial
data. Usually, there are three calibration parameters in the condensed breakage function; by contrast,
in this work, every entry of the lower triangular breakage function matrix is considered a calibration
parameter. The calibration problem is cast as an optimization problem based on the least squares
method. The results show that the calibrated model is able to fit the validation datasets closely, as
seen from the low values of the objective function. Another significant advantage of the proposed
approach is that the model can be calibrated on data that are usually available from industrial
operation; no additional laboratory tests are required. Calibration and validation tests on datasets
collected from two different mines show that the calibrated model is a strong candidate for use in
various dynamic simulation applications, such as control system design, equipment sizing, operator
training, and optimization of crushing circuits.

Keywords: digital twin; cone crusher; model calibration; optimization; calibration based on
industrial data

1. Introduction

Process modeling and simulation have considerable importance in the mineral process-
ing industry. Accurate dynamic models of a mineral processing plant are helpful in control
system development, equipment sizing, and operator training [1]. Currently, with the intro-
duction of the concept of Industry 4.0 (a term used to describe the widespread integration
of information and communication technology in industry [2]), process simulation is even
more relevant because it can work as a process digital twin to find the optimal operating
conditions [3], train reinforcement learning agents [4], or predict faults in equipment [5].
Among the different pieces of equipment that comprise a mineral processing plant, the
cone crusher plays a prominent role in the comminution of run-of-mine ore.

Several approaches for modeling cone crushers are available in the literature. Whiten [6]
used mass balance as well as classification and breakage matrices to model a crushing
circuit. Whiten’s model was extended by Lynch [7] to include electric current prediction for
the crusher. Additional particle breakage equations were introduced by Whiten et al. [8] to
offer alternative models for validating crushing data from different mines. Andersen [9]
extended Whiten’s classification function to include crusher liner characteristics and used
t10, the percentage of product passing through a sieve with a size equal to one-tenth of the
original particle size, to predict breakage. In the model presented by Evertsson [10], the
compression ratio, a parameter calculated based on cone crusher geometry data, helps to
determine the breakage and classification matrices.
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In the works cited above, the cone crusher is treated as a single breakage section and
a classifier. Herbst and Oblad [11] proposed a different approach, in which the crushing
chamber is divided into several zones. In the same vein, Atta et al. [12] used different
breakage and selection parameters in each zone and, later on, these authors also introduced
current and power consumption models [13]. Even more detailed modeling attempts
consist of using models based on the discrete element method. Taking advantage of
increases in computational power, this numerical technique is now also used to model the
dynamic behavior of cone crushers [14,15].

From a practical perspective, the cone crusher model proposed by Whiten [6] provides
a reasonable compromise between representability and simplicity [16]. More complex mod-
els may require information about the crusher geometry, and the subsequent calculation is
time consuming [17]. Research on advanced control development [18], artificial intelligence
applications [3], and optimization scheme comparison [19] has relied on Whiten’s model.
Moreover, the cone crusher blocks in many commercial simulators (e.g., IDEAS®—Andritz
Automation, Mimic®—Emerson, and DynSim®—Aveva) are based on Whiten’s model.
Such dynamic simulation software is in high demand in digital twin applications, control
system design, operator training, and flowsheet evaluation.

Model selection is only the first step in reliably simulating the behavior of a process.
The second step consists of calibrating the model for its specific purposes (modeling a
given plant, operational scenario, or dataset). Usually, the parameters of the breakage
function are calibrated using the results of laboratory impact breakage testing, which is a
time-consuming task [20]. Some alternative calibration approaches include trial and error,
statistical inference, and a suitable optimization strategy [21]. Among these alternatives,
optimization stands out in that it yields near-optimal solutions within a feasible amount of
time for practical applications and offers a structured and replicable framework [22,23].

The advantages of model calibration based on optimization techniques have been
established in the literature [22,23]. In 1984, Klimpel and Austin stated their preference
for a condensed breakage function model, arguing that solving the calibration problem
with an uncondensed model demands too much computational power [24]. Over the years,
however, advances in computational capabilities may have made this argument obsolete,
and allowing more degrees of freedom in the calibration problem may result in more
precise and accurate crushing models, yielding an average error and a standard deviation
smaller than 0.5% and 3.0%, respectively, between the predicted and measured particle
size distributions (PSDs), as obtained by Whiten [6]. To the best of our knowledge, the
most recent works that report the calibration of Whiten’s cone crusher model date from
the 1990s. This situation indicates that either the scientific community is satisfied with the
available calibration strategies for Whiten’s cone crusher model or no effort has been made
to improve the calibration accuracy. We believe that the latter is the case, and thus, we
propose a new calibration strategy for the cone crusher model.

In this paper, the calibration problem for Whiten’s cone crusher model is cast as
an optimization problem. The sum of the squared errors between the measured and
estimated cumulative PSD values is minimized using a sequential quadratic programming
algorithm. Instead of the condensed parameter breakage matrix model proposed by
Whiten [6], the uncondensed—or full-matrix—model, in which all elements of the breakage
matrix are calibration parameters, is used. This adds more degrees of freedom to the
calibration problem. Operating data from the S11D and Serra Leste iron mines, operated
by Vale S.A. in Brazil, were collected for model calibration and validation. Only data
that are regularly collected during operation (PSD, closed side setting, and throughput)
are necessary for the calibration strategy; additional laboratory test data, which might be
difficult to obtain [25,26], are unnecessary.

The remainder of this paper is structured as follows: Section 2 summarizes the state-
of-the-art of model calibration techniques in the mineral processing literature. Whiten’s
cone crusher model is described in Section 3. The calibration problem and the proposed
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solution are defined in Section 4. Section 5 presents the calibration and validation results
obtained on industrial datasets. Finally, Section 6 concludes the paper.

2. Literature Review

This section summarizes optimization-based calibration studies from the mineral
processing literature, specifically studies on the first principles or empirical models of
crushing, grinding and flotation equipment calibrated using optimization strategies.

An autogenous/semi-autogenous grinding mill model was calibrated by Perez et al. [27].
The calibration problem was cast as an optimization problem in which a global search
method was used to minimize the difference between the predicted and measured values
of the PSD. The static responses were validated using industrial data and showed accurate
values for key variables (e.g., size distributions, hydrocyclone pressure, circulating load,
mill filling level, and mill power drawn). Esnault et al. [28] developed and calibrated
a population balance model for particle size prediction in compression grinding. The
results showed that on the one hand, the model required extensive datasets collected
under different operating conditions for proper calibration, but on the other hand, once
calibrated, the model offered accuracy sufficient for applications related to the design
optimization of mills with complex geometry, such as vertical mills and Horomills. Klimpel
and Austin [24] proposed the calibration of specific rates of breakage and breakage dis-
tribution functions in grinding circuits using condensed parameters. According to the
authors, calibrating all parameters of the equations is computationally expensive and does
not result in physically interpretable parameters, which might indicate that the calibration
problem is underdetermined.

High-pressure grinding rolls (HPGRs) are equipment used in some grinding circuits.
Torres and Casali [29] estimated the parameters of an HPGR model using the gradient
descent algorithm, and Hasanzadeh and Farzanegan [30] used a genetic algorithm. Daniel
and Morrell [31] studied the modeling, calibration and scale-up of the HPGR process. In the
calibration step, laboratory-scale and pilot plant data were collected and utilized to obtain
the parameters of models of the PSD, throughput, and power drawn. The calibration
problem was cast as a least squares optimization problem. The scaling-up procedure
was performed based on a particular mechanical property of the HPGR (the ratio of the
roll gap to the diameter), which was assumed to remain constant at any operating scale.
Similarly, Campos et al. [32] also cast the calibration problem as a least squares optimization
problem. The objective function was designed to consider the logarithms of the measured
and estimated values of the cumulative PSD, and the resulting problem was solved using
a direct search algorithm from fminsearch in MathWorks MATLAB®. Anticoi et al. [26]
analyzed the influence of the type of material on the parameters of the breakage function in
a milling circuit. The parameters were calibrated against data from piston press tests and
single compression strength tests; the optimal parameters were obtained by minimizing
the root mean square error between the measured and calculated values. Ambiguous
results led the authors to conclude that numerical algorithms may not be the best option
for calibration in the presented scenario. In a fashion similar to their previous study,
Anticoi et al. [33] also studied the influence of the operating conditions of a pilot-scale
HPGR on the breakage function parameters.

Calibrating flotation process models has proven to be a complex task. Seppälä et al. [23]
developed and calibrated a dynamic model of a flotation circuit based on pilot-plant-scale
data. Model calibration was performed by trial and error. The reported results indicate
that the model allowed a better understanding of the effects of different feed materials and
pH levels on the mineral concentration in the product. However, the authors noted that the
calibration process should be performed by employing optimization routines to increase
model adaptability to different plants and to guarantee that the calculated parameters are
optimal. Yianatos et al. [25] developed a model for flotation processes based on industrial
data from large flotation cells. The flotation kinetics is usually affected by both mineral
type and operating conditions. In Yianatos’ model, the effects of the two sources are treated
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independently. Model calibration requires an extensive collection of data from laboratory
tests and plant operation. Karr and Yeager [22] explored the application of a genetic
algorithm for the calibration of a flotation column model. The authors tailored the fitness
function of the algorithm to suit the calibration problem at hand, showcasing the flexibility
of the technique. It was concluded that a model calibration method based on heuristic
optimization is faster than, and as accurate as, statistical and trial-and-error-based methods.

Notably, reported calibration attempts for cone crusher models are remarkably scarce.
Whiten [6] proposed solving the calibration problem for a cone crusher and vibrating
screen model using nonlinear least squares methods. Industrial data from Mount Isa Mines
(Australia) and North Broken Hill Consolidated (Australia) were used for calibration. The
author reported an average error of 0.5% with a standard deviation of 3.0% between the
predicted and measured PSDs. Machado Leite [34] solved the model calibration task for a
cone crusher and vibrating screen process by fitting the predicted data to cone crusher data
from the literature. The author did not disclose other details about the calibration method.
King [35] calibrated Whiten’s model [6] as implemented in commercial modular simulation
software. The initial guesses for the parameters were based on guidelines from the literature
(cone crusher type, standard vs. short-head), and the best fit was determined by trial and
error. The calculated PSD values were compared to operating data from Rössing Uranium
Ltd. (Namibia), and no quantitative information was given; however, the authors claimed
that the fit was good. The calibrated crusher model, together with a calibrated screen model,
was used in the commercial software to simulate the secondary, tertiary and quaternary
crushing circuits from Rössing Uranium Ltd. More recent references report the calibration
of the population balance model [36] and the bonded particle model [14] using optimization
techniques. Such models are competing approaches for the discrete-element-method-based
modeling of cone crushers. Due to their unreasonable computational demand, which make
them infeasible for use in process control applications, discrete-element-method-based
models are beyond the scope of this paper.

3. Description of the Cone Crusher Model

In the mineral processing industry, it is usually necessary to reduce the particle size of
raw ores in order to extract the minerals and metals of interest. The comminution circuit
of a mineral processing plant, comprised of crushing and grinding stages, is responsible
for the mechanical size reduction of the raw ore. The cone crusher, the main equipment
of a crushing circuit, can accomplish size reductions in the range of 250 mm to 10 mm.
The working principle of a cone crusher is that a cone-shaped mantle moves eccentrically
and, when the mantle moves away from the concave during its spin cycle, rock particles
fall from the feeding area by gravity; as the distance between the mantle and the concave
decreases, the particles are compressed and crushed [37]. Figure 1 shows a schematic
representation of a cone crusher, in which b indicates the bed thickness and s indicates the
eccentric throw or stroke, defined by the difference between the maximum and minimum
distances between mantle and conclave, indicated by OSS and CSS, respectively. Therefore,
s = OSS− CSS.

Figure 1. Schematic representation of a cone crusher, extracted from Yamashita et al. [37].
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Figure 2 illustrates a block diagram representation of Whiten’s cone crusher model.
The feed stream is denoted by f; the material stream inside the cone crusher, which consists
of the feed stream added to the pre-existing circulating material, is denoted by x; and
the breakage and classification functions are represented by B and C, respectively. At
C, material with a particle size below the classification values leaves the crusher as the
product (p), and the remainder of the material goes to B. The number of classes (n f ) into
which the material stream is divided defines the dimensionality of x, f, and p (x, f, p ∈ Rn f ).
This value consists of the number of particle size ranges used to define the PSD of the
stream. In theory, the ratio between one class and the next should be

√
2, which means that

the sieve size difference and, consequently, the particle size difference between adjacent
classes should also be

√
2. However, in practice, the number of classes and their values are

defined by the available sieve sizes [20].

Figure 2. Block diagram representation of the cone crusher model.

The datasets studied in this work contain measurements of the nominal values of
the sieve aperture diameters (Di) and the cumulative passing PSD values of the feed (Fi),
where i denotes the size class, i = 1, . . . , n f . Therefore, to comply with Whiten’s model,
these values are converted into the actual particle size values (dpi) and the incremental
PSD values of the feed ( fi) in the model calibration step using Equations (1) and (2). In (1),
for i = n f , we have Di+1 = Di√

2
. Note that this step is unnecessary if fi and dpi are

measured directly.
dpi =

√
Di × Di+1, i < n f . (1)

fi =

{
Fi − Fi+1, i < n f

Fi, i = n f
. (2)

The steady-state of Whiten’s cone crusher model results from the mass balance per
material class size applied to a cone crusher [16]:

dm(t)
dt

= f(t)− p(t)−ω× ζ(t)(S− BS)m(t), (3)

where ζ(t) represents the ore hardness, S is called the selection function and represents the
specific breakage rate, B is called the breakage function, ω if the operational frequency of
the cone crusher, and m represents the mass vector in the cone crusher. The product p is
considered to be proportional to the mass components, that is, p = Q ω×m, where Q is
a diagonal matrix that represents each element in the specific discharge rate. The unit of
the elements of vectors f and p is given by t/h, ω is measured in 1/h and, the variable ζ(t)
and the elements of matrices S, B and C are dimensionless.

The product PSD is determined by the feed size distribution and the classification and
breakage functions. The steady-state solution to (3) is obtained by setting the left-hand
side to zero and expressing p as a function of f [16]. After some algebraic manipulation,
according to Whiten [6], the incremental PSD of the product stream (p) is given by:

p = (I− C) (I− B C)−1 f, (4)
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where I is an identity matrix of appropriate dimensions, C is the classification matrix
defined as S(S + Q)−1, and B is the breakage matrix. The accumulated particle size Pi is
calculated as the sum of the pi from i = 1 up to the desired class:

Pi =

{
100, for i = 1
Pi−1 − pi−1, for i > 1

. (5)

3.1. Classification Function

In Whiten’s cone crusher model, the classification function represents the probability
that material of a given particle class will either become product or undergo breakage.
Figure 3 shows how the classification function is determined in terms of parameters K1, K2,
and K3, and (6) shows the algebraic representation of the classification function, in which
cii is the i-th element of a diagonal matrix C (C ∈ Rn f×n f ) [38]. If dpi is lower than or equal
to K1, then particles in this class are not crushed any further and leave the cone crusher as
product. If dpi is greater than or equal to K2, then the particle class undergoes additional
crushing. K3 describes the shape of the classification function, defining the probability of
breakage for particles of intermediate classes.

1.0

0.0

K2K1

K3

P
ro
b
a
b
il
it
y
o
f
b
re
a
k
a
g
e:

C
(d

p
)

Particle size: dp

1

Figure 3. Schematic representation of the classification function.

cii =


0, for dpi ≤ K1

1−
(K2−dpi

K2−K1

)K3
, for K1 < dpi < K2

1, for dpi ≥ K2

. (6)

According to Napier-Munn et al. [38], the linear relationships between the parameters
K1 to K3 and the cone crusher operating parameters are given by:

K1 = α0 + α1 CSS− α2 TPH + α3 F80 + α4 LLEN, (7)

K2 = β0 + β1 CSS + β2 TPH + β3 F80− β4 LHR + β5 ET, (8)

K3 = γ0, (9)

where CSS is the closed side setting (mm); TPH is the throughput (dry t/h); F80 is the
80% passing size of the feed (mm); LLEN is the length of the face of the mantle liner (mm);
LHR is the liner age (hours); ET is the eccentric throw (mm); and α0 to α4, β0 to β5, and
γ0 are the calibration parameters of the classification function model. The signs of the
parameters α2 and β4 show the expected trends with the dominant variables of crusher set
and throughput.
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According to King [20], parameter K1 ranges from about 0.5 to 0.95 and K2 ranges
from about 1.7 to 3.5. Usually, K3 is approximately equal to 2, but can vary from 1 to 3.

3.2. Breakage Function

In Whiten’s cone crusher model, the breakage function represents the probability that
particles of a given class in a material stream will be broken into a smaller size. Equation (10)
defines the lower triangular breakage matrix B (B ∈ Rn f×n f ) and represents the fraction
of particles smaller than class size w, resulting from the breakage of particles of class size
z, which occurs on each feed cycle. The elements of B are calculated as shown in (11), in
which bij is the element in row i and column j of matrix B and gives the percentage of
particles of size class j that will belong to particle class i after breakage and B(dpi ; dpj) is
calculated as shown in (10). The sum of the elements in each column of B must be equal
to 1.

B(w; z) = Φ
(w

z

)δ
+ (1−Φ)

(w
z

)σ
. (10)

bij =

{
B(dpi ; dpj)− B(dp(i+1) ; dpj), for i 6= j

1− B(dp(i+1) ; dpj), for i = j
. (11)

nx

∑
j=1

bij = 1, ∀i, 1 ≤ i ≤ nx. (12)

In (10), Φ denotes the fraction of child particles in the finer fraction. δ and σ describe
the larger particles produced by tensile stress and the smaller products produced by intense
compressive stress, respectively [20]. The parameters Φ, δ, and σ depend on the particular
application and should be calibrated. According to King [20], for standard crushers, the δ
and σ values must be equal to 0.5 and 4.5, respectively.

Equations (10)–(12) express the breakage matrix in a condensed parameter form, as
only three parameters define all elements of the matrix. Klimpel and Austin [24] used
this condensed breakage function to reduce the number of calibration parameters. These
authors argued that the calibration problem (cast as an optimization problem) can be solved
more efficiently with fewer calibration parameters. Similarly, Machado Leite [34] argued
that the condensed form of the breakage function is more tractable than the uncondensed
form and that the calibration parameters have greater physical meaning. Nevertheless,
in this paper, we choose to increase the number of degrees of freedom in the breakage
function at the expense of additional complexity. Instead of calibrating only the parameters
Φ, δ, and σ, we propose to calibrate every element of the lower triangular breakage matrix.
The size of the lower triangular breakage matrix is n f × n f , resulting in n f (n f + 1)/2
calibration parameters. Note that, in this case, the constraint defined in (12) still holds.

We demonstrate that, by taking advantage of current computational capabilities,
calibrating every element of the breakage matrix, as opposed to what was done by Klimpel
and Austin [24] and Machado Leite [34], is not only computationally feasible but also results
in a more precise and accurate cone crusher model. Additionally, cone crusher models
based on the lower triangular breakage matrix, despite lacking physically meaningful
parameters, are valid alternatives for circuit design and process control applications [34].

4. Proposed Calibration Strategy

This section presents the calibration strategies for Whiten’s cone crusher model formu-
lated as a nonlinear programming model. For completeness, two variants of the calibration
problem are defined, namely, (i) the problem with the full breakage matrix calibration
strategy (FBS) and (ii) the problem with the condensed breakage matrix calibration strategy
(CBS). The former is the strategy proposed in this work, whereas the latter is an established
strategy in the literature [24,34]. For both calibration strategies (CBS and FBS), the result-
ing optimization problems are solved using a sequential quadratic programming (SQP)
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method [39], which exhibits excellent performance for solving nonlinear optimization
problems [40].

The cone crusher model presented in the previous section is a function of several
parameters that must be calibrated. We ultimately wish to have a model that can predict
the product PSD of a cone crusher, thus enabling the implementation of process control
algorithms that rely on a plant model.

Hereafter, we use the following notation:

• DS = {1, . . . , nd}: set of nd datasets;
• CL = {1, . . . , n f }: set of n f classes used to describe the PSD of the material;
• CSSl : closed side setting (CSS; mm) of the cone crusher for dataset l, l = 1, . . . , nd;
• TPHl : throughput (dry t/h) for dataset l, l = 1, . . . , nd;
• F80l : 80% passing size (mm) of the feed for dataset l, l = 1, . . . , nd;
• LLENl : length of the face of the mantle liner (mm) for dataset l, l = 1, . . . , nd;
• LHRl : liner age (hours) for dataset l, l = 1, . . . , nd;
• ETl : eccentric throw (mm) for dataset l, l = 1, . . . , nd;
• P̂i,l(θ1), Pi,l : predicted and measured product PSDs, respectively, for i = 1, . . . ,n f and

l = 1, . . . , nd;
• θ: vector of decision variables;
• LB: lower bound on the decision variables;
• UB: upper bound on the decision variables.

The FBS optimization problem is formulated as follows:

min
θ1

∑
l∈DS

∑
i∈CL

(P̂i,l(θ1)− Pi,l)
2 (13)

subject to:

∑
j∈CL

bij = 1, ∀i ∈ CL, (14)

0.5 CSSl ≤ (α0 + α1 CSSl − α2 TPHl + α3 F80l + α4 LLENl) ≤ 0.95 CSSl , ∀l ∈ DS, (15)

1.7 CSSl ≤ (β0 + β1 CSSl + β2 TPHl + β3 F80l − β4 LHRl + β5 ETl) ≤ 3.5 CSSl ∀l ∈ DS, (16)

LB ≤ θ1 ≤ UB. (17)

The decision variables for the FBS problem are as follows: α0, . . . , α4, used in the
calculation of the parameter K1 for the classification function; β0, . . . , β5, used in the
calculation of the parameter K2 for the classification function; γ0, used in the calculation of
the parameter K3 for the classification function; and bij, which represents the percentage of
particles that are broken inside the cone crusher and change from particle class j ∈ CL to
particle class i ∈ CL. The resulting decision variable vector is θ1 = {α0, . . . , α4 ∪ β0, . . . , β5 ∪
γ0 ∪ bij}. The objective, as expressed in (13), is to minimize the sum of the squared errors
(SSE) between the measured PSD (P) and the PSD calculated using the cone crusher model
(P̂), given by (4)–(12) for the FBS. For the CBS, the cone crusher model (P̂) is given by (4)–(9)
and (11)–(12). The constraints in (14) ensure that the sum of the entries in each column of
B is equal to one. Constraints (15) and (16) define bounds on K1 and K2 based on empirical
recommendations [20]. Finally, constraint (17) defines bounds on θ1.

The CBS optimization problem corresponds to a calibration strategy established in
the literature [24,34]. In the CBS, the breakage function parameters appearing in (10) are
calibrated. Thus, the decision variables bij are removed, and three new decision variables
are added: Φ, δ, and σ. The objective function is designed to minimize the SSE of a new θ,
represented by θ2 = {α0, . . . , α4 ∪ β0, . . . , β5 ∪ γ0 ∪ Φ ∪ δ ∪ σ}. The constraints are
similar to those in the FBS problem except that in constraint (17), θ1 changed to θ2.

5. Results and Discussion

This section presents applications of the proposed calibration strategy for Whiten’s
cone crusher model. The case studies consider seven datasets consisting of operating data
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from Vale S.A., a Brazilian mining company. The cone crusher throughput and the PSDs
of the feed and product flows were collected for three different CSSs and throughputs of
the Serra Leste iron mine (datasets 1 to 3); the PSD of the product flow was also collected
at a CSS of 28 mm for four different F80 values from the S11D iron mine (datasets 4 to 7).
Table 1 summarizes the datasets used for the calibration of cone crusher models. For Serra
Leste datasets, note that the parameter F80 is not considered for calibration purposes. The
variations by time of F80 are negligible for this crushing stage.

Table 1. Summary of plant name, cone crusher type and operating parameters for each dataset.

Iron Mine Cone Crusher Dataset CSS (mm) TPH (t/h) F80 (mm)

Serra Leste Metso HP400
1 35 883 102.36
2 38 986 102.36
3 41 998 102.36

S11D Sandvik CH660

4 28 368 45.35
5 28 368 73.03
6 28 368 30.89
7 28 368 27.79

Due to the limited availability of data obtained during plant operation and the lack of
information regarding operating conditions, some of the parameters of the classification
model in (6) were disregarded during the calibration procedure, namely, variables LLEN,
LHR, and ET, which are related to parameters α4, β4, and β5, respectively. The decision
variable vectors were adjusted accordingly.

For all datasets, the number of classes in the material stream was determined in
a laboratory test, resulting in n f = 22. Since datasets 1 to 3 and datasets 4 to 7 were
collected from different iron mines, they were treated separately in the calibration and
validation tests.

The FBS and CBS problems were solved using a commercial SQP algorithm (fmincon,
MATLAB) on a computer with a 1.6 GHz CPU and 8 GB of RAM running MATLAB version
2019b on the 64-bit Windows 10 operating system. The FBS and CBS problems have 262
and 12 decision variables, respectively. The significant difference in the number of variables
originates from the elements bij of B, which correspond to n f (n f + 1)/2 = 253 parameters.
The maximum number of iterations and the maximum number of function evaluations of
the SQP algorithm were set to 1010, and all other settings were set to their default values.

In all of the calibration/validation scenarios studied here, the initial guess for the FBS
(θ
′
1) was defined based on the work of Napier-Munn et al. [38] as follows:

θ
′
1 =

[
0 1 0 0 0 2.43 0 0 2.3 1

1, nx(nx+1)
2
× 0.01

]
,

where 1
1,

n f (n f +1)
2

represents a vector of ones with a size equal to n f (n f + 1)/2. The

initial guess for the CBS (θ
′
2), when applicable, was defined based on the work of

Napier-Munn et al. [38] and King [20] as follows:

θ
′
2 =

[
0 1 0 0 0 2.43 0 0 2.3 0.3 0.5 4.5

]
.

The lower and upper bounds of the optimization problems are as follows:

0
0
1
0
0
0

 ≤


αa
βb
γ0
Φ
δ
σ

 ≤


∞
∞
3
1
∞
∞

, (18a)
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
0
0
1

10−3

 ≤


αa
βb
γ0
bij

 ≤


∞
∞
3
1

, (18b)

where a,b = 0, . . . ,3, i = 1, . . . ,n f , and j = 1, . . . ,n f .

5.1. Evaluation of the FBS and CBS

Figure 4 illustrates the difference between the predictions of the product PSD obtained
using the breakage function presented in (10) (CBS) and the breakage matrix defined in (11)
(FBS) for calibration using dataset 1. In this case, the SSE values show that the difference is
significant: SSE = 98.66 for the model calibrated using the CBS, and SSE = 6.04× 10−5 for
the model calibrated using the FBS. In fact, the curves marked with ‘x’ symbols (measured
data) and ‘o’ symbols (data predicted using the FBS) are virtually interchangeable. This
finding demonstrates that increasing the number of degrees of freedom of the model yields
a better fit.
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Figure 4. Measured and predicted PSD curves to compare the effect of the number of degrees of
freedom of the breakage function on the model accuracy for dataset 1.

Table 2 shows that the FBS also yields better model fits than the CBS for calibration
using the two other Serra Leste datasets and various combinations (investigated in Scenario
1 in the next subsection). The mean and standard deviation of the SSE for the FBS are
6.43 and 10.56, respectively, whereas the mean and standard deviation for the CBS are
267.90 and 250.22, respectively. The time required to solve the FBS optimization problem
in the slowest case was approximately 3 min. Although this is a significant difference
compared to the slowest solution time reported for the CBS (4 s), the magnitude of the
computation time for the FBS is not relevant in practice for model applications. Moreover,
calibration via the FBS is much faster than calibration by trial and error. More complete
discussions of the SSE values in rows 1–3, rows 4–6, and row 7 of Table 2 are presented in
Section 5.2.1 and Section 5.2.2, respectively. Table 3 shows the same comparison for S11D
datasets. The mean and standard deviation of the SSE for the FBS are 124.34 and 236.82,
respectively, whereas the mean and standard deviation for the CBS are 409.37 and 444.76,
respectively. More complete discussions of the SSE values in rows 1–3, and row 4 of Table 3
are presented in Section 5.2.1 and Section 5.2.2, respectively.
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Table 2. Summary of SSEs and computation times using the FBS and CBS (Serra Leste).

FBS CBS

Dataset(s) Used for Calibration SSE Time [s] SSE Time [s]

1 6.04× 10−5 20.72 98.66 1.43
2 3.01× 10−6 13.32 72.16 2.90
3 2.21× 10−6 12.92 76.10 1.53

1 and 2 22.51 180.39 407.95 1.94
1 and 3 1.26 79.04 308.75 1.51
2 and 3 1.28× 10−2 97.63 155.85 1.60

1, 2 and 3 21.23 58.07 755.82 3.76

Mean (StDev) 6.43 (±10.56) 66.01 (±60.50) 267.90 (±250.22) 2.10 (±0.89)

Table 3. Summary of SSEs and computation times using the FBS and CBS (S11D).

FBS CBS

Dataset(s) Used for Calibration SSE Time [s] SSE Time [s]

5 and 7 10.15 30.94 244.83 10.45
4 and 7 7.67 22.29 258.50 3.23
4 and 5 4.94× 10−2 56.52 70.15 2.99

4, 5, 6 and 7 479.51 42.11 1064.00 2.50

Mean (StDev) 124.34 (±236.82) 37.96 (±14.79) 409.37 (±444.76) 4.79 (±3.78)

5.2. Calibration/Validation Using the FBS

The analysis of the FBS, as a candidate strategy for developing cone crusher models
based on industrial datasets, is divided into three scenarios. In Scenario 1, the model
parameters are calibrated using datasets 1, 2 and 3 simultaneously and validated on each
dataset one at a time. This scenario is simple in the sense that a model is both calibrated
and validated using the same dataset. Ideally, this situation should be avoided; however, in
industrial practice, additional datasets may be scarce. In Scenario 2, the model parameters
are calibrated using two datasets (chosen from among either datasets 1–3 or datasets
4–7) and validated on a third dataset not used in the calibration step. Scenario 3, on
the other hand, represents the usual practice of calibrating and validating a model on
different datasets with an additional degree of complexity, as all datasets are obtained
under different operating conditions. In Scenario 3, the model calibrated in Scenario 1 is
used to predict PSD curves for different CSS values.

In all scenarios, for comparison, we plot the result of trial and error approach
considering the recommended parameters values by King [20], i.e., K1 = [0.5 − 0.95],
K2 = [1.7− 3.5], K3 = [1− 3], Φ = [0.1− 0.9], δ = 0.5 and σ = 4.5. In this case, the green
region illustrate all available possibilities of result.

5.2.1. Scenario 1

In this scenario, the calibration procedure considers all available datasets from a single
iron mine simultaneously. For the Serra Leste mine (datasets 1 to 3), Figure 5 shows that
there is almost no difference between the predicted and measured PSD curves, even when
the model is adjusted for datasets with different CSSs. The SSE values for validation using
datasets 1, 2, and 3 individually are 13.40, 5.49, and 2.49, respectively. For the S11D mine
(datasets 4 to 7), Figure 6 similarly shows that the predicted PSD is close to the measured
PSD even though the F80 value is different for each dataset used. The SSE values for
validation using datasets 4, 5, 6, and 7 individually are 60.24, 7.17, 273.80 and 138.29,
respectively. Table 4 summarizes the calibrated parameters. Note that the variation of the
calibrated parameters is due to the optimization algorithm’s attempt to fit the data used in
the calibration with the cone crusher model.
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Figure 5. Measured and predicted PSD curves in Scenario 1 for the Serra Leste datasets. (a) PSD predicted using the model
calibrated on datasets 1, 2 and 3. Validation with Dataset 1. (b) PSD predicted using the model calibrated on datasets 1,
2 and 3. Validation with Dataset 2. (c) PSD predicted using the model calibrated on datasets 1, 2 and 3. Validation with
Dataset 3.

Using the CBS, the resulting calibrated parameters are those showed in Table 5. The
SSE values for validation using datasets 1, 2 and 3 (Serra Leste) individually are 387.54,
170.70, and 197.59, respectively. The SSE values for validation using datasets 4, 5, 6 and 7
(S11D) individually are 146.29, 24.23, 579.91, and 313.60, respectively.
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Figure 6. Measured and predicted PSD curves in Scenario 1 for the S11D datasets. (a) PSD predicted using the model
calibrated on datasets 4 to 7. Dataset 4 is used for validation. (b) PSD predicted using the model calibrated on datasets 4 to
7. Dataset 5 is used for validation. (c) PSD predicted using the model calibrated on datasets 4 to 7. Dataset 6 is used for
validation. (d) PSD predicted using the model calibrated on datasets 4 to 7. Dataset 7 is used for validation.

Table 4. Calibrated parameters in Scenario 1.

Iron Mine α0 α1 α2 α3 β0 β1 β2 β3 γ0

Serra Leste (1 to 3) 0 0.905 0 0 0 0.096 0.095 0 3.000
S11D (4 to 7) 0.155 0.441 0 0.053 0.047 1.698 0 0 3.000

Table 5. Calibrated parameters in Scenario 1 (CBS).

Iron Mine α0 α1 α2 α3 β0 β1 β2 β3 γ0 Φ δ σ

Serra Leste (1 to 3) 0 1.375 0.018 0 0 3.060 0 0 3.000 1.000 0.506 211.441
S11D (4 to 7) 0.001 0.425 0 0.076 0.004 0.704 0.063 0.177 3.000 1.000 0.400 875.255

In this scenario, a compromise solution is expected since the cone crusher model is
calibrated using datasets obtained under different operating conditions. Nevertheless, the
curves in Figures 5 and 6 show that the PSDs from all sets are well adjusted by the model
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for both iron mines. These findings demonstrate that the FBS-based cone crusher model
will also behave well when multiple datasets from the same equipment but at different
operating points are available for calibration. This is a common practical scenario when a
model that is valid over a large operating range is desired. In the final scenario, we will
evaluate whether the predicted cone crusher model can predict PSD curves for arbitrary
CSS values. First, however, we consider the next scenario to evaluate how the model fares
in calibration/validation trials using various combinations of the available datasets.

5.2.2. Scenario 2

In this scenario, a calibration and validation study was performed considering three
datasets with different CSSs (for the data from Serra Leste) or different values of F80
(for the data from S11D). The use of combinations of 2 datasets for calibration and 1 for
validation was investigated. Figures 7 and 8 illustrate the measured and predicted PSD
curves for Serra Leste and S11D, respectively. The calibrated parameters obtained for the
Serra Leste and S11D datasets are listed in Table 6. Again, note that the variation of the
calibrated parameters is due to the optimization algorithm’s attempt to fit the data used in
the calibration with the cone crusher model.
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Figure 7. Measured and predicted PSD curves in Scenario 2 for the Serra Leste datasets. (a) PSD predicted using the model
calibrated on datasets 2 and 3. Validation with Dataset 1. (b) PSD predicted using the model calibrated on datasets 1 and 3.
Validation with Dataset 2. (c) PSD predicted using the model calibrated on datasets 1 and 2. Validation with Dataset 3.
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Figure 8. Measured and predicted PSD curves in Scenario 2 for the S11D datasets. (a) PSD predicted using the model
calibrated on datasets 4 and 7. Validation with Dataset 5. (b) PSD predicted using the model calibrated on datasets 4 and 5.
Validation with Dataset 6. (c) PSD predicted using the model calibrated on datasets 5 and 6. Validation with Dataset 7

Using the FBS, the SSE values obtained for the product PSD prediction in the validation
step for datasets 1, 2, and 3 (Serra Leste) are 487.16, 1488.50, and 76.37, respectively. For
datasets 5, 6, and 7 (S11D) the SSE values obtained for the product PSD prediction in
the validation step are 393.64, 573.11, and 1151.30, respectively. Note that although the
SSE values obtained in this scenario are relatively high, they nevertheless would not be a
problem for certain practical applications, such as control applications.

Using the CBS, the resulting calibrated parameters are those showed in Table 7. The
SSE values obtained in the validation step for datasets 1, 2 and 3 (Serra Leste) are 6249.20,
2007.430, and 541.09, respectively. The SSE values obtained in the validation step for
datasets 5, 6, and 7 (S11D) are 433.67, 1658.00, and 1279.7, respectively.
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Table 6. Calibrated parameters in Scenario 2.

Datasets α0 α1 α2 α3 β0 β1 β2 β3 γ0

2 and 3 0.431 0.249 0 0.096 0 2.507 0 0 1.695
1 and 3 0 7.481 0.277 0 0 2.451 0 0 2.636
1 and 2 0 0.950 0 0 0 0 0.082 0 3.000

4 and 7 0.021 0.391 0 0.109 0.017 1.309 0.030 0 3.000
4 and 5 0.193 0.486 0 0.005 0.033 1.703 0 0 3.000
5 and 6 0.387 0.454 0 0.029 0.206 1.693 0 0 3.000

Table 7. Calibrated parameters in Scenario 2 (CBS).

Datasets α0 α1 α2 α3 β0 β1 β2 β3 γ0 Φ δ σ

2 and 3 0.024 2.127 0.303 2.380 0 3.500 0 0 2.275 1.000 0.534 75.929
1 and 3 0.022 29.596 1.410 2.276 0 3.218 0 0 3.000 1.000 0.514 237.607
1 and 2 0 0.500 0 0 0 0 0.067 0 2.688 0.016 0.487 242.818

4 and 7 0 0.642 0.011 0 0.047 0.096 0.093 0.379 3.000 1.000 0.343 577.232
4 and 5 0 0.858 0.051 0.192 0 0.397 0.094 0.076 3.000 1.000 0.408 764.263
5 and 6 0 0.903 0.035 0.053 0.001 0.813 0.109 0. 3.000 1.000 0.417 644.004

5.2.3. Scenario 3

The goal of this scenario is to investigate the prediction capabilities of the Serra Leste
cone crusher model calibrated in Scenario 1 for different CSS values. Specifically, product
PSD values were calculated for CSS values of 37, 39, and 40 mm, which are in between
the CSS values of the datasets used for calibration. Although no datasets obtained at the
CSS values considered for prediction are available for model validation, it is expected that
the relative ordering of the predicted product PSD curves should be consistent with that
of the cone crusher CSS values. Figure 9 shows the measured PSDs for the CSSs used in
the calibration step (35 mm, 38 mm, and 41 mm, marked in the legend with a ‘*’ symbol)
and the predicted PSDs for the intermediate CSSs calculated using the calibrated model
from Scenario 1. The inset in the bottom-right part of the figure shows a detail view of the
region around the size at which 80% of the product passes (P80), and Table 8 shows the
respective P80 value for each CSS considered, where P̂80 is the predicted value and P80
is the measured value. The fact that the P̂80 values also appear in ascending order when
the CSS values are arranged in ascending order confirms that the calibrated model can be
useful for PSD prediction for intermediate CSS values.
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Figure 9. Measured PSDs for CSS = 35 mm, 38 mm and 41 mm. Predicted PSDs for CSS = 37 mm,
39 mm and 40 mm.
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Table 8. P80 values in Scenario 3.

CSS [mm] *35 37 *38 39 40 *41

P̂80 [mm] 34.66 40.84 46.95 48.51 50.00 52.39
P80 [mm] 33.78 - 47.16 - - 53.90

The results presented in this scenario show how the calibrated cone crusher model can
be used in dynamic simulations to predict product PSDs under operating conditions that do
not match those considered in the calibration step. This characteristic is important because
it enables the exploration of different operating conditions with the aim of optimizing
certain performance criteria of the cone crusher, such as the throughput or product PSD.

In this scenario, only the sensitivity of the model to the CSS was studied. To obtain
more comprehensive results, a similar study should be performed for every operating
variable that affects the cone crusher model. Only in this way will it be possible to fully
evaluate the robustness of the calibrated model. Nonetheless, the results presented here
demonstrate that the model successfully predicts the expected trend of P80 with respect
to variations in the CSS of the cone crusher, with an average prediction error of 1.97%, as
shown in Table 8.

6. Conclusions

The calibration of a cone crusher model using industrial data was studied in this
paper. In the model, the PSD of the product stream is calculated based on the PSD of the
feed and the classification and breakage functions. Initially, the classification and breakage
functions were defined based on widely used and accepted models from the literature. In
our proposed strategy, the classification function, which has nine calibration parameters,
remains unchanged. The breakage function, on the other hand, is altered to increase the
number of decision variables in the calibration problem. Specifically, all elements of the
breakage matrix are considered as parameters, whereas the calibration strategy applied in
the literature relies on a condensed version of the breakage matrix in which the elements are
expressed as a function of only three parameters. This modification increases the number
of calibration parameters in the breakage function from three to n f (n f + 1)/2, where n f is
the number of classes used to characterize the material stream inside the cone crusher. The
calibration problem is cast as an optimization problem based on the least squares method.
The cost function is defined as the SSE between the predicted and measured product PSD
values, and upper and lower bounds on the calibration parameters are enforced. Here, the
resulting optimization problem was solved using an SQP algorithm. Notably, increasing
the number of decision variables impacts the solution time for the optimization problem:
we observed a difference of at most 179 s. Three calibration scenarios were analyzed,
in which different combinations of calibration and validation tests were presented. The
results show that the proposed calibration strategy is capable of dealing with sensitivity
to the CSS. This finding indicates that increasing the number of degrees of freedom in the
breakage function leads to a greater impact on the effect of the CSS in the crusher model.
Due to the unavailability of additional data collected under different operating settings,
it was not possible to investigate the effects of the liner properties, eccentric throw, or
throughput on the calibration performance. Nonetheless, the proposed calibration method
was found to enable the prediction of product PSDs for different CSS values in accordance
with the expected results. One of the main advantages of the proposed methodology
is that the calibration process is based only on data that are already available from the
plant, namely, flow rates, throughput, CSS and PSD values. Additional laboratory tests are
not required. The resulting cone crusher model is a strong candidate for use in dynamic
simulations of crushing plants for process control applications, flowsheet design, and
operator training. Future work will include model calibration and validation against more
diverse datasets, permitting the exploration of the effects of other operating variables, such
as liner properties and eccentric throw, on the model.
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