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Abstract: In this paper, to update the orebody model based on the given interpreted geological
information, we present a local dynamic updating method of the orebody model that allows the
interactive construction of the constraint deformation conditions and the dynamic updating of the
mesh model. The rules for constructing deformation constraints based on the control polylines are
discussed. Because only part of the model is updated, the updated mesh is effective and the overall
quality is satisfactory. Our main contribution is that we propose a local dynamic updating method
for the orebody model based on mesh reconstruction and mesh deformation. This method can
automatically update a given 3D orebody model based on a set of unordered geological interpretation
lines. Moreover, we implement a deformation neighborhood region search method based on the
specified ring radius and a local constrained mesh deformation algorithm for the orebody model.
Finally, we test the method and show the model update results with real geological datasets, which
proves that this method is effective for the local updating of orebody models.

Keywords: geological modeling; orebody modeling; model updating; mesh reconstruction; mesh
deformation

1. Introduction
1.1. Research Background

To enable the use of digital and intelligent mine processes, model data are used as a
basis to construct 3D geological models. This plays an important role in the entire life cycle
of mine development, such as mineral deposit exploration, feasibility analysis, mining
design, mining planning, production process management, etc.

Due to the limitations of geological conditions and exploration technology, complete
orebody data cannot be obtained by geological exploration in order to accurately describe
the shape and distribution of orebody. Therefore, orebody modeling is a dynamic process
that is gradually refined with the continuous enrichment of geological exploration data. It
should be modified and updated gradually along with exploration and excavation. For
example, in the highly dynamic environment of narrow vein mining, vein characteristics
and grade change rapidly. Local resource models become outdated rapidly as geological
information is collected along veins. Short-term models need to be rebuilt regularly to
improve the modeling quality and optimize the long-term planning.

However, due to the complexity and uncertainty of 3D geological modeling and the
lag in model updating, it is often difficult to advance the regular reserve estimation of mine
resources and the later mining design, which greatly affects the efficiency and reliability
of mine optimization design. Therefore, the dynamic updating of geological models
has become an important bottleneck that restricts the development of mine digitization
and intelligence.
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The updating of geological models includes global updating and local updating. For
the global updating of models, model reconstruction based on implicit modeling [1] is
a good method. It is an ideal method for the construction of interactive constraints and
dynamic updating models. For this method, the geometric field constructed by section data
is transformed into a distance field through a distance function. Mathematical functions
can be used to represent the 3D surface model, which can be converted to a mesh model
for display. For the geological models, if there are implicit models and constraint lines,
constraint lines can be used as spatial interpolation conditions, and the implicit modeling
method can be directly used for dynamic updating. However, the geological model to be
updated may be constructed by various methods. For the explicit model constructed by the
contour splicing method [2], it is difficult to update the model using the newly interpreted
contour polylines.

To update a geological model locally, the interactive mesh deformation method [3]
may be a feasible way. First, the method requires the specification of the mesh vertices of
the region of interest (i.e., the deformation region) on the surface of mesh models to be
updated, including constraint points and non-constraint points. Second, a target update po-
sition should be specified for each constraint point, and constraint deformation conditions
should be defined at the target position of each constraint point. In the deformation process,
the coordinates of unconstrained points are updated by deformation algorithms, such as
the Laplace deformation algorithm [4]. Finally, the updated model is generated by the
constrained deformation of the region of interest of the model surface mesh. The updating
of the geological models is based on the updated geological interpretation information.
It involves the problem of matching between the sampling points on the geological inter-
pretation line and the deformation constraint points of the model. The matching process
should ensure the corresponding relationship between the geological interpretation points
and the target update position of the deformation constraint points.

To solve the above problems, we focus on the local updating method of 3D orebody
models based on real-world geological interpretation data. Based on mesh reconstruction
and mesh deformation, we consider the local updating process of orebody models as a
local constrained deformation process of mesh models. Thus, we propose a local dynamic
updating method of orebody models based on mesh reconstruction and mesh deformation,
and we implement a constrained mesh deformation algorithm of orebody models. This
method can automatically update a given 3D orebody model based on a set of unordered
geological interpretation lines. It can effectively solve the problem of gradual and rapid
updating of the orebody models in the process of production and exploration, which has a
broad prospect of popularization and application in geological modeling.

1.2. Related Works

The following briefly introduces three major achievements that are similar to our re-
search, namely, the surface modeling of geological bodies, the model updating of geological
bodies, and the constraint deformation of mesh models.

1.2.1. Surface Modeling of Geological Bodies

The main object of surface modeling is a structural model that expresses boundary geo-
metric information. According to the modeling process and mathematical characteristics of
the model, orebody modeling methods can be divided into explicit modeling and implicit
modeling. The implicit modeling method, based on an implicit function, can automati-
cally interpolate the spatial sampling data, accurately construct the implicit surface in line
with the sampling data, greatly reduce the manual interaction and improve the modeling
automation. Cowan et al. [5] referred to the implicit modeling method as the wireless
frame modeling method and compared it with the explicit modeling method. Guo et al. [6]
also proposed a modeling method of explicit and implicit integration, which provides a
reference for solving the geometric fusion of different types of complex geological structure
models. In recent years, the implicit modeling method has received attention and devel-
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opment in the field of 3D mine modeling due to its advantages in dynamic updating. For
example, signed distance field functions [7], radial basis functions (RBFs) [8], geological
rule interpolation constraints [9], linear interpolation methods [10], implicit surface recon-
struction methods [11], etc., have been applied to orebody modeling [12]. Furthermore,
specific implicit modeling methods are also developed based on different geological data,
such as implicit orebody modeling methods based on borehole data [13], section data [14],
point cloud data [15], etc. However, most mainstream mining modeling software still uses
the traditional explicit modeling method, and the whole modeling process requires many
manual interactions. The limitations of the traditional method have gradually become
prominent for orebodies with many sections and complex shapes, such as low efficiency
and difficult dynamic updating. Therefore, in this paper, we will reconstruct the original
orebody model with feature preservation using the implicit modeling method, which can
show its advantages in terms of modeling time and model quality.

1.2.2. Model Updating of Geological Bodies

The updating method for geological models can be divided into global updating and
local updating according to the updating scope. The global updating method is essentially
a process of model reconstruction [16]. If the modeling data change locally, the explicit
and implicit models can all be updated by reconstruction. The explicit modeling method
needs to interpret data, delineate profiles and connect contour polylines again, which
involves a complex process of model updating with many steps. However, the implicit
modeling method can automatically reconstruct the model only by inputting new data, and
the model quality and modeling efficiency are better than those of explicit modeling. For
example, Guo et al. [17] developed a prototype system that can import section lines from
the database or draw section lines interactively, and also updates the model immediately
after adding new constraints. Zhong et al. [18] proposed a new generalized radial basis
function (GRBF) interpolation method based on GRBF interpolation and various types of
constraints, which can reconstruct implicit surfaces from a set of point clouds and normal
data. For the local updating, it can be considered as a model adjustment process in the
local region, which mainly involves mesh spatial deformation technology [19]. On one
hand, implicit and mathematical methods can be considered for local mesh updating, such
as local mesh deformation methods based on tri-harmonic RBF [20], and local compactly
supported RBF [21]. At present, the application of these methods in geo-modeling still
needs to be further studied and improved. On the other hand, both explicit and implicit
models are explicit polygon mesh models under visual conditions. Therefore, we consider
realizing local updating of orebody models by using the interactive mesh deformation
method, mainly involving the construction of constraint deformation conditions [22], the
mesh deformation algorithm [23], etc. The method can update the mesh model obtained
by any modeling method and has a wider scope of application.

1.2.3. Constrained Deformation of Mesh Models

Based on the theory of interactive mesh deformation, the constrained deformation
approach involves the inputting of an orebody mesh model and several control poly-
lines, and the construction of constraint deformation conditions, to realize local mesh
deformation and update the orebody model. Over the years, many scholars have con-
ducted relevant research on interactive mesh deformation [24] and optimization [25] in
the fields of medicine, mechanics, graphics, etc. For example, Qin et al. [26] presented an
example-driven mesh deformation method and introduced a feature representation of a
rotation-invariant reconstruction framework to accurately reconstruct vertex positions, and
the feature representation allowed interpolation and extrapolation. To realize the local
control of mesh deformation, Marc [27] used differential coordinates to describe the local
characteristics of geometric models and inserted the shape features into meshes. Although
much work has been conducted in interactive mesh deformation, it is still challenging
work to manipulate geometrically complex meshes and generate real deformation results.
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At present, Laplace deformation [28] has been proven to be better in terms of calculation
time and mesh quality [29,30]. For example, the bone template reconstruction algorithm
based on Laplace surface deformation presented by Vikas et al. [31] can be used for 3D
modeling of orthopedic X-ray images. Xu et al. [32] expressed the point set registration
problem as the Laplace mixed model (LMM), which can be used to solve the non-rigid
point set registration problem with constraint conditions (e.g., distance, transformation,
and correspondence). For the deformation of orebody mesh models, we consider the
construction of a constrained deformation framework combined with Laplace deformation
theory to implement the local surface deformation in the optional area of the mesh. The
deformation result does not have a global deformation effect on the whole model.

2. Method

It is necessary to dynamically update the orebody model according to the latest
geological logging data with the continuous exposure of local geological characteristics
of the orebody in the process of production and exploration. We attempted to construct a
local dynamic updating method of the orebody model based on mesh reconstruction and
mesh deformation. It constructs deformation constraint conditions between the model and
geological logging data.

The geological interpretation polylines and interpretation points obtained from geo-
logical logging data were the main sources of model updating data. They were transformed
into control polylines and control points through preprocessing, which were used to repre-
sent the polylines and points of controlling the external shape trend of model updating,
respectively. In addition, the deformation points were used to represent the deformation
constraint point on the original orebody model corresponding to the control points. The de-
formation neighborhood region was used to represent the mesh deformation range affected
by the deformation points on the orebody model, that is, the region of interest (ROI).

According to the updating idea of 3D orebody mesh reconstruction and mesh deforma-
tion, as shown in Figure 1, the model-updating method was divided into five main steps:
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Step 1 (preprocessing of geological data): The newly obtained geological logging data
were transformed into control polylines and control points to obtain geometric constraint
information with consistent topology.

Step 2 (mesh reconstruction of feature preservation): Based on feature detection, the
original input mesh model was reconstructed with feature preservation to obtain a better
mesh model with high quality.

Step 3 (construction of deformation constraints): The deformation constraints of the
orebody model were constructed by matching the deformation points through the control
polylines. Furthermore, a similar path with the same number of points was searched on
the orebody mesh model based on the control points sampled on the control polylines.

Step 4 (optimization of updating deformation neighborhood region): The mesh area
that allowed deformation near the deformation points was optimized and adjusted ac-
cording to the distance between the model and control polylines, the morphological
characteristics of the model and local deformation trend, etc.

Step 5 (constrained mesh deformation): Combined with Laplace coordinate transfor-
mation and other methods, the locally updated orebody model was obtained based on the
optimized local updating deformation neighborhood region.

Finally, the mesh simplification and mesh repairing of the updated orebody model
were carried out to obtain a valid mesh model that satisfied the manifold characteristics.
We will describe each step in detail in the following sections. In the Results section, the real
data will be tested and analyzed. In the Discussion section, we will analyze the limitations
and extensions of this method.

2.1. Preprocessing of Original Geological Data

Before updating the orebody model locally, first, the geological interpretation lines
and points obtained from the original geological logging data needed to be preprocessed
with de-weighting and simplification to construct topologically consistent geometric con-
straint information. Second, all valid geological interpretation lines and points needed to
be transformed into control polylines and control points, respectively, so that we could
construct deformation constraints based on control polylines and control points in the
later stage.

In addition, it was necessary to adjust the intersection position of control polylines to
ensure the accurate intersection of each control polyline, so that the updated orebody model
could snap all control polylines accurately. Furthermore, we used the spatial searching
method (e.g., the OBB tree) to speed up the calculation of the exact intersection points
between all control polylines.

In the stage of constructing deformation constraints, the optimal deformation point
corresponding to the control point was searched according to the corresponding projection
direction. To ensure that the model updating effect satisfied the geological characteristics,
geological engineers were allowed to adjust the projection direction of the control polylines
and points relative to the orebody model.

2.2. Mesh Reconstruction of Geological Models

To ensure that the original input orebody model had a smooth deformation trend and
higher mesh quality, mesh reconstruction for the original geological models was important.
There were three main problems that needed to be considered, including the size of the
mesh reconstruction, the feature protection, and the reconstruction method.

The reconstruction size represents the facet side length of the reconstructed model, and
it corresponds to the side length of the triangular patch for the triangular mesh model. In
the process of mesh reconstruction, it is better to ensure that the size of mesh reconstruction
is less than or equal to the interval of control points sampled on the control polyline. It
is worth noting that the reconstructed result should preserve the features of the original
model. Therefore, it was necessary to automatically extract the sharp features of the mesh
model through the feature detection algorithm, including feature lines and feature points.
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In addition, artificial additional feature lines and points were allowed to ensure the quality
of geological models after mesh reconstruction, such as the alignment of the original model
edge, and the retention of the crease feature between patches.

In this paper, we used the implicit reconstruction method while taking feature preser-
vation into account. It transformed feature lines and feature points into constraint lines
and constraint points as spatial interpolation constraints and implicitly expressed the
geometric model of orebody through the implicit function. Finally, the implicit function
was transformed into the mesh model by the surface reconstruction method, taking into
account feature preservation.

2.3. Construction of Deformation Constraints

The deformation constraints are the precondition and important link for updating a
model. We constructed the deformation constraints of the orebody model by matching
deformation points with control polylines. The key idea of the algorithm was to search a
similar path with the same number of points as the control polyline on the mesh model. Fur-
thermore, it was imperative that the deformation points on the path be adjacent, otherwise,
holes could have appeared in the updated model.

To construct deformation constraints, firstly, we needed to search the closest points
of all control points corresponding to the model surface by point projection. Then, the
projective polyline corresponding to the control polyline with the same number of points
was determined by taking the closest point as the deformation point. The deformation
point needed to be the vertex of the mesh. Since the closest projection point may not have
been the vertex of the mesh, the projective neighborhood boundary polyline needed to
be further extracted from triangular patches where the deformation point and projective
polyline were located. Finally, the projective neighborhood was reconstructed by taking
the deformation points on the projective polyline as mesh vertices. The detailed steps were
as follows, and the process and demonstration are shown in Figures 2 and 3, respectively.
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Step 1: Under the condition of reserving all key nodes on the control polyline, the
control polyline l1 was sampled with a certain interval to obtain a set of sampling points P.

Step 2: Traversing the set of sampling points P, the corresponding projective polyline
l2 was obtained by searching the closest points of sampling points on the mesh. Then, a set
of connected triangular patches, denoted as T1, were obtained, which intersected with the
projective polyline.

Step 3: The closed polyline l3 was obtained by extracting the boundary of the set of
the intersecting triangular patches T1.

Step 4: The closest points from a start point and an endpoint of the projective polyline
l2 to the closed polyline l3, respectively, were searched. Then, the two closest points were
used to divide the closed polyline l3 into two polylines (l4 and l5), respectively.

Step 5: The region S1 between l2 and l4 was polygonized. Then, the region S2 between
l2 and l5 was polygonized to obtain a new set of triangular patches T2, which replaced the
set of original triangular patches T1.
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In Step 2, according to the position of the closest projection point (i.e., deformation
point) of the control point to the triangular mesh model, it could be divided into three cases,
namely, the vertex, the edge, and the patch of the triangular mesh. Therefore, different
methods needed to be adopted to determine the triangular patches, as shown in Figure 4.
Firstly, if the deformation point was located at the mesh vertex, the adjacent triangular
patches of the mesh vertex within a circle needed to be added to the set T1. Secondly, if the
deformation point was located on the mesh edge, the two adjacent triangular patches of
the mesh edge needed to be added to the set T1. Thirdly, if the deformation point was in
the triangular mesh patch, the triangular patch needed to be added to the set T1.
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The triangular patches intersected by all matched projection polylines could be
searched according to the method shown in Figure 4. However, it required the searching of
all triangular patches on the path of the projective polyline to conduct the subsequent work.
In addition, there was an adaptive problem between the control polyline and the mesh
model. If the adaptability was adequate, the control points could match the deformation
points one by one, and the topological structure of the projective neighborhood triangular
meshes was adequate. However, the adaptability was generalized in some conditions,
such as the sampling interval being larger than the mesh size, the local shape trend of the
model changing greatly, etc. For this case, the topological discontinuity may have occurred
in some special locations, which required special methods to deal with. Therefore, we
constructed a pseudo-cut surface between two adjacent deformation points, which was
automatically generated by three points, including the two adjacent deformation points
and the midpoint of two adjacent control points, as shown in Figure 5. Then, the pseudo-cut
surface intersected with the mesh model, and the intersecting triangular patches were
extracted as a subset of T1. Finally, all triangular patches between the deformation points
could be extracted to maintain the topological continuity of the projective neighborhood.
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It should be noted that the interlacing of matched projection polylines could easily
have led to the self-intersection of the model after deformation. In the matching process
between control points and deformation points, we needed to ensure one-to-one correspon-
dence between points to avoid the phenomenon of cross-matching or repeated matching.

2.4. Determination and Adjustment of Deformation Neighborhood Region

To determine the local updating deformation neighborhood region of the model, we
utilized a method of constructing the deformation neighborhood region based on the
specified ring radius of the deformation point. For this method, the value of ring radius
was used to quantify the neighborhood radius, and the greedy search strategy was used to
automatically search the deformation neighborhood region around the deformation point,
as shown in Figure 6.

Generally, if the control polyline was close to the model, the neighborhood radius
should have been small. If the control polyline was far away from the model, the neighbor-
hood radius should have been large. To determine the optimal deformation neighborhood
region of the mesh model, it was necessary to analyze the characteristics of the optimal
deformation neighborhood region. Firstly, the size of the deformation neighborhood region
needed to take into account the distance between the control polyline and the model. Sec-
ondly, the mesh deformation trend of the deformation neighborhood region needed to be
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adapted to the shape feature of geological models. Thirdly, the geological models needed
to maintain reasonable characteristics and transition in the deformation neighborhood
region before and after deformation. Based on the above analysis, the geological engineers
could interactively adjust the initial deformation neighborhood region according to the
actual conditions, as shown in Figure 7.
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2.5. Constraint Deformation and Mesh Simplification

Based on the matched deformation constraints, we could conduct the local dynamic
updating of the orebody mesh model based on the Laplace transformation method. The
deformation method involved a set of control points used to control the external shape
trend in the model updating process, a set of triangular mesh vertices (i.e., deformation
points or deformation control points) from the projection of control points to control
model deformation, a set of vertices of deformation regions (i.e., ROI), and a set of non-
deformation points (i.e., non-deformation control points) in ROI.

We specified a unique target position for each deformation point, and the target
position was determined according to the matching relation between the deformation
point and the control point. The deformation constraint was defined at the target position
of each deformation point. During the deformation process, the coordinates of the non-
deformation points were updated by the deformation algorithm, which adopted the Laplace
deformation algorithm.

The essence of Laplace mesh deformation is the obtaining of the 3D coordinates of
each mesh vertex by solving the linear equations. In this way, a new 3D model can be
reconstructed after obtaining new coordinates by solving the equations. The Laplace
representation of points in surface mesh (i.e., Laplace coordinates) is a method used to
encode the local neighborhood of vertices in surface mesh. In this representation, a vertex
vi is associated with a 3D vector, which is defined as follows:

L(vi) = ∑vj∈N(vi)
wij

(
vi − vj

)
where N(vi) is the set of vertices adjacent to vi, and wij is the weight of the directed
edge vivj.

In addition, we simplified the mesh model by constructing mesh simplification con-
straints without changing the quality of the overall mesh model. Specifically, the triangular
meshes around the control polyline were not simplified, while the remaining meshes were
simplified by merging the fine meshes.

Finally, to ensure the validity of the mesh model after local updating, the method
supported the validity detection of the mesh model. Furthermore, the self-intersecting
triangular patches could be repaired, and the manifold valid characteristics that satisfied
the orebody model could be obtained.

3. Results
3.1. Example

Based on the above algorithms such as mesh reconstruction and mesh deformation,
we implemented the local updating method of the geological mesh model using Microsoft
Visual Studio 2013 (C++ language) (Microsoft, Redmond, USA). We tested the method on
several real geological datasets for local dynamic updating of the orebody model. The
datasets were obtained from the real-world geological modeling data.

The following parameters needed to be determined, such as the sampling interval of
the control polyline dsam, the facet side length of the model reconstruction lrec and the ring
radius of the deformation point rde f . We used the following initial values for all real-world
examples: dsam = 1 ∼ 10, lrec = 1 ∼ 10 ≤ dsam, rde f = 1 ∼ 50. The surface accuracy of
model reconstruction was controlled by the value of lrec. The smaller the value lrec, the
higher the accuracy. rde f was used to adjust the overall range of model updating. The
larger the value rde f , the larger the update range.

According to the method, we carried out local dynamic update tests on the orebody
models and geological body models, respectively, as shown in Figures 8 and 9. To prove
the applicability of this method, we selected three orebody models with different geometric
complexities for the modeling experiments shown in Figure 8. The experimental process
was as follows. Firstly, the original geological data were processed to obtain the control
polylines, and the nodes were sampled. Secondly, the original model was reconstructed
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to make its mesh size less than or equal to the sampling interval of the control polylines.
Thirdly, the control polylines were projected and matched the deformation points. Then, the
updating neighborhood region was determined and adjusted according to the deformation
points and the value of the specified ring radius. Finally, the model was updated locally by
mesh deformation.
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Figure 8a shows three types of control polylines, including the closed polyline, the
non-closed polyline and the intersected polyline. It shows that the geometric shape of
the model changed a little before and after mesh reconstruction in Figure 8b, indicating
that the reconstruction effect was satisfied. When the control polyline was projected, the
matching effect between control points and deformation points was appropriate, and the
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neighborhood search, according to the ring radius of the deformation point, also performed
well, as shown in Figure 8c. After the model was updated, the comparison of the points
before and after the update showed that the updating method only deformed and updated
the mesh model in the local range, which had achieved the expected effect, as shown in
Figure 8d.
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Figure 9. An example of the local updating of a geological body model (a–d).

To demonstrate the robustness of the method for different types of geological models,
we also conducted experimental tests on a geological body model, as shown in Figure 9. We
inputted several intersecting polylines as control polylines. The experimental results show
that the method also had advantages in terms of updating the geological body mesh model,
the topology was maintained well, and the updated model still had manifold characteristics.
In summary, the method was beneficial in solving the local dynamic updating problem of
the orebody models and geological body models.

3.2. Performance

The performance of the updating method mainly depended on the size of the original
model and the number of control polylines. We implemented the algorithm in C++ and
tested it on a Windows 64-bit PC (ASUS, Taibei, China) with a 3.40GHz Intel(R) Core (TM)
i5-8250U processor and 4GB RAM. Table 1 reports the parameters and running time of the
mesh reconstruction and updating stages of the algorithm on these examples. It shows
that larger numbers of triangular patches and control polylines required longer calculation
timed. The size of the updating neighborhood region also affected the quality and speed
of updating.

Table 1. The parameters and running time for the experiment examples, including the number of
model facets (N1), the number of control polylines (N2), the reconstruction time (REC), and the
updating time (UPD).

Examples N1 N2 dsam(m) lrec(m) rdef
Time (s)

REC UPD

Figure 8(1) 13,188 5 1 1 9 4.79 1.08
Figure 8(2) 29,420 3 10 10 9 8.33 0.92
Figure 8(3) 59,444 6 1 1 15 11.01 14.47
Figure 9 92,547 7 1 1 20 69.89 65.96
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4. Discussion
4.1. Limitations

To make the process of orebody modeling and updating more automated and intel-
ligent, it is necessary to establish a more automated, efficient, and robust local dynamic
updating method. However, there are still some limitations to our work that need to
be improved.

One of them is that the method proposed in this paper may be unsuitable for some
special conditions. Firstly, the large difference between the control polylines and the
model may lead to an abnormal matching between control points and deformation points.
Secondly, if a control polyline is too long, the neighborhood radius may not satisfy the
deformation trend. Thirdly, if the model or control polyline is complex, the matched
projection polyline may be abnormal, resulting in distortion of the model after deformation.
Therefore, based on the limitations of this method, to ensure the mesh quality, we should
divide a complex control polyline into several segment lines and update the complex
model iteratively.

Another limitation to this method is that, for orebody models with special shapes, or
at special positions within the model, there may be feature loss during model updating.
On the one hand, if there are many concave and convex shapes on the model surface, many
detailed features may be lost after updating. On the other hand, if the model is updated at
sharp points or the model is thin, the sharp features of the model may be lost. Therefore,
for this kind of special orebody model, the defining of strict sharp feature constraint lines
and points should be considered to ensure that these features can be retained.

4.2. Extensions

To enhance the robustness and adaptability of this method, it is necessary to satisfy
the requirement of the algorithm for the inputs. Our approach requires that the input data
should be a set of geological interpretation data and an orebody mesh model to be updated.
When the orebody model is reconstructed, the shape of the model may change to a certain
extent. An important extension is that only the deformation region is reconstructed, which
can improve the quality of model updating. In this paper, there are some examples of
mesh reconstruction for some regions, such as the mesh reconstruction of the projective
neighborhood, which reflects the feasibility of this extended idea. Furthermore, this method
is not only applicable to the orebody model but is also applicable to some other surface
mesh models such as the orebody model. It is also applicable to the updating of the solid
model, and thus, is not limited only to the surface mesh model.

Another important extension is that, according to the particularity of some models and
the complexity of control polylines, we can study more abundant and reliable deformation
constraint methods to improve not only the adaptability and robustness of the model-
updating method but also the quality and efficiency of model updating. The particularity
of the model can be reflected in the special morphology (e.g., the thin orebody or the
orebody with many morphological changes), the special updating area (e.g., the position
with sharp or large fluctuation of the model), etc. The complexity of control polylines
includes intensive polylines, irregular polylines, lengthy polylines, etc. Therefore, we
can define some additional constraint data according to different situations, improve the
model-updating method, and make the model-updating method more adaptable and
more robust.

5. Conclusions

In this paper, we present a local dynamic updating method of the orebody model
that allows the interactive addition of constraint deformation conditions and dynamic
updating of the mesh model in the updating process. Our main contribution is based on the
model-updating idea of mesh reconstruction and mesh deformation. The local updating
process of the orebody model is regarded as a local constrained deformation process of the
mesh model. Moreover, we present a local dynamic updating method of the orebody model
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and implement a constrained mesh deformation algorithm of the orebody model. This
method can automatically update a given 3D orebody model based on a set of unordered
geological interpretation polylines.

The orebody modeling is a dynamic process that is gradually refined with the contin-
uous enrichment of geological exploration data. If the geological data of orebody changes
locally, it is necessary to re-interpret the contour polylines, delineate the sections, and
splice the parallel or non-parallel sections. Furthermore, it is difficult to satisfy the re-
quirements of resource reserve estimation and dynamic updating of the orebody model
in the production and exploration stage. According to the method, structural geologists
can reconstruct the mesh model, construct deformation constraints according to the new
geological interpretation data, and dynamically update the model by mesh deformation in
the local region of the model.
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