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Abstract: Phosphate rocks are a vital resource for world food supply and security. They are the
primary raw material for phosphoric acid and fertilizers used in agriculture, and are increasingly
considered to be a potential source of rare earth elements. Phosphate rocks occur either as sedimentary
deposits or igneous ores associated with alkaline rocks. In both cases, the genesis of high-grade
phosphate rocks results from complex concentration mechanisms involving several (bio)geochemical
processes. Some of these ore-forming processes remain poorly understood and subject to scientific
debate. Morocco holds the world’s largest deposits of sedimentary phosphate rocks, and also
possesses several alkaline complexes with the potential to bear igneous phosphate ores that are still
largely underexplored. This paper summarizes the main geological features and driving processes of
sedimentary and igneous phosphates, and discusses their global reserve/resource situation. It also
provides a comprehensive review of the published data and information on Moroccan sedimentary
and igneous phosphates. It reveals significant knowledge gaps and a lack of data, inter alia, regarding
the geochemistry of phosphates and basin-scale correlations. Owing to the unique situation of
Moroccan phosphates on the global market, they clearly deserve more thorough studies that may, in
turn, help to constrain future resources and/or reserves, and answer outstanding questions on the
genesis of phosphates.

Keywords: sedimentary phosphate; igneous phosphate; phosphate resources; phosphogenesis; Mo-
rocco

1. Introduction

Phosphate rocks are by far the most important phosphorus-bearing raw material
used in the fertilizer industry. They are the primary source of phosphorus (P), which is
an essential element for agriculture and various industrial applications (e.g., animal feed,
cosmetics, and electronics) [1,2]. Phosphate rocks are also likely to host significant amounts
of rare earth elements (REE), making them a potential REE resource given their production
volume all over the world [3,4]. Similarly, phosphate rocks are also considered to be
an unconventional source of uranium, especially in certain deposits, where it can reach
high concentrations [5]. Other elements—such as cadmium, radium, and thorium, which
could also be enriched in certain phosphate rocks—are currently weighing heavily on their
production and transformation [6,7]. Phosphorus in phosphate rocks is always combined
with other elements in the form of phosphate minerals, of which the most common and
widely distributed belong to the apatite group [8]. Ensuring a stable supply of phosphate
is among the most challenging issues facing humanity, and requires proactive strategies
including the recycling of phosphate mining and processing wastes, in addition to the
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exploration of new potential phosphate ore resources [9,10]. Sedimentary phosphorites of
marine origin are currently the primary raw material for phosphate industries, and account
for a significant proportion of the world’s phosphate rock production ('90%) [11]. Igneous
phosphate rocks account for ~10%, and the rest comes from residual and guano-type
sedimentary deposits [2,12]. Both sources (igneous and sedimentary rocks) offer some
advantages and drawbacks in terms of their chemical quality, geographical distribution,
and exploitability [2].

In addition to their economic value, phosphate rocks are of high scientific value. Sed-
imentary phosphates provide valuable information on the ecology and chemistry of the
world’s past oceans [2,13]. Indeed, their genesis, accumulation, and preservation require
specific paleo-environmental conditions, and involve complex biogeochemical processes
during early diagenesis [2]. In addition, the link between the phosphorus cycle and the
other biogeochemical cycles (e.g., C and N) assigns the formation of phosphate rocks (phos-
phogenesis) an important role in the Earth’s climate regulation, as well as the regulation
of nitrogen and levels of atmospheric oxygen over geological timescales [13–15]. In this
way, several models have been proposed to explain phosphogenesis and its seemingly
discontinuous character over time [13]. On the other hand, the study of igneous apatite
can provide much information related to the mechanisms of magma evolution and alkaline
rock formation [16].

The Moroccan sedimentary phosphate deposits are remarkable in the world in terms of
their extent and available resources (more than 70% of the world’s phosphate reserves) [17].
Moroccan sedimentary phosphate rocks belong to the upper Cretaceous to lower Eocene
stratigraphic interval. They outcrop in several sedimentary basins of different surface
area and content [18]. This discontinuous geographical character reflects important paleo-
interactions with the local and the regional geodynamic context, which continues to be the
subject of several controversial hypotheses [18]. These Moroccan phosphate rocks represent
a unique case study to understand all of the paleo-processes involved in phosphogenesis.
Indeed, the questions of how they were formed and how they have evolved over time
have both a scientific and an international heritage value. Through their importance on
the spatial and temporal levels, Moroccan phosphates could deliver crucial information
on the paleoceanographic and paleoclimatic controls of the temporal and geographic
distribution of phosphorites. Their study could also answer unresolved questions about,
phosphogenesis, among others, and provide new insights on the relationship between
phosphorite formation and the major biogeochemical cycles, such as the nitrogen and
carbon cycles. In addition to sedimentary phosphates, Morocco hosts several carbonatite
and carbonatite–alkaline complexes that could be associated with potential resources of
igneous phosphate and critical metals [19–23].

To date, several studies have focused on the geological, mineralogical, and geochem-
ical aspects of Moroccan phosphates. However, these studies fall short of the enormous
research potential that these resources offer, and several questions remain unanswered.
The main objective of this review paper is to summarize the current state of the art and the
available knowledge on these phosphates through a review of what has been achieved so
far. Through this review, Moroccan phosphates will be also positioned in the context of
regional and international research on phosphate rocks.

2. Key Features of Sedimentary and Igneous Phosphate Rocks
2.1. Marine Sedimentary Phosphate Deposits

Marine sedimentary phosphates are made up of a wide variety of phosphate particles,
or “phosclasts”, which can be divided into (1) skeletal grains (bioclasts, shark teeth, and
bone fragments) and (2) non-skeletal grains (peloids, coprolites, aggregates, or composite
grains) [24]. These phosphate particles coexist with other non-phosphatic phases such as
quartz, calcite, dolomite, and clay minerals [24]. Other non-apatitic phosphate minerals
are generally secondary ferrous and aluminous minerals resulting from the alteration of
primary phosphates [25]. The main phosphate minerals are carbonate fluorapatite (CFA),
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formerly known as francolite [26,27]. Francolite is highly susceptible to a wide range of
substitutions in various positions [27]. The fundamental substitution of CO3

−2 for PO4
−3

in 0~25% of phosphate sites takes place at a 1:1 ratio. Substitution of Na+ and Mg+ for
Ca2+ is also significant to preserve the electroneutrality of the francolite structure [27].
These substitutions, which generally reflect the composition of the solution from which
they are formed, can lead to a change in chemical composition over time [27]. Dahllite
(carbonate hydroxyapatite) is also found in some marine phosphate rocks. This poorly
crystallized, non-stoichiometric mineral with a fibrous texture can be recognized as a
“biological apatite” [28].

The majority of marine sedimentary phosphates are the result of interaction between
complex biogeochemical processes that occur under particular environmental conditions
(Figure 1) [2,29,30]. Continental margins and epeiric seas seem to be the most favorable
locations for the accumulation of phosphate deposits [2,13,31]. They occur at depths
varying between 100 and 500 m, with a limited supply of terrigenous and carbonate
detritus, which corresponds to a phosphogenic window [2,13,25,31]. In these environments,
upwelling currents play an essential role in lifting phosphorus-rich deep water to the
surface, triggering significant biological productivity [1,2,13]. A shift from suboxic to
sulfidic conditions seems to coincide with the highest rate of apatite precipitation [32]. For
its part, the biological activity promotes the establishment of phosphogenesis conditions
via the accumulation of phosphorus from seawater and its recycling in sediments through
the degradation of organic matter [31]. Once delivered to the sediment–water interface, this
organic phosphorus is subjected to further microbial activity that controls its transformation
into inorganic forms [31]. At this stage, most of the phosphorus produced by microbial
respiration or “mineralization” processes is returned to seawater (Figure 1). However, the
so-called “polyphosphate pumping” processes related to the activity of polyphosphate-
accumulating sulfur bacteria appear to be a driver of phosphate sequestration during the
transport of phosphorus from the water interface to underlying sediments [31,33]. Indeed,
it was highlighted in modern sediments that these bacteria accumulate phosphate and store
it as polyphosphate inclusions under oxic conditions. Once the conditions become anoxic,
they undertake the hydrolysis of the polyphosphates to produce energy, releasing large
amounts of orthophosphate into pore waters. This triggers the precipitation of carbonate
fluorapatite (CFA) precursors after reaching the supersaturation conditions [33,34]. Another
important source of phosphate in pore waters is iron redox pumping (Figure 1). In this
case, the sorbed phosphate is released within the sediment from Fe oxyhydroxides when
these phases are buried in anoxic zones [31,34,35]. Iron oxyhydroxides also act as catalysts
of polyphosphate hydrolysis and the precipitation of calcium phosphate minerals [36]. In
addition to involvement in sedimentary phosphogenesis, there are several forms through
which iron is linked with phosphatic deposits. The iron phosphates are considered to be a
significant long-term sink for phosphorus in marine sediments [37]. Indeed, the presence
of the Fe(II)–Fe(III) hydroxychloride crystals in the sediment can significantly enhance
the P sequestration under anoxic conditions by forming iron–phosphate complexes and
slowing down their oxidation and transformation, e.g., [38,39]. The phosphatic iron ores
could be of economic interest; such is the case of the phosphatic ferromanganese crust
deposits, which are increasingly regarded as potential sources of phosphorus and critical
metals [40,41]. Their phosphatization is associated with the replacement of carbonate and
preferential replacement of Fe oxyhydroxide relative to Mn oxide [42]. High-phosphorus
ooidal iron ores are another example in which iron is correlated with phosphorus and rare
earth elements. Recent works suggest a potential geological connection between large
igneous provinces (LIPs), upwelling, marine hypoxia, rifting, and their formation [43,44].
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Figure 1. Different phosphogenic processes. In upwelling environments, organic matter (OM) is microbially degraded
through a series of chemical reactions that lead to the concentration of dissolved phosphate in pore water, facilitating
the authigenic precipitation of carbonate fluorapatite. In organic-poor environments, Fe redox pumping is the primary
process leading to high concentrations of phosphate in pore water via cyclical adsorption and release of phosphate from Fe
oxyhydroxides. (Modified from Pufahl and Groat (2017), and references therein [2]).

In contrast to iron, Mg2+ ions are known to inhibit the precipitation of carbonate
fluorapatite, which means that pore waters should be depleted of Mg2+ to create favorable
conditions [29]. Similarly, the phosphate sorption is controlled by dissolved silica (Si),
knowing that its inhibitory effect could also depend on magnesium and calcium concen-
trations [45,46]. Either way, it should be noted that all of the redox-controlled microbial
and abiotic CFA precipitation processes cited above also account for a number of other
authigenic mineral precipitations, including glauconite, pyrite, and dolomite [2,47]. The
newly formed carbonate fluorapatite is concentrated in the form of phosphatic particles and
laminae, which can be rapidly buried, giving way to another cycle of phosphogenesis. The
repetition of this cycle over time allows the formation of pristine laminated sedimentary
phosphates [13,48]; their P2O5 content rarely exceeds 10%, and is often sub-economic,
except for some of them that may be beneficiated to increase their grade to economically
viable concentrations [2]. The transformation of these pristine sedimentary phosphates into
naturally enriched phosphorites occurs under specific post-depositional conditions [1,2,13].
A first possible scenario is an in situ enrichment process via winnowing. This mechanical
process, induced by storm and button currents, consists of a substantial removal of fine
sediment particles, leaving behind phosphatic grains and taking advantage of their higher
specific density with respect to the average sediment [13,47]. The recurrence and amalgama-
tion of winnowing episodes, coupled with restricted detrital inputs, result in the formation
of economic phosphate accumulations over large areas [2,24]. When transported from their
initial formation sites to new sedimentary environments during transgressive or regressive
periods, the primary phosphatic particles result in an allochthonous phosphate [2]. Indeed,
basinward transport of phosphatic particles may lead to their distal accumulation as tur-
biditic layers with typical features of gravity flow sediments. On the other hand, landward
transport—mainly during transgressive events—transfers substantial amounts of phos-
phate towards the proximal parts, where they can be reworked, enriched, and preserved,
or even diluted and mixed with the detrital material delivered from the hinterland [2,49].

Based on either the outcrop descriptions, petrography, chemical composition, or
their combination, several classifications have been proposed for marine sedimentary
phosphate rocks [2]. The classification proposed by Föllmi (1996) [13] is the simplest and
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most practical due to its applicability to large marine phosphate types of all ages and from
various depositional environments. It recognizes two types of broad lithofacies (Figure 2):

(i) Pristine phosphate, corresponding to the authigenic facies as deposited originally
without any subsequent reworking or transport. This lithofacies usually takes the
form of finely laminated sediment with disseminated authigenic francolite. It contains
high content of organic matter and low phosphate concentrations, ranging from 2 to
10 wt.% P2O5;

(ii) Reworked phosphate or Granular phosphate results from reworking and re-sedimentation
of the primary phosphate under high-energy conditions induced by storm waves and
currents. These reworking events can occur in situ or at different parts of the depo-
sitional system, allowing the formation of a densely packed and cleaned phosphate
with high P2O5 content (up to 35 wt.%).

Minerals 2021, 11, x FOR PEER REVIEW 5 of 23 
 

 

practical due to its applicability to large marine phosphate types of all ages and from var-
ious depositional environments. It recognizes two types of broad lithofacies (Figure 2): 
(i) Pristine phosphate, corresponding to the authigenic facies as deposited originally with-

out any subsequent reworking or transport. This lithofacies usually takes the form of 
finely laminated sediment with disseminated authigenic francolite. It contains high 
content of organic matter and low phosphate concentrations, ranging from 2 to 10 
wt.% P2O5; 

(ii) Reworked phosphate or Granular phosphate results from reworking and re-sedimenta-
tion of the primary phosphate under high-energy conditions induced by storm waves 
and currents. These reworking events can occur in situ or at different parts of the 
depositional system, allowing the formation of a densely packed and cleaned phos-
phate with high P2O5 content (up to 35 wt.%). 

 
Figure 2. Genetic phosphate classification: pristine vs. reworked phosphate (based on [13]). 

2.2. Igneous Phosphates 
The igneous apatite (F-rich) is the omnipresent accessory mineral found in almost all 

igneous rocks, from mafic to felsic, although 0.11 vol% of the rock is in the more normal 
range [50]. However, some peculiar igneous systems can often lead to economically valu-
able accumulations of apatite (concentrations > 3‒5 vol% of the rock) [2,50,51]. These ig-
neous phosphate accumulations are mainly associated with carbonatite/alkaline systems 
(dominant) and/or some anorthositic magmas (Table 1) [52,53]. The Khibina and Kovdor 
alkaline–carbonatite complexes in the Kola Peninsula (Russia), where phosphate rocks 
consist mainly either of apatite–nepheline-rich rocks (Khibina) or magnetite–apatite-rich 
ultramafic plutonic rocks (phoscorites, Kovdor), form the world’s largest igneous phos-
phate deposit [53–57]. In addition to Russia, other important carbonatite/alkaline-related 
phosphate ores have been reported and mined in, e.g., Palabora in South Africa, Siilinjärvi 
in Finland, Jacupiranga in Brazil, and Dorowa in Zimbabwe—mainly to produce fertiliz-
ers [2,53,58]. Table 1 summarizes the main characteristics of the important igneous phos-
phate deposits worldwide, showing that P2O5 contents are variable, and range between 3 
and 38 %. In contrast to sedimentary phosphorites, the igneous phosphate ores are more 

Figure 2. Genetic phosphate classification: pristine vs. reworked phosphate (based on [13]).

2.2. Igneous Phosphates

The igneous apatite (F-rich) is the omnipresent accessory mineral found in almost
all igneous rocks, from mafic to felsic, although 0.11 vol% of the rock is in the more nor-
mal range [50]. However, some peculiar igneous systems can often lead to economically
valuable accumulations of apatite (concentrations > 3–5 vol% of the rock) [2,50,51]. These
igneous phosphate accumulations are mainly associated with carbonatite/alkaline systems
(dominant) and/or some anorthositic magmas (Table 1) [52,53]. The Khibina and Kovdor
alkaline–carbonatite complexes in the Kola Peninsula (Russia), where phosphate rocks
consist mainly either of apatite–nepheline-rich rocks (Khibina) or magnetite–apatite-rich
ultramafic plutonic rocks (phoscorites, Kovdor), form the world’s largest igneous phos-
phate deposit [53–57]. In addition to Russia, other important carbonatite/alkaline-related
phosphate ores have been reported and mined in, e.g., Palabora in South Africa, Siilin-
järvi in Finland, Jacupiranga in Brazil, and Dorowa in Zimbabwe—mainly to produce
fertilizers [2,53,58]. Table 1 summarizes the main characteristics of the important igneous
phosphate deposits worldwide, showing that P2O5 contents are variable, and range be-
tween 3 and 38 %. In contrast to sedimentary phosphorites, the igneous phosphate ores
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are more economically important, since they offer high-quality phosphates with mini-
mal concentrations of undesirable contaminants (e.g., Cd, As, Pb, Si, Al). They can be
associated with economic concentrations of some strategic elements, including rare earth
elements, niobium, copper, titanium, zirconium, uranium, vermiculite, and iron (Table 1,
Figure 3) [53,59]. Currently, the world’s largest REE deposits are primarily associated
with carbonatite–alkaline complexes, e.g., Bayan Obo in China [60,61] and Mountain Pass,
USA [62]. Table 1 also gives a review of the available age determinations of the major
worldwide carbonatite/alkaline-related phosphate ores, which were formed from the
Archean to current times (Cenozoic).

Table 1. Principal worldwide igneous phosphate ores. Data from [58,63–67] and references therein.

Country Ore Age P2O5
Content (%)

Major Associated
Commodity Rock in Deposit

Russia

Khibina
(Kola Peninsula)

Devonian
(385–360 Ma) 15 Nepheline (Al)

Carbonatite, eruptive breccia,
foyaite, ijolite, melteigite,

nepheline syenite,
phoscorite, urtite

Kovdor
(Kola Peninsula)

Devonian
(385–360 Ma) 6–7

Magnetite (Fe),
vermiculite,

baddeleyite (Zr)

Carbonatite, dunite, ijolite,
melteigite, phoskorite, pyroxenite

South Africa
Palabora Paleoproterozoic

(~2 Ga) 7–9

Vermiculite,
chalcopyrite (Cu),

magnetite (Fe),
thorite (U),

baddeleyite (Zr)

Carbonatite, phoscorite,
micaceous pyroxenite, pyroxene-

phlogopite-apatite pegmatoid

Glenover
Upper

Proterozoic
(~1 Ga)

25–29 Apatite-hematite breccia,
carbonatite, pyroxenite

Brazil

Jacupiranga
Jurassic-

Cretaceous
(161–125 Ma)

~5 Lime (calcite) Carbonatite, ijolite, peridotite,
jacupirangite, nepheline syenite

Araxá Cretaceous
(~87 Ma) 15 Pyrochlore (Nb) Carbonatite, glimmerite,

lamprophyre, phoscorite

Catalão I Cretaceous
(~83 Ma) 5–17 Pyrochlore (Nb), Ti Carbonatite, dunite,

glimmerite, pyroxenite

Tapira Cretaceous
(~70 Ma) ~8 Anatase (Ti)

Carbonatite, dunite, bebedourite,
jacupirangite, peridotite, syenite,

silexite, trachyte, tuff

Angico dos Dias Paleoproterozoic
(2 Ga) ~15 Carbonatite, syenite, pyroxenite

Anitápolis Cretaceous
(131–104 Ma) 6–35 Ijolite, biotite pyroxenite,

nepheline syenite, carbonatite

Ipanema Cretaceous
(138–121 Ma) ~7 Glimmerite, carbonatite,

aegirinite, syenite

Miacuru Ediacaran
(~589 Ma) 15 Pyroxenite, syenite, glimmerite,

carbonatite

Finland
Siilinjärvi Archean

(~2.6 Ga) >3.5 Lime (calcite),
phlogopite Glimmerite, carbonatite, fenite

Sokli Devonian
(410–362 Ma) ~16 Carbonatite, phoscorite, fenite

Uganda Bukusu Cenozoic
(~40 Ma) ~15 Carbonatite, melteigite, ijolite,

pyroxenite, syenite

Sukulu Cenozoic
(~40 Ma) 11–13 Magnetite (Fe),

pyrochlore (Nb) Carbonatite, syenite
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Table 1. Cont.

Country Ore Age P2O5
Content (%)

Major Associated
Commodity Rock in Deposit

Zimbabwe Dorowa Mesozoic 5–7 Magnetite (Fe) Carbonatite, ijolite, syenite,
fenite, nephelinite

Sri Lanka Eppawala Ediacaran
(~550 Ma) 38 Carbonatite

Canada Lackner Lake
(Ontario)

Neoproterozoic
(~1.1 Ga) ~9

Pyrochlore (Nb),
magnetite (Fe),

REE

Carbonatite, ijolite,
syenite, lamprophyre

Cargill (Ontario) Neoproterozoic
(~1.7 Ga) ~20 Carbonatite, pyroxenite

Martinson
(Ontario) 20–23 Pyrochlore (Nb) Carbonatite, ultramafic breccia

Namibia
Ondurakorume Cretaceous 7 REE, Sr, Nb Carbonatite, syenite,

volcanic breccia

Otjisazu Neoproterozoic
(~837 Ma) 3–5 Carbonatite, pyroxenite,

syenite, fenite

Zambia
Nkombwa Hill Neoproterozoic

(~679 Ma) 7–8 Pyrochlore (Nb),
REE Carbonatite, fenite

Kaluwe Cretaceous
(100–103 Ma) 3–5 Carbonatite

Burundi Matongo Neoproterozoic
(739–780 Ma) ~11 Carbonatite, syenite,

gabbro, diorite
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Three major hypotheses are proposed to account for the origin of carbonatite/alkaline
magmas: The first is the immiscibility of carbonated silicate magmas at crustal or mantle
pressures [68,69]. The second hypothesis is the fractional crystallization of carbonated
silicate magmas, such as olivine melilitites or kamafugites [70]. The final hypothesis is
attributed to the low-degree partial melting of carbonated mantle peridotite, e.g., [69,71].
Significant phosphate accumulations are typical characteristics of these carbonatite–alkaline
systems (Figure 3), where the crystal fractionation is proposed as the primary driving
force in the petrogenesis of these mineralized carbonatites (Figure 3) [54,56,64]. However,
phosphorus shows a clear preference for the carbonate melt relative to the associated
silicate alkaline melt [72]. Moreover, phosphate petrogenesis involves the role of frac-
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tional crystallization and/or liquid immiscibility to separate P-rich fluids from carbonate
melts [53,54,59]. In addition, several recent geological investigations emphasize the role of
melts in the genesis of carbonatite-related ores [61,73–75], which provide constraints on the
transportation of phosphates and REE/Nb by hydrothermal fluids and their deposition.
The role of metasomatism, including late-stage alteration, is also crucial in the ultimate
understanding of these phosphate accumulations [19,47,53,72]. However, some apatite
accumulations are also reported in the weathering profiles of carbonatites, and sometimes
give high-grade ore deposits (e.g., Figure 3) [51,76]. The weathering of carbonatite com-
plexes generates the replacement/decomposition of carbonatite primary minerals to form
lateritic profiles with significant phosphate and REE-, Nb-, and Fe-bearing mineral accumu-
lations (Figure 3) [77,78]. The higher accumulations of phosphate found in these supergene
profiles could be linked to the leaching and removal of primary carbonates generating
the reduction in the initial rock volume, which is enriched in more weathering-resistant
mineral phases, such as non-carbonate minerals [53,77,79].

3. Moroccan Sedimentary Phosphates: A Unique Geological Heritage
3.1. Geological and Depositional Setting of Moroccan Sedimentary Phosphate

The most important sedimentary phosphates in Morocco are distributed mainly over
four basins: Ouled Abdoun, Ganntour, Meskala, and Oued Ed-dahab (Figure 4). How-
ever, phosphates are also reported in other sites of less economic importance: Middle
Atlas, Beni Mellal, High Atlas, the Marrakesh High Atlas northern basins, Souss, and the
Ouarzazate basins (Figure 4) [18]. These deposits form part of the Mediterranean (Tethyan)
phosphogenic province [80]. They were deposited during the Upper Cretaceous–Paleogene
period—more specifically, from the Maastrichtian to the Ypresian.
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The geochronology of Moroccan phosphates was determined mainly using biostrati-
graphic approaches, taking advantage of their remarkably rich and diversified fauna.
Indeed, the study of vertebrates—specifically selachian assemblages—helped to identify
three bio-zones, namely, the Late Cretaceous (Maastrichtian), Paleocene (Danian and Thane-
tian), and Eocene (Ypresian and Lutetian) [82]. On the other hand, the study of dinocysts
allowed the definition of reference levels for the regional correlation of the top end of the
Maastrichtian [83]. Similarly, the study of pollen assemblages in the Ganntour Basin has
shown that the Selandian (previously known as Montian), Thanetian, and Ypresian forms
can be differentiated and correlated with the European forms, some of which can be used
as stratigraphic markers [84]. Moreover, the study of dinoflagellates in the Ouled Abdoun
Basin has provided markers for the Thanetian and Basal Ypresian [85]. Accordingly, the
Moroccan sedimentary phosphate deposition was spread over a much more extended
period compared to other deposits in the Tethyan province (Figure 5). The resultant
phosphate accumulations correspond to a succession of phosphate-rich layers hosted by
marine-dominated sediment bounded by under- and overlying continental sediments [86]
(Figure 6). Phosphatic layers occur mainly in the form of either granular phosphate, phos-
phatic limestone, or phosphatic marl, and the non-phosphatic layers correspond mostly to
marls, limestones, dolomites, and clays/silts (Figure 6).
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The Ouled Abdoun Basin, also known as the Phosphate Plateau, is part of the Atlantic
coastal basin, which consists of a tabular Meso-Cenozoic cover overlying a deformed Her-
cynian basement [87]. The phosphate series of Ouled Abdoun, spanning the Maastrichtian–
Ypresian stratigraphic interval, shows various phosphatic facies, including phosphatic
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marls, phosphorus-rich sandy phosphates, and coprolitic phosphatic limestones with flint
nodules [88]. The Ganntour Basin corresponds to a plateau formed by a Meso-Cenozoic
sedimentary series that rests on a deformed Hercynian basement. Phosphate facies in this
basin include friable granular phosphates, silty phosphates, and phosphatic limestones [89].
Phosphatic layers of economic interest in the Ouled Abdoun and Ganntour basins have
been given specific nomenclature for mining purposes: C0, C1, and so on, from top to base,
for major layers, and “sillon” for thin phosphatic layers (Figure 6). The phosphate series of
Meskala occurs in isolated synclinal basins; it is composed of phosphatic marls shifting to
porcelanites and marls, and then to fossiliferous carbonates at the top [90].

The Upper Cretaceous–Paleogene series of the High Atlas hosts unexplored phosphate-
rich sediments [91]. This series is a carbonate-dominated sedimentary succession organized
in two second-order transgressive–regressive sedimentary systems [92,93]. These marine
sediments developed between the underlying Senonian continental series and the overlying
Neogene erosive continental deposits. Phosphatic facies include granular phosphate,
phosphatic marls, and phosphatic sandstones and microconglomerates [18]. The Souss
Basin, located at the southern edge of the High Atlas, embodies the thickest known
Maastrichtian sequence in Morocco, and contains various phosphatic sediments, including
phosphatic sandstones and microconglomerates.
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In the Moroccan Saharan domain, the Meso-Cenozoic basin of Oued Ed-dahab encom-
passes a Maastrichtian to Lutetian phosphate series showing three main phosphate-rich
layers (L1, L2, and L3) composed of coprolitic and granular phosphate [94]. These layers
are intercalated with non-phosphatic chert- and clay-dominated sediments (Figure 6).
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3.2. Mineralogical and Geochemical Signatures of Moroccan Sedimentary Phosphates

Compared to the other phosphate deposits from the Mediterranean province, and
international phosphorites, the standardized quality of mineralogical or geochemical data
is very rare or even unavailable for the natural phosphate rocks from Morocco. The few
published works deal with data on the geochemistry of phosphate bioconstituents rather
than the bulk rock [98,99]. The available data on Moroccan sedimentary phosphates show
that, similar to other regional phosphate rocks, they are mainly composed of francolite
and associated gangue minerals (e.g., calcite, dolomite, quartz, gypsum (occasionally)) and
clay minerals (e.g., smectite, illite, palygorskite, sepiolite, kaolinite). Glauconite, sulfides
(mainly pyrite), iron oxides (e.g., hematite and goethite), and feldspar are also found as
accessory minerals.

In terms of geochemical composition, the oxide contents are variable according to the
situations and ages of the different deposits but, overall, the most naturally abundant oxides
are CaO and P2O5. The average CaO and P2O5 contents are approximately 36 ± 11 wt.%
and 22 ± 8 wt.%, respectively (Table 2).

Table 2. CaO and P2O5 contents in the phosphates of Ouled Abdoun according to the ages of the
deposits. S.D. = standard deviation. Data from [100].

Age Mean CaO Wt.% S.D. Mean P2O5 Wt.% S.D.

Ypresian (n = 7) 36.41 11.65 22.17 8.05

Thanetian (n = 4) 36.50 6.33 15.83 2.46

Danian (n = 5) 46.04 6.15 24.26 6.53

Maastrichtian (n = 14) 39.90 7.26 20.89 5.80

In certain silicified facies, average SiO2 content can reach 14 wt.% alongside CaO and
P2O5 (Table 3). As for other worldwide phosphate deposits, some Moroccan phosphates
can be relatively enriched in certain minor and trace elements, e.g., uranium (U), strontium
(Sr), cadmium (Cd), and rare earth elements (REE) (Table 3 and Figure 7).

Table 3. The average composition of some samples of phosphate rocks from the Ouled Abdoun basin. Data from [88].

SiO2 Al2O3 MgO CaO Fe2O3 TiO2 Na2O K2O P2O5 L.O.I

Mean (n = 146) 14.73 2.49 4.08 37.07 0.99 0.15 0.33 0.46 11.68 24.72

S.D. (n = 146) 8.59 1.97 3.84 9.82 0.82 0.09 0.18 0.43 9.12 8.66

Sr Ba V Ni Co Cr B Mn Zn Ga Cu Pb Sn Cd

Mean (n = 146) 762 74 80 95 0.27 181 8 36 158 0.33 43 14 0.32 9

S.D. (n = 146) 392 46 142 53 2 91 17 47 97 2 21 44 1 9

The Moroccan phosphates have lower values of ΣREE compared to other examples
worldwide. However, they show the same patterns with negative Ce anomalies [101]. The
distribution of REE likely reflects the deposition and preservation conditions, given that
the redox conditions and reworking process can severely affect the REE contents in the
final phosphate rocks [101]. The phosphatic bioparticles exhibited the same distribution of
REE as the natural phosphatic rocks (i.e., a negative Ce anomaly and HREE enrichment)
(Figure 7). These REE patterns are similar to the REE pattern of modern oxic seawater,
suggesting REE uptake by fossils from an early diagenetic pore fluid that was dominated
by seawater [98,99].
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3.3. Phosphogenesis and Paleogeography of Phosphate Deposits in Morocco

The economic phosphorites of Morocco show the characteristics of an epicontinental
sea with a restricted and very shallow marine environment of formation linked to an
upwelling system located on the Atlantic margin [86,87]. They also show a clear signature
of interaction between biological and geochemical processes [86,90]. In addition, the study
of the geochemical properties of the organic matter showed that phosphogenesis occurred
under intermediate redox conditions [90]. These conditions favor a partial degradation
of organic matter to release phosphorus into the interstitial microsystems, preventing
its recycling into seawater [86,90]. On the other hand, the exceptional accumulation of
phosphate in Morocco reflects a mechanical concentration of phosphatic elements via
hydrodynamic processes as a part of a multistage post-phosphogenesis evolution of pri-
mary phosphate that involves reworking, transport, and secondary accumulation on the
marine platform [18,86–88]. On a global scale, the concentration of phosphate in phosphate
plateaus in Morocco seems to be controlled mainly by paleogeographic and eustatic forc-
ing [103]. Nevertheless, the debate remains open in terms of the paleogeographic model for
Moroccan phosphate. Four different models with contrasting trends have been proposed
(Figure 8):

(i) A system of narrow gulfs separated by emerged lands (Figure 8A,B; Rehamna and
Jebilet Hercynian massifs) [89]. In this paleogeographic configuration, the opening to
the Atlantic would correspond to several narrow corridors [89]. For some authors,
the opening to the Atlantic was through at least three distinct gulfs (Ouled Abdoun–
Ganntour, Ouarzazate–Essaouira, and Souss) [88,89].

(ii) Salvan [104] proposed a model with large openings or a combination of a large
connection with the Atlantic Ocean and interconnected gulfs (Figure 8B);

(iii) An epicontinental sea in a single open expanse westward to the Atlantic, with the
existence of land masses in central Morocco and within the Atlas domain (Figure
8C) [105,106];

(iv) A vast epicontinental sea (Phosphate Sea) without the presence of islands, in di-
rect connection with the Atlantic Ocean to the west (Figure 8D) [91]. In this paleo-
geographic configuration, landforms did not occur during phosphogenic periods.
Charrière et al. (2009) [107] suggested that the position of the paleo-coastline should
be shifted to the east at the Imilchil area following the discovery of charophytes
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and ostracods in the Lutetian (Figure 8D). The presence of terrestrial vertebrates
(dinosaurs, pterosaurs, mammals) in the northeastern parts of the Ouled Abdoun
Basin suggests that this area corresponded to a proximal high-energy environment in
the vicinity of the Paleozoic central massif [108]. The phosphate series at the Ganntour
Basin, where the most complete sequence was recorded, was deposited in a more
subsident and quieter setting [25,89].
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3.4. Morocco Hosting the Largest Phosphate Reserves

Phosphate reserves are dynamic and changeable over time, depending on several
factors, including production rates, the discovery of new reserves, and the reclassification
of resources and reserves [9,109]. Currently, there are several sources of publicly available
global inventory data on resources/reserves and the production and consumption of
phosphates. These data are commonly reported every year by the major geological surveys
(e.g., USGS, WMD, BGS, etc.) [110]. In fact, the most comprehensive study on phosphate
reserves and resources remains that of Steven Van Kauwenbergh in 2010 [111], which
summarizes the results of several previous studies, showing that the estimates of reserves
range from 15,000 MMT (Million Metric Tons) to over 1,000,000 MMT, while resource
estimates range from ~91,000 MMT to over 1,000,000 MMT. However, the only major
geological survey providing up-to-date data regarding global phosphate rock reserves
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is the USGS, which shows that the current global resources of phosphate rock are more
than 300,000 billion tons, and the reserves are of ~71,000 MMT [17]. Morocco holds the
largest reserves in the world, with 70-75% (approximately 50,000 MMT) of the total world’s
known phosphate reserves (Figure 9A) [17]. However, these estimated reserves have not
changed since 2010, while the production has increased over the same period (Figure 9).
This situation clearly justifies the need to reevaluate the resources and reserves in Morocco,
given their importance on the global market. Either way, the share of Moroccan reserves
is expected to increase in the coming decades owing to its relatively high reserve-to-
production ratio compared with other producing countries. While Morocco has the largest
reserves, China contributes 40% of the global production, compared with 17% for Morocco
(Figure 9B). The United States, which was once the largest producer, contributes currently
only 11% to global production. The USA was surpassed by China in 2006 [112], and by
Morocco in 2017 (Figure 9C). At the current production rate, Morocco has the highest
reserve-to-production ratio, with more than 1300 years, while all other countries do not
exceed 200 years of mine production (Figure 9D). However, the reserve-to-production
(R/P) ratio indicates the lifetime of the reserves at current production rates; it does not take
into consideration the possible changes and reclassification of reserves and resources [9].
For Morocco, this ratio is expected to decrease, knowing that its production is increasing
continually, having increased by 43% over the past 10 years, from 25,000 MT in 2010 to
37,000 MT in 2020 (Figure 9D).
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On the other hand, several estimates using long-term projections over centuries have
been proposed for the so-called “phosphorus peak” (Figure 10). This peak, reached when
half of the reserves are consumed, is situated between 2025 and 2084 (Figure 10). It should
be noted that the dynamic character of phosphate reserves makes these estimates less
accurate, but it is evident that Morocco is a major global player in phosphate production.
This is especially true owing to the fact that the exploration of phosphates in Morocco still
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has promising potential, particularly regarding the Moroccan High Atlas phosphate-rich
sediments [18] and igneous phosphates.
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4. Moroccan Igneous Phosphates: An Underexplored Resource

Morocco also has several alkaline and carbonatite complexes that remain underex-
plored in terms of their potential for igneous phosphate resources. The main alkaline and
carbonatite complexes capable of harboring this type of mineral deposit are located in
three main zones (Figure 12) [19,21,116,117]: (1) the Cenozoic alkaline–carbonatite massif
of Tamazeght (High Atlas); (2) the Jurassic–Cretaceous alkaline complex of Imilchil (High
Atlas); and (3) the Paleoproterozoic carbonatite intrusions of Gleibat Lafhouda (Dakhla
Province).

The Tamazeght Massif is located on the northern edge of the central High Atlas, 20 km
southeast of Midelt (Figure 12A); it forms an elongated elliptical intrusion of 17 km by
5 km (area ~70 km2) with a NE–SW orientation. This massif includes many magmatic
intrusive phases, which show a progression from ultramafic to alkaline/peralkaline felsic
rocks [116,118,119]. Consequently, a wide lithological range is present, including pyroxen-
ites and gabbroic to monzonitic–syenitic rocks. In addition, several diatremes and dykes
of various types—ranging from carbonatite and lamprophyre to phonolite–trachyte—are
present within the massif and in its Jurassic country sediments (mostly limestones). Based
on structural features, field relationships, and enclaves within different facies, Kchit [120]
proposed an increasing chronological order for these magmatic facies: ultramafic rocks (e.g.,
pyroxenites); shonkinites; monzogabbros; foid-monzosyenites; malignites and pegmatites;
nepheline syenites; monzonitic rocks; carbonatites and phonolites–trachytes; lamprophyres.
The radiometric age attributed to the Tamazeght massif is Cenozoic (~45–35 Ma) [116].
Tamazeght carbonatites are generally grouped into two main facies: (1) calcite carbonatites
(dominant), and (2) dolomite carbonatites, called calcio- and magnesiocarbonatites, respec-
tively [116]. A subordinate type of carbonatite defined as silicocarbonatite (carbonates
<50 vol%) has also been recognized [116]. Calciocarbonatite (calcite 80–90 vol%) is com-
posed of varying amounts of apatite (10–20 vol%), pyrochlore (5–10 vol%), and titanite (up
to 10 vol%), accompanied by phlogopite, dolomite, ankerite, albite, K-feldspar, and quartz.
On the other hand, the magnesiocarbonatite consists of >50% dolomite, up to 10% calcite,
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and phlogopite. The non-carbonate phases are apatite, magnetite, amphibole, and quartz,
representing 1–5 vol% of the rock [116,120].

The Imilchil region in the Central High Atlas is a province of numerous magmatic
intrusions with alkaline affinity and Jurassic–Cretaceous age (~165–125 Ma), oriented
NE–SW to E–W with an elongated shape (10–40 × 1.5–4 km), but also in the form of minor
satellite intrusions (0.5–2 × 0.5–1 km) (Figure 12B) [121–123]. The gabbro is the dominant
facies in these intrusions (60–70 vol% of the intrusion); it is often associated with monzonite–
syenite association bodies, representing the remaining volume of the intrusion. Several of
these magmatic structures host gem-quality apatite vein-type ores [19,124]. Apatite from
these High Atlas deposits is known through the activity of mineral collectors who recover
and resell apatite crystals for international mineral markets (Figure 11A) [19,124,125].
The main apatite deposits are spatially associated with differentiated magmatic rocks
(especially syenites) [19,124]. This mineralization forms mm to several cm thick veins
without any preferential orientation. Their current exploitation is done only in an artisanal
manner, and mainly benefits the mineral collectors. The mineralogical assemblages of gem-
quality apatite ores (apatite of up to 15 cm in size and 30% by volume of the veins) from
different localities of High Atlas/Imilchil are slightly variable, while the main components
are always alkaline feldspars (albite, K feldspar), pyroxene, amphibole, quartz, prehnite,
calcite, magnetite, epidote, and titanite (Figure 11A) [19,124].
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The western Reguibat of southern Morocco hosts several isolated alkaline and car-
bonatite complexes, forming the so-called “West Reguibat Alkaline Province” (Figure 12C;
e.g., [127,128]. This includes several Cambrian (ca. 525 Ma) alkaline granitic [129] and
ca. 2.5 Ga kalsilite–nepheline syenitic plutons [127,128], as well as numerous carbonatite
occurrences [117]. The carbonatites form isolate carbonatite structures, mainly including
those of the Gleibat Lafhouda and Twihinate regions (Figure 12C) [22,23,117]. Twihinate
carbonatite occurs as a small annular structure (diameter < 5 km) composed mostly of silica
and iron oxide rocks, with minor calciocarbonatite outcrops attributed to the Cretaceous
Age (ca. 104 Ma) [117]. This small outcropping structure seems to be the cupola of a larger
intrusion [117], and its economic potential has not yet been fully explored. Only a few
studies have reported the significant REE and Nb concentrations (REE up to 0.7–3 wt.%
and Nb up to 0.2–1.3 wt.%) associated with the Twihinate structure [23,117,130]; however,
no research has been devoted to its phosphate resources. In contrast, the well-exposed
and widely extending structural outcrop in the Gleibat Lafhouda region (Figure 12C,D)
corresponds to an isolated Paleoproterozoic (ca. 1.8 Ga) complex of magnesiocarbonatites,
which includes three intrusions (Drag, Al Fernan, and Lafhouda), and could cover a total
area of ~300 km2 (Figure 12D) [20,21,117]. Generally, these carbonatites are often covered
by a crust of iron oxide–apatite ores (Figure 12D; Figure 11B). The Gleibat Lafhouda mag-
nesiocarbonatites consist of dolomite (70–90%), apatite (up to 10%), Fe oxides (mostly
magnetite and hematite), and rare calcite [20]. The iron oxide–apatite ores observed at the
top of the Gleibat Lafhouda carbonatite intrusions consist mainly of Fe oxides associated
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with a significant concentration of apatite (up to 40%) (Figure 11B). In terms of economic
potential, the Gleibat Lafhouda ores contain significant concentrations of apatite, either in
iron oxide–apatite or in carbonatites, which are sometimes associated with Nb- and REE-
rich minerals (e.g., ferrocolumbite, monazite) [21]. In addition, these data are supported
by the prospective results assessing the significant resources linked to high P2O5 contents,
which can exceed 5-7 wt.% in carbonatites and 33 wt.% in iron oxide–apatite rocks [20,117],
along with REE and Nb mineralization (100 million tons with 0.3 wt.% REE and 0.4 wt.%
Nb2O5 in iron oxide–apatite ores) [21].
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Despite the presence of several potential zones for the exploration of igneous phos-
phate resources in Morocco, the zones cited above are not of the same interest. For the
alkaline–carbonatite complex of Tamazeght, given the presence of significant outcrops
of carbonatites and alkaline silicate rocks as well as pegmatites, it remains strongly pre-
ferred for exploration, knowing that the REE contents could reach 1 wt.% in some sample
rocks studied by [116,118]. In addition, P2O5 contents can reach up to ~3 wt.%, especially
in carbonatites, and ~1.2–4 wt.% P2O5 in some alkaline silicate rocks [116,118,131]. The
Imilchil alkaline intrusions of the High Atlas remain interesting for advanced geological
exploration in order to understand the geological context of the genesis of gem-quality
apatite. Their characterization, as well as the characterization of their host rocks, could
reveal potential resources in the future. Likewise, the carbonatites from southern Morocco
are still the most suitable areas in terms of igneous phosphate resources and related REE.

5. Conclusions

Phosphate rocks of both sedimentary and igneous origin began to form on Earth since
the Paleoproterozoic in a myriad of geological environments, and they were preserved in
a large number of locations in the world. However, the largest phosphate resources are
located in Morocco. All of the mineable and known economic resources in this country
are sedimentary marine phosphorites. They were deposited from the Maastrichtian to
the Ypresian within wide-extent, tectonically stable marine platforms with diverse sub-
environments and an outstanding biological diversity. They are a typical example of all
the differentiation processes and pathways that phosphate sediment can undergo. This
is reflected by the wide variety of observed lithofacies, showing different sedimentary
characteristics and fossil content. However, robust correlations between the different parts
of the Moroccan phosphogenic systems are still required in order to provide some clar-
ifications in terms of paleogeography, and to effectively target the potential phosphatic
zones. A reassessment of available resources and reserves according to their quality and
exploitability also remains a necessity, given their importance on a global scale. Their
exploitation has also become a field in which more sustainable practices should be adopted
in order to ensure sufficient production for future generations by introducing innovative
ways of mining and beneficiation. Morocco also has potential in terms of igneous phos-
phates, which still remain to be well explored. The discovery of such resources will position
Morocco from afar as being undoubtedly the land of phosphates.
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